• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    苯分子與Si6O18H12和Al6O24H30團簇模型相互作用的理論研究

    2014-10-18 05:27:42宋開慧
    物理化學(xué)學(xué)報 2014年2期
    關(guān)鍵詞:材料科學(xué)泰安泰安市

    王 幸 錢 萍,* 宋開慧 張 超 宋 偉

    (1山東農(nóng)業(yè)大學(xué)化學(xué)與材料科學(xué)學(xué)院,山東泰安 271018;2泰安市疾病預(yù)防控制中心,山東泰安 271000)

    1 Introduction

    The monoaromatic hydrocarbons benzene,toluene,ethylbenzene,and xylenes are abbreviated by BTEX,which is commonly found in liquid and gas states in our planet,especially abundant in pollutants,present in soils,in industrial process as well as in the product of petroleum refining.BTEX is mainly produced in catalytic synthesis,the pyrolysis of naphtha,and oil refinement.1BTEX,playing an important role in the synthesis of other compounds,is the main pollutant to the soils and groundwater,and has resulted in great harm to the people because of its high toxicity,carcinogenicity,and mutagenicity.2-4BTEX migration is controlled by diffusion and adsorption on the surface of soil components,where the clay minerals are ubiquitous.For further understanding the surface structural and chemical properties of clay mineral,it is important to know the adsorption structures and interactions between the pollutants and clay surface at the molecular level.

    To the best of our knowledge,the important crystal structure information of clay minerals has been determined by some available experimental techniques.5,6However,the particles of clay minerals are extremely small sizes and in structural and substitutional disorder for the natural material.These factors complicate an experimental study of structure and properties of clay.In particular,these small particles,which often prevent utilizing single-crystal diffraction for the precise determination of structural parameters,lead to ambiguous crystal structure.Therefore,special attention is given to the related study of clay systems at the molecular level,especially,the adsorbent properties of clay surfaces.7Essentially,two main approaches should be used in theoretical studies of clay.The first one is based on the exploitation of the translational symmetry in the calculation procedure,e.g.,periodic ab initio calculations,6,8which may be impractical or over costly for a very large system just like ours.The second one is based on the application of standard molecular approach in which the cluster is formed by cutting the periodic structure and the model is treated as a molecule.9-12However,it is well-known that the disadvantage of the cluster approach is the limited cluster size,and non-bonding interactions will be ignored.Therefore,in order to avoid artificial edge effects,the geometry of the outer part of the cluster model was frozen at the original structure and only the innermost part representing the adsorption site of the cluster model was fully optimized.

    A lot of researches have been implemented about adsorption and desorption of benzene and its derivatives on clay materials.13-22For example,Castro et al.13,14employed the(Al2Si2O9H4)3cluster model to study the properties(molecular orbital,electrostatic potential,vibrational frequencies,electron localization function(ELF),atomic charges,molecular orbital information,and so on)of benzene interaction with kaolinite surfaces by semi-empirical AM1,RHF,B3LYP,and MP2 methods,and found that the benzene molecule is largely tilted related to the Al―O surface.Michalková et al.18used the Si13O15H35and All6O24H30cluster models to study the adsorption of 2,4-dinitroluene(DNT)on the tetrahedral and octahedral surfaces of dickite at the HF/3-21G level,and they discovered that the adsorption energy of DNT-octahedral fragment system was lower than that of the DNT-tetrahedral fragment.Furthermore,the interaction of 1,3,5-trinitrobenzene(TNB)with the basal siloxane surface of clay minerals was studied by Pelmenschikov and Leszczynski.19The silicon-oxygen clusters symbolizing the siloxane sites were constructed by SiO4tetrahedra with the Si―O bond length equal to 0.161 nm.Gorb et al.20also used Si13O37H22cluster to study the TNB interaction with a pure silicon-oxygen surface.Their studies both suggested that the interaction of TNB with the basal siloxane surface is governed by the balance between favorable dispersion,electrostatic forces,and repulsive exchange forces.Therefore,all the above ab initio results provide reliable references for us to construct a new kaolinite cluster model.

    The primary aim of this work is to construct a new cluster model of kaolinite,and to make an extensive investigation on the new cluster model.The various gas state properties characterizing the interaction of benzene molecule and cluster model of kaolinite surface include optimized structures,structural parameters,adsorption energies,secondary hydrogen bonds,electron density characteristics,vibration frequencies,natural bond orbital(NBO)charge distributions,electrostatic potential,and electron density difference,and so on.Simultaneously,the connection among the various properties is indicated.

    2 Models and methodology

    All quantum chemical calculations were performed at the MP2/6-31G(d,p)//B3LYP/6-31G(d,p)level using the Gaussian 03 suit of programs.23This approach has been shown to be suitable for describing adsorption on oxide surface.13Among clays,kaolinite,composed of one Si―O layer linked to an Al―O layer,is classified as 1:1 type layer aluminosilicate.14,24,25Inspired by Michalková′s work,5we constructed Si6O18H12and Al6O24H30cluster models to represent the Si―O and Al―O layers of kaolinite,respectively(Fig.1).In the center of the Al―O surface,the six O atoms make up a triangle(Fig.2).The Si―O layer consists of SiO4tetrahedrally coordinated Si,and six O atoms of the center form a hexagon(Figs.1-2).It is universally accepted that the“dangling”valences of the border oxygen atoms of the Si―O layer and Al―O layer clusters were saturated with hydrogen atoms.For the optimized structures,all vibrational frequencies were performed at the same basis set level,and the scaled factor of frequencies is 0.9611.26The adsorption energy(AE)for each complex system was calculated as the difference between the total energy of the whole system and the total sum of energies of both subsystems,and the counterpoise corrections for the basis set superposition error(BSSE)were included.

