• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sensitivity Analysis for a New System of Parametric Generalized Mixed Implicity Equilibrium Problems in Banach Spaces

    2014-10-09 01:20:02DINGXieping

    DING Xieping

    (College of Mathematics and Software Science,Sichuan Normal University,Chengdu 610066,Sichuan)

    1 Introduction

    In recent years,much attention has been devoted to developing general methods for the sensitivity analysis of solution set of various variational inclusions and equilibrium problems.From the mathematical and engineering points of view,sensitivity properties of various variational inclusions and equilibrium problems can provide new insight concerning the problem being studied and can stimulate ideas for solving these problems.The sensitivity analysis of solution set for various parametric variational inclusions have been studied extensively by many authors using quite different methods,see [1-21] and the references therein.It is worth mentioning that most of the results in the direction have been obtained in the setting of Hilbert spaces.

    Recently,Kazmi and Khan[22]studied sensitivity analysis for parametric generalized implicit quasi-variational-like inclusions involving P-η-accretive mappings and Ding[23]studied sensitivity analysis for a system of parametric generalized implicit quasi-variational-like inclusions involving H-η-monotone mappings in uniformly smooth Banach spaces respectively.By using the Yosida approximation and Wiener-Hopf equation technique,Moudafi[24]and Huang et al[25]studied the sensitivity analysis of solutions for generalized mixed implicit equilibrium problems in Hilbert spaces.By using the technique of the system of auxiliary equation problems,Ding[26]studied sensitivity analysis for a system of generalized mixed implicity equilibrium problems in uniformly smooth Banach spaces.

    Inspired and motivated by the above works,we shall introduce and study a new system of parametric generalized mixed implicit equilibrium problems involving non-monotone set-valued mappings in real Banach spaces.First,an auxiliary mixed equilibrium problem(AMEP) is introduced.The existence and uniqueness of solutions of the AMEP is proved under quite mild assumptions without any coercive conditions.Next,by using the solution mapping of the AMEP,a system of parametric generalized equation problems(SPGEP) is considered and its equivalence with the SPGMIEP is also proved.By using a fixed point formulation of the SPGEP,we study the behavior and sensitivity analysis of solution set of the SPGMIEP.Under suitable assumptions,we prove that the solution set of the SPGMIEP is nonempty,closed and Lipschitz continuous with respect to the parameters.Our results are new,which improve and generalize some known results in this field.

    2 Preliminaries

    Let B be a real Banach space with dual space B*and let‖·‖denote the norm of B and B*and〈· ,· 〉 denote the duality pairing between B*and B.Let R=(-∞,+∞)and C(B)be the family of all nonempty compact subsets of B.

    Definition 2.1Let C be a closed convex subset of a Hausdorff topological vector space E.A real valued bifunction F:C×C→(-∞,∞)is said to be

    (i) monotone if

    (ii) α-strongly monotone if there exists a real α>0 such that

    (iii) δ-Lipschitz continuous if there exists a real δ>0 such that

    Remark 2.1Clearly,strong monotonicity of F implies monotonicity of F.

    Definition 2.2A mapping η:B ×B→B*is said to be

    (i)monotone if

    (ii)δ-strongly monotone if there exists a δ >0 such that

    (iii) τ-Lipschitz continuous if there exists a constant τ>0 such that

    (iv) affine in first argument if

    Definition 2.3The bifunction φ:B ×B→(-∞,+∞]is said to be skew-symmetric if

    The skew-symmetric bifunctions have the properties which can be considered an analogue of monotonicity of gradient and nonnegativity of a second derivative for the convex function.For the properties and applications of the skew-symmetric bifunction,the reader may consult Antipin[27].

    The following result is a direct consequence of Theorem 1 of Ding and Tan[28](also see Lemma 2.2 of Ding[29]).

    Lemma 2.1Let C be a nonempty convex subset of a topological vector space and let f:C×C→[-∞,+∞]be such that

    (i) f(x,x)≥0 for each x∈C;

    (ii) for each y∈C,x→f(x,y) is upper semicontinuous;

    (iii) for each x∈C,y→f(x,y) is convex;

    (iv) there exist a nonempty compact subset K of C and y∈K such that f(x,y) <0,?x∈C\K.

    Then there exists a∈K such that f(,y)≥0 for all y∈C.