    Fig.1 Kaolinite cluster models Si6O18H12(a)and Al6O24H30(b)for Si―O surface and Al―O surface,respectively

    Fig.2 Atomic labels of benzene molecule(Ben)and the innermost part representing the adsorption site of kaolinite cluster model

    In this paper,the weak hydrogen bonds C―H…O with 0.23 nm<R(H…O)<0.32 nm,0.32 nm<R(C…O)<0.40 nm and 105°<∠C―H…O<170°are considered to be secondary hydrogen bonds.To gauge the bonding properties,27,28the AIM methodology29was applied to analyze the electron denstiy ρ(r)and its Laplacian(▽2ρ(r))at the critical point of Hδ+…Oδ-from the optimized results at the B3LYP/6-31G(d,p)level.In general,a small electron denstiy ρ(r)at the hydrogen bond critical point(BCP)indicates a weak hydrogen bond,and a positive value of Laplacians ▽2ρ(r)implies that the closed-shell(electrostatic)interaction is the major source in the hydrogen bonded system.Simultaneously,Molekel program package30was applied to obtain the electrostatic potential.The maps of electron density of adsorbed complex system were also studied by the program Multiwfn31and gsgrid.32

    3 Results and discussion

    3.1 Verification of kaolinite cluster model

    To further verify the reasonableness of the kaolinite cluster model,the average bond lengths of kaolinite cluster model have been compared with those from other methods25,33-35(Table 1).The results show that our data are consistent with the others.Besides,interaction energies per water of the intercalation of n(n=1-3)water molecules in kaolinite(K-n W(n=1-3))were examined(Table 2).At the same time,the optimized structures of the intercalation of n(n=1-3)water molecules in kaolinite are depicted in Fig.3.The other detailed information concerning kaolinite-water systems can be found in reference.33We found that the interaction energies per water of kaolinitewater systems are close to those calculated by other density functional theory(DFT)methods.For example,the range of interaction energy per water calculated by Hu and Michaelides34is-43.44--63.70 kJ·mol-1,and our value is-36.69--64.68 kJ·mol-1.Specifically,when the numbers of intercalated water molecule are 2 and 3,the interaction energies per water are-61.78 and-64.68 kJ·mol-1,respectively.These data further confirm the reasonableness of our cluster models.

    3.2 Structural and energetic properties

    The benzene molecule was respectively optimized on the Si―O and Al―O surfaces of kaolinite at the B3LYP/6-31G(d,p)level.It is worth mentioning that although its initial geometry is parallel to the surfaces,the optimized benzene molecule is almost perpendicular to the surfaces,which is in agreement with Castro′s earlier work,14but different from Castro′s later job.13Various optimized low-energy structures of adsorption ofbenzene molecule on the Al―O surface and Si―O surface of kaolinite are respectively depicted in Figs.4-5.From Figs.4-5,it can be seen that the interaction angle between the benzene ring plane and kaolinite surface for benzene/kaolinite complex is almost close to 90°.In each complex,two H atoms of benzene molecule are preferentially located above the Al―O triangle or Si―O hexagon area,and interact with the surface O atoms by forming C―H…O secondary hydrogen bond.Therefore,the nature of the adsorption of benzene molecule on the kaolinite surfaces may be the formation of secondary hydrogen bonds.The relevant adsorption energies(AE),structural parameters,and electron density characteristics of secondary hydrogen bonds for these low-energy structures are indicated in Tables 3-4.In Table 3,the average values of R(C…O)and R(H…O)are respectively 0.3574 and 0.2498 nm for the lowest energy structure Al-O-Ben1 of benzene adsorption on Al―O surface of kaolinite,less than 0.3583 and 0.2816 nm for the lowest energy structure Si-O-Ben1 of benzene adsorption on Si―O surface of kaolinite.The average values of R(O…H)and∠C―H…O for all of the benzene/Al―O surface complexes are about 0.2630 nm and 143.9°,whereas those for benzene/Si―O surface complexes are about 0.2788 nm and 141.5°,respectivtly.

    Table 1 Comparison of some typical bond distances of kaolinite cluster model

    Table 2 Comparison of the interaction energies per water(kJ·mol-1)of the intercalation of n water molecules in kaolinite(K-n W(n=1-3))

    Fig.3 Optimized structures of kaolinite-water clusters(K-n W(n=1-3))

    Fig.4 Various low energy structures of adsorption of benzene on Al―O surface of kaolinite

    In addition,the AE and conventional counterpoise(CP)method corrected adsorption energies(AECP)between benzene molecule and kaolinite surface have been calculated(Table 4).For Al-O-BEN1,the AECPvalue is-18.40 kJ·mol-1.For Si-OBEN1,the AECPvalue is-18.57 kJ·mol-1.Previous studies36,37have suggested that,for systems with weak interactions,the real BSSE is small.That is to say,the real BSSE can be considered to be one order of magnitude lower than the associated counterpoise correction(BSSE=CP/10).37In this paper,we applied the approximation of BSSE=CP/10.The adsorption energies with real BSSE correction(AEBSSE)for Al-O-Ben1 and Si-O-Ben1 complexes would be-40.85 and-34.04 kJ·mol-1,respectively.This energy difference may be caused by two factors.The first one is the repulsion between π orbital of benzene and the orbitals of oxygen network from the kaolinite Si―O surface.The second one is the size of energy gap between HOMO(the highest occupied molecular orbital)and LUMO(the lowest unoccupied molecular orbital)for different clay surface.The greater the energy gap,the lower the surface chemical activity,the more stable the surfaces.Si―O surface has greater energy gap(6.52 eV)than Al―O surface(4.20 eV).This further shows that the Si―O surface is more stable than the Al―O surface.As a final result of the above two factors,the benzene molecule will be adsorbed more preferably on the Al―O surface than on the Si―O surface.

    In the current investigation,based on the analysis of electron density characteristics(Table 3),we confirmed the existence of secondary hydrogen bonds for structures in Figs.4-5.The results show that the ρ and ▽2ρ values of secondary hydrogen bonds for Al-O-Ben complexes are respectively 0.00364-0.01361 a.u.and 0.01384-0.03704 a.u.except for the HB1 and HB2 of Al-O-Ben3.However,the secondary hydrogen bonds of Si-O-Ben complexes,which are characterized by 0.00197-0.00846 a.u.of ρ values and 0.00894-0.02735 a.u.of▽2ρ values,are slightly weaker than those of Al-O-Ben complexes.At the same time,the values of the electron density and the Laplacian of the electron density are proportional to the strength of formed hydrogen bonds(shorter distances corresponding with larger ρ and ▽2ρ values).

    3.3 NBO charge distributions

    Fig.5 Various low energy structures of adsorption of benzene on Si―O surface of kaolinite

    Table 3 Structural parameters for benzene/kaolinite adsorbed systems and electron density characteristics(ρ,▽2ρ)of hydrogen bonds both calculated at the MP2/6-31G(d,p)//B3LYP/6-31G(d,p)level

    Table 4 AE,CP method and real BSSE corrected adsorption energies(AECPand AEBSSE)for benzene/kaolinite adsorbed systems calculated at the MP2/6-31G(d,p)//B3LYP/6-31G(d,p)level

    Table 5 NBO charges of the lowest-energetic structure for benzene and kaolinite surfaces calculated by the B3LYP/6-31G(d,p)method

    In this section,a cluster structure is arbitrarily chosen to study the NBO charge distributions.Taking the lowest energy structures Al-O-Ben1 and Si-O-Ben1 for example,the charges are listed in Table 5.For the isolated benzene molecule,the charge change of hydrogen atoms is regarded as zero.When benzene molecule interacts with each kaolinite surface,the charges of all sites for benzene molecule are different from the isolated benzene.i.e.,for the isolated benzene,no other molecule affects its electron cloud,but for a benzene/kaolinite complex,the intermolecular secondary hydrogen bonds C―H…O directly influence the charge distribution.For example,for the structure Si-O-Ben1,two H atoms(qH2and qH3are 0.253e and 0.272e)exhibit relatively larger absolute charges than the corresponding H atoms(0.238e and 0.238e)of isolated benzene,because the two H atoms and oxygen atoms of Si―O surface form the hydrogen bonds.Simultaneously,the charge change(△q)of all H atoms is 0.027e.For the structure Al-O-Ben1,△q of all H atoms is 0.034e,which is slightly larger than 0.027e of Si-O-Ben1.Thus,it indicates that the polarization degree of benzene on Al―O surface is slightly greater than that on Si―O surface.

    In the same way,this is also true of Al―O and Si―O surfaces.From Table 5,we can also see that after benzene adsorption on the Si―O surface,the absolute charges of O atoms of Si―O surface are almost all a little bit increased.Specifically,for the structure Si-O-Ben1,│Δq│of O atoms of Si―O surface is 0.013e.The same results occurred on the Al―O surface.H atoms and O atoms of Al―O surface for structure Al-O-Ben1 both exhibit relatively larger absolute charge(0.012e and 0.013e)than those of the isolated Al―O surface.

    To sum up,we hold that the polarization degrees of O atoms of Al―O surface are stronger than that of the Si―O layer,and further validate that benzene molecule is adsorbed more preferably on the Al―O surface than on the Si―O surface.

    3.4 Vibration frequencies

    We have also calculated the vibration frequencies of benzene as well as the lowest energy structures for the benzene adsorption on Al―O/Si―O surface by the B3LYP/6-31G(d,p)method and the related data are shown in Table 6.After benzene was adsorbed on the Al―O surface and Si―O surface,bending vibration frequencies for plane and out of plane have been enhanced.For examples,C―H bending vibration frequencies for plane of Si-O-Ben1 and Al-O-Ben1 complexes are respectively 1132-1159 cm-1and 1137-1170 cm-1,slightly larger than 1133-1155 cm-1of the isolated benzene.At the same time,C―H bending vibration frequencies for out of plane also increase from 830-973 cm-1of the isolated benzene to 834-991 cm-1of Al-O-Ben1 and 840-973 cm-1of Si-OBen1.Nevertheless,Table 6 indicates a little decrease of C―H and C=C stretching vibrations of adsorbed benzene,comparedto free benzene molecule.Specifically,C―H stretching vibration frequencies of Si-O-Ben1 and Al-O-Ben1 are respectively 3032-3080 cm-1and 3044-3076 cm-1,lower than 3051-3086 cm-1of the isolated benzene,and C=C stretching vibration frequencies also decrease from 1302-1589 cm-1of the isolated benzene to 1301-1585 cm-1of Si-O-Ben1 and 1302-1585 cm-1of Al-O-Ben1.Furthermore,O―H stretching vibration frequencies of Al―O surface change a little bit,which decrease from 3582-3808 cm-1(from OH1 to OH6)of the isolated Al―O surface to 3567-3802 cm-1of Al-O-Ben1.These results are in accordance with the Castro′s earlier work14(for details see Table 6).To a lesser extent,these changes of vibration frequencies,especially the stretching modes of hydroxyl groups of kaolinite surface and C―H of benzene ring,can account for the adsorption between benzene and kaolinite surface.So people can utilize kaolinite to remove organics and remediate soils and groundwater contaminated with petroleum hydrocarbons.

    Table 6 Comparison of vibration frequenciesa(cm-1)of benzene and benzene/kaolinite complex Si-O-Ben1 and Al-O-Ben1

    3.5 Electrostatic potential on adsorption

    The isopotential electrostatic surfaces of the lowest energy structures are depicted on Fig.6 for benzene,kaolinite,and benzene/kaolinite complex.It is universally acknowledged that for adsorption of organic molecules,the calculation of maps of electrostatic potentials(MEPs)on the surface of a solid material can help us acquire much more knowledge about the adsorption processes.For adsorption of the benzene ring on clay minerals,in which weak interactions are originated from hydrogen bonds,it is interesting to calculate the electrostatic potential between the adsorbate and substrate because it helps to determine the related properties of sorption complexes.The electrostatic potential of benzene adsorbed on kaolinite surfaces showed no obvious difference compared to the isolated kaolinite surface.The results of electrostatic potential show the same tendency for the interaction of benzene molecule with the Al―O and Si―O surfaces.Furthermore,the adsorption of benzene ring on the Al―O surface results in much less significant changes in the MEPs than that on the Si―O surface(Fig.6).It indicates that the formation of the secondary hydrogen bonds causes much less significant polarization of the target molecule,because Δq of all H atoms of benzene molecule are only+0.034e and+0.027e(Table 4)for Al―O and Si―O surfaces,respectively.