    Lemma 2.2Let C be a closed convex subset of a reflexive Banach space B with intC≠?.Let F:C×C→R and φ:B ×B→R be two bifunctions, η:B ×B→B*be a mapping and ρ >0 be a positive number.Suppose the following conditions are satisfied:

    (i) F is monotone and δ-Lipschitz continuous such that F(x,x)≥0 for each x∈C;

    (ii) for each y∈C,x→F(x,y) is upper semicontinuous under weak topology and for each x∈C,y→F(x,y) is convex;

    (iii) ηis σ-strongly monotone and τ-Lipschitz continuous with η(x,y) +η(y,x) =0,?x,y∈B;

    (iv) ηis affine in first argument and continuous from weak topology in B to weak*topology in B*in second argument;

    (v) φis skew symmetric and weakly continuous,and φis proper convex in the first argument.

    Then for each x∈B,the following auxiliary mixed equilibrium problem (AMEP):find z∈C such that

    ProofFor each x∈B,define a bifunction f:C×C→R by

    Since F(z,z)≥0 for each z∈C and η(x,y) +η(y,x) =0,?x,y∈B,we have η(z,z) =0 for all z∈B,by the definition of f,we have that f(z,z)≥0,?z∈C.The condition (i) of Lemma 2.1 is satisfied.Note that for each y∈C,x→F(x,y) is upper semicontinuous under weak topology,φis weakly continuous,and ηis continuous from weak topology in B to weak*topology in B*in second argument,we have for each y∈C,z→f(z,y) is weakly upper semicontinuous and so the condition (ii) of Lemma 2.2 is satisfied.Since for each z∈C,y→F(z,y) is convex and φis convex in first argument,and ηis affine in first argument,we have that for each z∈C,y→f(z,y) is convex.The condition (iii) of Lemma 2.1 is satisfied.By (v),for each y∈C,z→φ(z,y) is proper convex,weakly continuous and int{y∈C:φ(y,y) <∞} =intC≠?.Take y*∈int{y∈C:φ(y,y) <∞}.By Proposition I.2.6 of Pascali and Sburlan[30], φ(· ,y*) is subdifferential at y*.Hence,we have

    Noting that φ(·,· ) is skew symmetric,we have

    Since F is δ-Lipschitz continuous,and ηis σ-strongly monotone and τ-Lipschitz continuous,we have

    Let R =[ρ(δ+‖r‖) +τ‖y*-x‖]/σand K ={z∈C:‖z-y*‖≤R}.Then K is a weakly compact convex subset in C and y*∈K.It follows from (2)that f(z,y*) <0 for all z∈C\K and hence the condition (iv) of Lemma 2.1 is satisfied.For each x∈B,by Lemma 2.1,there exists a point∈C such that f(,y)≥0,?y∈C.By the definition of f,we obtain that for each x∈B,

    i.e.,∈C is a solution of the AMEP(1).Now,we prove the uniqueness of solutions of the AMEP (1).For each x∈B,let z1,z2∈C be any two solutions of the AMEP,then from the condition (i) we have

    Noting η(z1,z2)+η(z2,z1) =0,taking y=z2in (3)and y=z1in(4) and adding these two inequalities,we obtain

    Assume z1≠z2.Noting that F is monotone,φis skew symmetric and ηis σ-strongly monotone,it follows from (5) that

    which is a contraction.Therefore,we must have z1=z2.This completes the proof.

    Remark 2.21)Lemma 2.2 improves Lemma 2.2 of Ding and Ho[21]in the following way:the coercive conditions of Lemma 2.2 in [21] is removed.

    2)By Lemma 2.2,we also obtain that for each x∈B,there exists a uniquesuch that

    and hence the solution mapping:X → C of the AMEP (1) is a well-defined single-valued mapping.

    Theorem 2.1In the assumptions of Lemma 2.2,if further assume that F is θ-strongly monotone,then the solution mapping:X →C of the AMEP

    (1) is τ/(σ+ρθ)-Lipschitz continuous.

    Remark 2.3Theorems 2.1 improves and generalizes Theorem 3.1 of Kazmi and Khan[31]and Theorem 2.1 of Ding and Ho[21]in following way:

    1)from Hilbert spaces to reflexive Banach spaces;

    2) the AMEP (1) is more general than the models in [21,31-33];

    3)the coercive conditions is removed.