    Fig.6 Surfaces of electrostatic potentials(unit in a.u.)for(a)Al―O surface cluster modelAl6O24H30,(b)benzene molecule,(c)Si―O surface cluster model Si6O18H12,the lowest energy structures(d)Al-O-Ben1 and(e)Si-O-Ben1 of benzene/kaolinite complex

    Fig.7 (a)Surfaces of electron density difference for the lowest-energy structure Al-O-Ben1 of benzene/Al―O surface complex;(b)enlargement of the left side of the hydrogen bonds;(c)enlargement of the right side of the hydrogen bonds

    3.6 Electron density difference

    An examination of Fig.7 indicates that the common trend is that electron density decreases on carbon atoms of benzene molecule and oxygen atoms of Al―O surface,while electron density increases on the basis of the C―H bond and C=C bond.In the interaction region of secondary hydrogen bond C―H…O,electrons on the oxygen atoms of Al―O surface are gathered to the middle of benzene molecule and Al―O surface,therefore electron densities of oxygen atoms on the Al―O surface apparently diminish.On the contrary,the electron densities between benzene molecule and Al―O layer increase simultaneously.However,the electron densities of O atoms away from the H atoms in the benzene ring increase a little bit,as we can see clearly from Fig.7(b),which is consistent with the increase of NBO charge(Table 5)absolute value of oxygen atoms on the Al―O surface.Additionally,with the decrease of hydrogen atom electron densities around,the NBO charges(Table 5)of the corresponding hydrogen atoms increase.Nonetheless,these small changes will have a positive effect on the energy of adsorption,so that,there is,to a small extent,a chemical contribution to the adsorption mechanism.

    The change of electron density suggests that enhanced polarization leads to a predominant electrostatic interaction between benzene molecule and kaolinite surface.It also indicates that the adsorption results in significant electron transfer between the molecule and the surface.We also can draw the same conclusion from the electron density characteristics of Table 5.Additionally,the electron density is transferred to the π orbital of benzene and comes mainly from the C―H…O hydrogen bonding,depicted clearly in Fig.7.All these can be accounted for the gradual formations of C―H…O secondary hydrogen bonds.

    4 Conclusions

    The interactions of benzene with the kaolinite cluster models,Si6O18H12(Si―O layer)and Al6O24H30(Al―O layer),have been systematically investigated at the MP2/6-31G(d,p)//B3LYP/6-31G(d,p)level to mimic the adsorption of benzene on the kaolinite surface.Various gas state properties characterizing benzene/kaolinite complexes,including the optimized structures,structural parameters,adsorption energies,NBO charge distributions,vibration frequencies,and electrostatic potential,electron density characteristics,and electron density difference,were presented and discussed in this paper.The optimized structures show that there are secondary hydrogen bond interactions between the benzene molecule and the polar kaolinite surface.That is to say,the nature of the adsorption of the benzene molecule on kaolinite surfaces may be the formation of secondary hydrogen bonds.The results of other properties further confirmed the existence of secondary hydrogen bonds.Simultaneously,benzene molecule is more likely to be adsorbed on the Al―O surface than on the Si―O surface,and the absorption angle between benzene ring plane and kaolinite Al―O surface is about 90°.

    (1)Roldan,R.;Romero,F.J.;Jimenez,C.;Borau,V.;Marinas,J.M.Appl.Catal.A 2004,266,203.doi:10.1016/j.apcata.2004.02.008

    (2)Maliyekkal,S.M.;Rene,E.R.;Philip,L.;Swaminathan,T.J.Hazard.Mater.2004,109,201.doi:10.1016/j.jhazmat.2004.04.001

    (3)Pilidis,G.A.;Karakitsios,S.P.;Kassomenos,P.A.;Kazos,E.A.;Stalikas,C.D.Environ.Monit.Assess.2009,150,285.doi:10.1007/s10661-008-0230-9

    (4)Lesage,S.Anal.Chem.ACS Publications 1993,65,647A.

    (5)Michalková,A.;Tunega,D.;Nagy,L.T.J.Mol.Struct.-Theochem 2002,581,37.doi:10.1016/S0166-1280(01)00741-2

    (6)Hess,A.C.;Saunders,V.R.J.Phys.Chem.1992,96,4367.doi:10.1021/j100190a047

    (7)Shua,H.T.;Lib,D.;Scalaa,A.A.;Mab,Y.H.Purif.Technol.1997,11,27.doi:10.1016/S1383-5866(96)01005-2

    (8)Beltrán,A.;Andrés,J.;Calatayud,M.;Martins,J.B.L.Chem.Phys.Lett.2001,338,224.doi:10.1016/S0009-2614(01)00238-X

    (9)Martins,J.B.L.;Sambrano,J.R.;Vasconcellos,L.A.S.;Longo,E.;Taft,C.A.Quim.Nova.2004,27,10.doi:10.1590/S0100-40422004000100003

    (10)Martins,J.;Taft,C.;Lie,S.;Longo,E.J.Mol.Struct.-Theochem 2000,528,161.doi:10.1016/S0166-1280(99)00498-4

    (11)Almeida,A.;Martins,J.;Longo,E.;Taft,C.;Murgich,J.;Jalbout,A.F.J.Mol.Struct.-Theochem 2003,664,111.

    (12)Sambrano,J.;Vasconcellos,L.;Martins,J.;Santos,M.;Longo,E.;Beltran,A.J.Mol.Struct.-Theochem 2003,629,307.doi:10.1016/S0166-1280(03)00200-8

    (13)Castro,E.A.S.;Gargano,R.;Martins,J.B.L.Int.J.Quantum Chem.2012,112,2828.doi:10.1002/qua.v112.16

    (14)Castro,E.A.S.;Martins,J.B.L.J.Comput.Aided Mater.Des.2005,12,121.

    (15)Bickmore,B.R.;Rosso,K.M.;Nagy,K.L.;Cygan,R.T.;Tadanier,C.J.Clays Clay Min.2003,51,359.

    (16)Castro,E.A.S.;Martins,J.B.L.Int.J.Quantum Chem.2005,103,550.

    (17)Balan,E.;Saitta,A.M.;Mauri,F.;Lemaire,C.;Guyot,F.Am.Mineral.2002,87,1286.

    (18)Michalková,A.;Szymczak,J.J.;Leszczynski,J.Struct.Chem.2005,16,325.doi:10.1007/s11224-005-4463-8

    (19)Pelmenschikov,A.;Leszczynski,J.J.Phys.Chem.B 1999,103,6886.doi:10.1021/jp990091q

    (20)Gorb,L.;Lutchyn,R.;Zub,Y.;Leszczynska,D.;Leszczynski,J.J.Mol.Struct.-Theochem 2006,766,151.doi:10.1016/j.theochem.2006.04.013

    (21)Lee,J.F.;Mortland,M.M.;Chiou,C.T.;Kile,D.E.;Boyd,S.A.Clay Clay Min.1990,38,113.

    (22)Wilson,M.A.;Lee,G.S.H.;Taylor,R.C.Clay Clay Min.2002,50,348.

    (23)Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03,Revision A.01;Gaussian Inc.:Pittsburgh,PA,2003.

    (24)Young,R.A.;Hewat,A.W.Clay Clay Min.1988,36,225.

    (25)Bish,D.L.Clay Clay Min.1993,41,738.

    (26)Karl,K.I.;Russell,D.J.;Raghu,N.K.J.Phys.Chem.A 2005,109,8430.doi:10.1021/jp052793n

    (27)Koch,U.;Popelier,P.J.Phys.Chem.1995,99,9747.doi:10.1021/j100024a016

    (29)Bader,R.W.F.Accounts Chem.Res.1985,18,9.

    (30)Flükiger,P.;Lüthi,H.;Portmann,S.;Weber,J.Molekel 4.0;Swiss Center for Scientific Computing:Manno,Switzerlan,2000.

    (31)Lu,T.;Chen,F.J.Comput.Chem.2012,33,580.doi:10.1002/jcc.v33.5

    (32)Lu,T.GsGrid:Extracting Data from Gaussian Grid File and Grid File Calculation[EB/OL].http:∥gsgrid.codeplex.com,in.

    (33)Zhang,C.;Song,K.H.;Wang,X.;Yin,H.Z.;Qian,P.J.Mol.Sci.2013,29,134.[張 超,宋開慧,王 幸,尹洪宗,錢 萍.分子科學(xué)學(xué)報,2013,29,134.]

    (34)Hu,X.L.;Michaelides,A.Surf.Sci.2008,602,960.doi:10.1016/j.susc.2007.12.032

    (35)Neder,R.;Burghammer,M.;Grasl,T.;Schulz,H.;Bram,A.;Fiedler,S.Clay Clay Min.1999,47,487.

    (36)Austen,K.F.;White,T.O.H.;Marmier,A.;Parker,S.C.;Artacho,E.;Dove,M.T.J.Phys:Condes.Matter 2008,20,035215.doi:10.1088/0953-8984/20/03/035215

    (37)Sainz-Díaz,I.;Francisco-Márquez,M.;Vivier-Bunge,A.Environ.Chem.2011,8,429.