    3 System of parametric generalized mixed implicit equilibrium problems

    In what follows,unless other specified,let R=( -∞,+∞).For each i∈{1,2},let Bibe a real reflexive Banach space with norm‖·‖iand the dual spacebe the dual pair betweenand Bi, Λiand Ωibe two open subsets of Biin which parameters λiand ωitakes the values,C(Bi) denotes the family of all nonempty compact subsets of Bi,and(· ,· ) be the Hausdorff metric on C(Bi) defined by

    For each i∈{1,2},let Cibe a nonempty closed convex subset of Biwith intCi≠?,Fi:Ci×Ci×Λi→R and φi:Ci×Ci→R be functions.For each i∈{1,2},let gi:Ci×Λi→Ciwith gi(Ci,λi) =Ci,?λi∈Λi, ηi:Bi×Bi×Ωi→and Mi:C1×C2×B1×B2×Ω1×Ω2→Bibe single-valued mappings,and Ti:C1×Ω1→C(B1) and Si:C2×Ω2→C(B2) be set-valued mappings.

    We consider the following system of parametric generalized mixed implicit equilibrium problems(SPGMIEP):for i∈{1,2} and given (λi,ωi)∈Λi×Ωi,find (x1,x2)∈C1×C2, (u1,v1)∈T1(x1,ω1)×S1(x2,ω2), (u2,v2)∈T2(x1,ω1) ×S2(x2,ω2)such that

    Special cases:

    (I) If for i∈{1,2},Let M1(x1,x2,u1,v1,ω1,ω2) =G1(x1,x2,ω1) +N1(u1,v1,ω1)and M2(x1,x2,u2,v2,ω1,ω2) =G2(x1,x2,ω2) +N2(u2,v2,ω2),where Gi:C1×C2×Ωi→Biand Ni:B1×B2×Ωi→Biand φi≡0,then the SPGMIEP (1) reduces to the following parametric problem:for given (λi,ωi)∈Λi×Ωi,find (x1,x2)∈C1×C2, (u1,v1)∈T1(x1,ω1) ×S1(x2,ω2), (u2,v2)∈T2(x1,ω1) ×S2(x2,ω2) such that

    (II) If for i∈{1,2},let Bi=B,Ci=C, Λi=Λ, Ωi=Ω,Fi=F,Mi=M,Ti=T,Si=S, ηi=η,gi=g and φi=φ,then the SPGMIEP (1) reduces to the following parametric problem:for given (λ,ω)∈Λ×Ω,find x∈C, (u,v)∈T(x,ω) ×S(x,ω) such that

    The problems(2) and (3) include many(parametric)generalized mixed equilibrium problems as special cases,for examples,see [21-26,31-33]and the references therein.

    Now,for i∈{1,2} and fixed (λi,ωi)∈Λi×Ωi,we assume that Fi(· ,· ,λi), η(· ,· ,ωi)and φisatisfy all conditions of Lemma 2.2.Related to SPGMIEP (1),we consider the following system of parametric equation problems (SPEP):find (x1,x2)∈C1×C2, (u1,v1)∈T1(x1,ω1) ×S1(x2,ω2),(u2,v2)∈T2(x1,ω1) ×S2(x2,ω2),such that

    Lemma 3.1For fixed (λi,ωi)∈Λi×Ωi,(x1,x2,u1,v1,u2,v2) with (x1,x2)∈C1×C2, (u1,v1)∈T1(x1,ω1) ×S1(x2,ω2), (u2,v2)∈T2(x1,ω1)×S2(x2,ω2) is a solution of the SPEP (4) if and only if(x1,x2,u1,v1,u2,v2) with (x1,x2)∈C1×C2, (u1,v1)∈T1(x1,ω1) ×S1(x2,ω2), (u2,v2)∈T2(x1,ω1)×S2(x2,ω2) is a solution of the SGMIEP (1).

    ProofFor fixed (λi,ωi)∈Λi×Ωi,if(x1,x2,u1,v1,u2,v2)with (x1,x2)∈C1×C2, (u1,v1)∈T1(x1,ω1) ×S1(x2,ω2), (u2,v2)∈T2(x1,ω1) ×S2(x2,ω2) is a solution of the SPEP (4),then we have

    Hence (x1,x2,u1,v1,u2,v2) with (x1,x2)∈C1×C2,(u1,v1)∈T1(x1) ×S1(x2), (u2,v2)∈T2(x1) ×S2(x2) is a solution of the SGMIEP (1).