    猜你喜歡
    材料科學(xué)泰安泰安市
    中海油化工與新材料科學(xué)研究院
    材料科學(xué)與工程學(xué)科
    北風(fēng)催眠曲
    再見,雪姑娘
    泰安雜記
    文苑(2019年20期)2019-11-16 08:52:42
    福建工程學(xué)院材料科學(xué)與工程學(xué)科
    《材料科學(xué)與工藝》2017年優(yōu)秀審稿專家
    泰安市通聯(lián)站站長——王曉棟
    寶藏(2017年2期)2017-03-20 13:16:57
    Transform Yourself into a Butterfly
    泰安無性系引種品種的紅茶適制性初步研究
    99精品久久久久人妻精品| 成人18禁高潮啪啪吃奶动态图| 欧美成人一区二区免费高清观看 | 久久精品国产清高在天天线| 日韩大尺度精品在线看网址 | 亚洲情色 制服丝袜| 免费一级毛片在线播放高清视频 | 国产激情欧美一区二区| 美女扒开内裤让男人捅视频| 99久久精品国产亚洲精品| 中文字幕人妻熟女乱码| 欧美av亚洲av综合av国产av| 精品人妻1区二区| 国产成人精品久久二区二区免费| 久久久久精品国产欧美久久久| 国产成人精品无人区| 亚洲精品粉嫩美女一区| 国产高清激情床上av| 两性午夜刺激爽爽歪歪视频在线观看 | 后天国语完整版免费观看| 人人妻人人澡人人看| 97超级碰碰碰精品色视频在线观看| 女人被狂操c到高潮| 成人亚洲精品av一区二区| 久久久久国产一级毛片高清牌| 欧洲精品卡2卡3卡4卡5卡区| 免费观看精品视频网站| 久久久久久久久中文| 手机成人av网站| 午夜两性在线视频| 在线免费观看的www视频| 亚洲精华国产精华精| 熟女少妇亚洲综合色aaa.| 欧美绝顶高潮抽搐喷水| 国产三级在线视频| 亚洲九九香蕉| 成年女人毛片免费观看观看9| 国产精品亚洲美女久久久| 精品人妻1区二区| or卡值多少钱| 性少妇av在线| 免费在线观看视频国产中文字幕亚洲| 亚洲精品久久成人aⅴ小说| 男女下面插进去视频免费观看| 国产单亲对白刺激| 国语自产精品视频在线第100页| 国产不卡一卡二| 一夜夜www| 久久久久国产一级毛片高清牌| 熟妇人妻久久中文字幕3abv| 搡老岳熟女国产| 免费看美女性在线毛片视频| 免费久久久久久久精品成人欧美视频| 一二三四在线观看免费中文在| avwww免费| 色播亚洲综合网| 日韩欧美在线二视频| 午夜激情av网站| 日韩精品免费视频一区二区三区| 中亚洲国语对白在线视频| √禁漫天堂资源中文www| 亚洲色图av天堂| 一区二区日韩欧美中文字幕| www.www免费av| 伦理电影免费视频| 精品国产超薄肉色丝袜足j| 亚洲av美国av| 国产麻豆成人av免费视频| 校园春色视频在线观看| 精品国产国语对白av| 亚洲 国产 在线| 淫秽高清视频在线观看| 亚洲欧美激情综合另类| 国产激情欧美一区二区| 无限看片的www在线观看| 一级毛片高清免费大全| 窝窝影院91人妻| av天堂久久9| 波多野结衣巨乳人妻| 成人国产综合亚洲| 欧美一区二区精品小视频在线| 美女免费视频网站| 亚洲久久久国产精品| 亚洲一码二码三码区别大吗| 国产欧美日韩一区二区精品| 午夜福利成人在线免费观看| 日日夜夜操网爽| 亚洲色图av天堂| 国产精品影院久久| 欧美黄色片欧美黄色片| 久久精品国产亚洲av高清一级| 18禁黄网站禁片午夜丰满| 精品无人区乱码1区二区| 国产亚洲精品第一综合不卡| 黑人巨大精品欧美一区二区蜜桃| 国产高清激情床上av| 免费高清在线观看日韩| 午夜免费激情av| 少妇的丰满在线观看| 怎么达到女性高潮| 9热在线视频观看99| 日韩精品青青久久久久久| 欧美老熟妇乱子伦牲交| 免费高清在线观看日韩| 久久午夜亚洲精品久久| 精品欧美一区二区三区在线| 成人精品一区二区免费| 精品一区二区三区视频在线观看免费| 亚洲国产毛片av蜜桃av| 免费人成视频x8x8入口观看| 欧美大码av| 国产午夜福利久久久久久| 19禁男女啪啪无遮挡网站| 国产精品秋霞免费鲁丝片| av电影中文网址| 啦啦啦免费观看视频1| 国产精品 国内视频| 久久人妻av系列| 亚洲精品在线美女| 99国产综合亚洲精品| 亚洲第一欧美日韩一区二区三区| av免费在线观看网站| 久久中文看片网| 欧美人与性动交α欧美精品济南到| 久久国产亚洲av麻豆专区| 午夜影院日韩av| 亚洲一码二码三码区别大吗| 看免费av毛片| 亚洲中文字幕日韩| 99国产精品免费福利视频| 日韩高清综合在线| 亚洲国产中文字幕在线视频| 亚洲国产高清在线一区二区三 | 久久婷婷人人爽人人干人人爱 | 乱人伦中国视频| 男女之事视频高清在线观看| 久久影院123| 亚洲成人久久性| 久久久精品欧美日韩精品| 国产精品亚洲av一区麻豆| 美女国产高潮福利片在线看| 久久精品影院6| 免费不卡黄色视频| 欧美成人午夜精品| 极品教师在线免费播放| 亚洲天堂国产精品一区在线| 久久人人精品亚洲av| 国产精品久久久久久人妻精品电影| 亚洲精品国产色婷婷电影| 色哟哟哟哟哟哟| 嫩草影院精品99| 精品日产1卡2卡| 亚洲欧美激情在线| 欧美黄色片欧美黄色片| 国内精品久久久久久久电影| 激情在线观看视频在线高清| 日韩三级视频一区二区三区| 成人亚洲精品av一区二区| 精品国产亚洲在线| 日韩欧美免费精品| 国产在线精品亚洲第一网站| 国产野战对白在线观看| 禁无遮挡网站| 亚洲国产精品合色在线| 美女高潮到喷水免费观看| 中文字幕色久视频| 妹子高潮喷水视频| 亚洲一码二码三码区别大吗| 一区二区三区国产精品乱码| 在线永久观看黄色视频| 97超级碰碰碰精品色视频在线观看| 亚洲色图av天堂| 精品一品国产午夜福利视频| 91精品三级在线观看| 91精品国产国语对白视频| 一级毛片女人18水好多| 中文字幕高清在线视频| 在线观看免费视频日本深夜| 色在线成人网| 成在线人永久免费视频| 无人区码免费观看不卡| 啦啦啦韩国在线观看视频| 亚洲成人免费电影在线观看| 久久精品国产亚洲av香蕉五月| 亚洲欧美一区二区三区黑人| aaaaa片日本免费| 一区二区三区国产精品乱码| 精品电影一区二区在线| АⅤ资源中文在线天堂| 日韩大码丰满熟妇| 欧美国产日韩亚洲一区| 9热在线视频观看99| 婷婷六月久久综合丁香| 亚洲一码二码三码区别大吗| 91老司机精品| av在线播放免费不卡| 99riav亚洲国产免费| 看黄色毛片网站| 国产熟女午夜一区二区三区| 亚洲自偷自拍图片 自拍| 国产精品,欧美在线| 国产麻豆成人av免费视频| 亚洲一区中文字幕在线| 欧美日本中文国产一区发布| 国产av一区在线观看免费| 自线自在国产av| 啪啪无遮挡十八禁网站| 久久精品国产综合久久久| 国产精品久久久久久精品电影 | 日韩欧美在线二视频| 日本免费一区二区三区高清不卡 | 亚洲精品在线美女| 夜夜爽天天搞| 看黄色毛片网站| 两个人免费观看高清视频| 99久久国产精品久久久| 激情在线观看视频在线高清| 俄罗斯特黄特色一大片| 国产区一区二久久| 欧美乱色亚洲激情| 国产真人三级小视频在线观看| 村上凉子中文字幕在线| 怎么达到女性高潮| 麻豆一二三区av精品| 制服诱惑二区| 久久精品国产99精品国产亚洲性色 | 国产亚洲欧美98| 香蕉久久夜色| 亚洲成人精品中文字幕电影| 午夜亚洲福利在线播放| 国产单亲对白刺激| 欧美激情久久久久久爽电影 | 精品午夜福利视频在线观看一区| 欧美 亚洲 国产 日韩一| 久久国产乱子伦精品免费另类| 91av网站免费观看| 欧美色欧美亚洲另类二区 | 久久中文字幕人妻熟女| 精品久久蜜臀av无| 97人妻天天添夜夜摸| av视频免费观看在线观看| 一级片免费观看大全| 国产成人免费无遮挡视频| 久久精品aⅴ一区二区三区四区| 日韩有码中文字幕| 又紧又爽又黄一区二区| 两个人视频免费观看高清| 99精品在免费线老司机午夜| 宅男免费午夜| www.精华液| 欧美+亚洲+日韩+国产| 国产精品久久视频播放| 日韩精品中文字幕看吧| 国产av精品麻豆| 久久人人爽av亚洲精品天堂| 他把我摸到了高潮在线观看| www国产在线视频色| 在线观看66精品国产| 亚洲第一av免费看| 男男h啪啪无遮挡| 国产精品亚洲一级av第二区| 美女午夜性视频免费| 国产伦人伦偷精品视频| 亚洲成国产人片在线观看| 欧美性长视频在线观看| 啦啦啦免费观看视频1| 欧美在线一区亚洲| www.熟女人妻精品国产| 精品少妇一区二区三区视频日本电影| 国产私拍福利视频在线观看| 如日韩欧美国产精品一区二区三区| 国内精品久久久久精免费| 老熟妇仑乱视频hdxx| 久久久久久国产a免费观看| aaaaa片日本免费| 757午夜福利合集在线观看| 精品一品国产午夜福利视频| www国产在线视频色| 亚洲全国av大片| 午夜免费激情av| 一边摸一边抽搐一进一出视频| 免费高清在线观看日韩| 中文字幕高清在线视频| 亚洲中文av在线| av天堂久久9| 国产又色又爽无遮挡免费看| 欧美中文日本在线观看视频| av天堂在线播放| 国产熟女午夜一区二区三区| 欧美成人午夜精品| 在线观看午夜福利视频| av免费在线观看网站| 男女之事视频高清在线观看| 一本大道久久a久久精品| 亚洲精品粉嫩美女一区| 窝窝影院91人妻| 亚洲,欧美精品.| 国产精品久久电影中文字幕| 国产精品香港三级国产av潘金莲| 91麻豆av在线| 日本五十路高清| 中文字幕人妻熟女乱码| 一区二区三区高清视频在线| 久久九九热精品免费| 一二三四在线观看免费中文在| 亚洲欧美一区二区三区黑人| 久久精品亚洲熟妇少妇任你| 亚洲精品中文字幕一二三四区| 亚洲国产日韩欧美精品在线观看 | 国产高清有码在线观看视频 | 97超级碰碰碰精品色视频在线观看| 99久久久亚洲精品蜜臀av| 色精品久久人妻99蜜桃| 9热在线视频观看99| 国产亚洲精品久久久久5区| 免费一级毛片在线播放高清视频 | 欧美乱色亚洲激情| 一个人免费在线观看的高清视频| 黄色毛片三级朝国网站| 啦啦啦 在线观看视频| 50天的宝宝边吃奶边哭怎么回事| 国产一卡二卡三卡精品| 色av中文字幕| 国产真人三级小视频在线观看| 亚洲成a人片在线一区二区| 999久久久精品免费观看国产| 这个男人来自地球电影免费观看| 亚洲欧美日韩另类电影网站| 1024视频免费在线观看| 久久香蕉精品热| 亚洲精华国产精华精| 亚洲午夜精品一区,二区,三区| 欧美日韩乱码在线| 亚洲专区字幕在线| 免费观看人在逋| 99久久99久久久精品蜜桃| 日韩三级视频一区二区三区| 91精品国产国语对白视频| 欧美日本中文国产一区发布| 日日夜夜操网爽| www.999成人在线观看| 黑人欧美特级aaaaaa片| 欧美黄色片欧美黄色片| 怎么达到女性高潮| 国产精品九九99| 夜夜躁狠狠躁天天躁| 美女高潮喷水抽搐中文字幕| 国产aⅴ精品一区二区三区波| 超碰成人久久| 亚洲狠狠婷婷综合久久图片| 在线观看舔阴道视频| 亚洲人成77777在线视频| 日日爽夜夜爽网站| 90打野战视频偷拍视频| 国产熟女xx| 淫秽高清视频在线观看| 亚洲午夜理论影院| 91av网站免费观看| 久久久久国产精品人妻aⅴ院| а√天堂www在线а√下载| 免费在线观看视频国产中文字幕亚洲| 最近最新中文字幕大全免费视频| 国产精品国产高清国产av| 黄频高清免费视频| 久久久久国产精品人妻aⅴ院| 亚洲七黄色美女视频| 无限看片的www在线观看| 日韩欧美免费精品| 日韩精品中文字幕看吧| 色精品久久人妻99蜜桃| 一区二区三区激情视频| 一区在线观看完整版| 国产99白浆流出| 午夜福利视频1000在线观看 | av片东京热男人的天堂| 精品久久久久久,| 中亚洲国语对白在线视频| 欧美日本视频| 无遮挡黄片免费观看| 国产亚洲精品久久久久久毛片| 亚洲av日韩精品久久久久久密| 国产精华一区二区三区| 韩国av一区二区三区四区| 中文字幕人成人乱码亚洲影| 午夜福利视频1000在线观看 | 国产一卡二卡三卡精品| 国产单亲对白刺激| 不卡一级毛片| 久久久久久久精品吃奶| 99国产精品99久久久久| 国产一卡二卡三卡精品| 国产单亲对白刺激| 成人av一区二区三区在线看| 高清黄色对白视频在线免费看| 真人做人爱边吃奶动态| 久久中文看片网| 精品午夜福利视频在线观看一区| 18禁观看日本| 这个男人来自地球电影免费观看| 国产精品亚洲美女久久久| 国产午夜精品久久久久久| 天堂影院成人在线观看| 日韩成人在线观看一区二区三区| 精品无人区乱码1区二区| 好男人电影高清在线观看| 久久性视频一级片| 亚洲午夜精品一区,二区,三区| 久久久精品欧美日韩精品| 看免费av毛片| 精品乱码久久久久久99久播| 色尼玛亚洲综合影院| 中文字幕人成人乱码亚洲影| 最新在线观看一区二区三区| 乱人伦中国视频| 18禁黄网站禁片午夜丰满| 每晚都被弄得嗷嗷叫到高潮| 久久精品成人免费网站| 两性午夜刺激爽爽歪歪视频在线观看 | 国产国语露脸激情在线看| 欧美精品亚洲一区二区| 久久人妻福利社区极品人妻图片| 日韩大尺度精品在线看网址 | 成人18禁在线播放| 久久国产乱子伦精品免费另类| 日韩有码中文字幕| 亚洲国产高清在线一区二区三 | 亚洲av美国av| 亚洲国产中文字幕在线视频| 午夜福利18| 国产麻豆成人av免费视频| 妹子高潮喷水视频| a级毛片在线看网站| 日韩国内少妇激情av| 人成视频在线观看免费观看| 亚洲三区欧美一区| 亚洲人成电影免费在线| 最好的美女福利视频网| 校园春色视频在线观看| 91麻豆精品激情在线观看国产| 国产成年人精品一区二区| 高潮久久久久久久久久久不卡| 亚洲精品国产精品久久久不卡| 精品国产国语对白av| 一夜夜www| av免费在线观看网站| 久久性视频一级片| 波多野结衣高清无吗| 国产成人欧美在线观看| 日韩欧美一区视频在线观看| 国内精品久久久久精免费| 午夜福利免费观看在线| 在线十欧美十亚洲十日本专区| 亚洲精华国产精华精| 激情视频va一区二区三区| 99香蕉大伊视频| 欧美日本亚洲视频在线播放| 久久伊人香网站| 国产成年人精品一区二区| 波多野结衣巨乳人妻| 搡老妇女老女人老熟妇| 久久香蕉精品热| 精品熟女少妇八av免费久了| 国产精品久久久av美女十八| 日韩欧美国产在线观看| 久久精品人人爽人人爽视色| 色老头精品视频在线观看| 午夜免费激情av| ponron亚洲| 国产成人欧美在线观看| 宅男免费午夜| 精品卡一卡二卡四卡免费| 亚洲av熟女| 国产视频一区二区在线看| 国产欧美日韩一区二区精品| 亚洲自拍偷在线| 亚洲国产中文字幕在线视频| 免费高清视频大片| 精品久久久精品久久久| 中国美女看黄片| 12—13女人毛片做爰片一| 国产97色在线日韩免费| 欧美午夜高清在线| 国产1区2区3区精品| 日本免费a在线| 国产精品98久久久久久宅男小说| 99香蕉大伊视频| 欧美av亚洲av综合av国产av| 制服人妻中文乱码| or卡值多少钱| 一级a爱视频在线免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产精品sss在线观看| 高清在线国产一区| 国产精品日韩av在线免费观看 | 午夜福利视频1000在线观看 | 日本三级黄在线观看| АⅤ资源中文在线天堂| 日韩国内少妇激情av| 嫁个100分男人电影在线观看| 嫩草影视91久久| 美女扒开内裤让男人捅视频| 亚洲熟妇熟女久久| www日本在线高清视频| 久久性视频一级片| 亚洲美女黄片视频| 最新美女视频免费是黄的| 一个人免费在线观看的高清视频| 国产精品一区二区精品视频观看| 别揉我奶头~嗯~啊~动态视频| 无遮挡黄片免费观看| 午夜久久久久精精品| 露出奶头的视频| 国产精品99久久99久久久不卡| av福利片在线| 国产精品香港三级国产av潘金莲| 人妻丰满熟妇av一区二区三区| 免费看美女性在线毛片视频| 黄网站色视频无遮挡免费观看| 极品人妻少妇av视频| 两个人免费观看高清视频| 国产精品野战在线观看| 啪啪无遮挡十八禁网站| 大型黄色视频在线免费观看| 午夜久久久在线观看| 亚洲精品美女久久av网站| 欧美绝顶高潮抽搐喷水| 久久九九热精品免费| 亚洲自拍偷在线| 久久国产精品人妻蜜桃| 91av网站免费观看| 国产午夜福利久久久久久| 欧美黄色淫秽网站| 深夜精品福利| 不卡av一区二区三区| 91国产中文字幕| 波多野结衣av一区二区av| 久久人人爽av亚洲精品天堂| 男女之事视频高清在线观看| 色播亚洲综合网| 国产精品综合久久久久久久免费 | 97碰自拍视频| 欧美中文综合在线视频| videosex国产| 精品不卡国产一区二区三区| 精品一区二区三区四区五区乱码| 久热这里只有精品99| 热re99久久国产66热| 午夜福利在线观看吧| 婷婷精品国产亚洲av在线| 丰满人妻熟妇乱又伦精品不卡| 国产亚洲欧美在线一区二区| 一二三四在线观看免费中文在| 国产麻豆69| 久久精品国产清高在天天线| 一本综合久久免费| 香蕉国产在线看| 国产xxxxx性猛交| 久久青草综合色| 欧美在线一区亚洲| 韩国精品一区二区三区| 国产人伦9x9x在线观看| 亚洲性夜色夜夜综合| 日本黄色视频三级网站网址| 精品久久蜜臀av无| 19禁男女啪啪无遮挡网站| 国语自产精品视频在线第100页| 国产成人av教育| 男女做爰动态图高潮gif福利片 | 天堂动漫精品| 又黄又爽又免费观看的视频| 女警被强在线播放| 精品国产美女av久久久久小说| 看黄色毛片网站| 久久人妻熟女aⅴ| 九色亚洲精品在线播放| 18禁裸乳无遮挡免费网站照片 | 美女扒开内裤让男人捅视频| 日韩精品免费视频一区二区三区| 国产人伦9x9x在线观看| 国产一区二区三区综合在线观看| 亚洲 欧美一区二区三区| 91成年电影在线观看| 窝窝影院91人妻| 黑丝袜美女国产一区| 少妇熟女aⅴ在线视频| 丝袜人妻中文字幕| ponron亚洲| 久久精品国产99精品国产亚洲性色 | av视频免费观看在线观看| 欧美一级a爱片免费观看看 | 亚洲欧美激情在线| 欧美日韩福利视频一区二区| 亚洲精品一区av在线观看| 久久久久国产一级毛片高清牌| 免费av毛片视频| 国产精品野战在线观看| 精品免费久久久久久久清纯| 麻豆成人av在线观看| 国产极品粉嫩免费观看在线| 波多野结衣av一区二区av| 国产精品永久免费网站| 中文字幕人妻丝袜一区二区| 亚洲国产日韩欧美精品在线观看 | 一进一出好大好爽视频| 亚洲色图综合在线观看| 少妇裸体淫交视频免费看高清 | 午夜亚洲福利在线播放| 一二三四在线观看免费中文在| 久9热在线精品视频| 亚洲国产精品999在线| 中文字幕最新亚洲高清| 国产黄a三级三级三级人| 国产亚洲精品一区二区www| 狠狠狠狠99中文字幕| 国语自产精品视频在线第100页|