    Conversely,for fixed (λi,ωi)∈Λi×Ωi,if(x1,x2,u1,v1,u2,v2) with (x1,x2)∈C1×C2, (u1,v1)∈T1(x1,ω1) ×S1(x2,ω2), (u2,v2)∈T2(x1,ω1) ×S2(x2,ω2) is a solution of the SGMIEP (1),then the system of inequalities (6) holds.For ρ1,ρ2>0,it follows from (6) that

    Let z1=g1(x1,λ1) -ρ1M1(x1,x2,u1,v1,ω1)∈B1and z2=g2(x2,λ2) -ρ2M2(x1,x2,u2,v2,ω2)∈B2,then we have

    Remark 3.1Lemma 3.1 improves Lemma 3.1 of Ding and Ho[21]and generalizes Lemma 2.3 of Huang et al[25]and Lemma 3.1 of Kazmi and Khan[31]in the following ways:

    1)from Hilbert spaces to Reflexive Banach spaces;

    2)from a generalized mixed equilibrium problem to the more general system of generalized mixed implicit equilibrium problems.

    Now,by Lemma 3.1,for each i∈{1,2} and given (λi,ωi)∈Λi×Ωi,we can define the solution set S(λ1,λ2,ω1,ω2) of the SPGMIEP (1) as follows:

    For i∈{1,2},we define the mappings Φ1:C1×C2×Λ1×Ω1×Ω2→2C1and Φ2:C1×C2×Λ2×Ω1×Ω2→2C2as follows:

    Again define a mapping Ψ:C1×C2×Λ1×Λ2×Ω1×Ω2→2B1×B2as follows:

    Lemma 3.2For i∈{1,2} and given (λi,ωi)∈Λi×Ωi, (x1,x2) is a fixed point of Ψif and only if(x1,x2)∈S(λ1,λ2,ω1,ω2),i.e,there exist(u1,v1)∈T1(x1,ω1) ×S1(x2,ω2), (u2,v2)∈T2(x1,ω1) ×S2(x2,ω2) such that(x1,x2,u1,u2,v1,v2) is a solution of the SPGMIEP (1).

    ProofFor each fixed (λi,ωi)∈Λi×Ωi,by the definition of Ψ, (x1,x2)∈C1×C2is a fixed point of Ψif and only if there exist(u1,v1)∈T1(x1,ω1) ×S1(x2,ω2) and (u2,v2)∈T2(x1,ω1) ×S2(x2,ω2)such that

    By Lemma 3.1,the relation (14) holds if and only if(x1,x2,u1,u2,v1,v2)is a solution of the SPGMIEP(1).This completes the proof.

    Definition 3.1For i=1,2,Mi:C1×C2×B1×B2×Ω1×Ω2→Biis said to be (m(i,1),m(i,2),m(i,3),m(i,4),m(i,5),m(i,6))-mixed Lipschitz continuous in first to six arguments,if there exist constants m(i,1),m(i,2),m(i,3),m(i,4),m(i,5),m(i,6)>0 such that

    Definition 3.2For i∈{1,2},let Ti:B1×Ω1→C(B1) be a set-valued mapping.

    (i) Tiis said to be-μi-Lipschitz continuous in first argument,if there exists a constant μi>0 such that

    (ii) Tiis said to be-ti-Lipschitz continuous in second argument,if there exists a constant ti>0 such that

    Similarly,we can define the Lipschitz continuity of the mappings Si:C2×Ω2→C(B2).

    The modulus of smoothness of a Banach space B is the function ρB:[0,∞)→[0,∞) defined by

    Definition 3.3Let K be a closed convex subset of a Banach space B.A mapping g:K→K is said to be γ-strongly accretive if,for any x,y∈K,there exist j(x-y)∈J(x-y) and a constant γ>0 such that

    where J:B→2B*is the normalized duality mapping defined by

    Lemma 3.3[34]Let B be a uniformly smooth Banach space and J be the normalized duality mapping from B into B*.Then,for all x,y∈B,we have

    Lemma 3.4[35]Let(X,d) be a complete metric space and T1,T2:X→C(X) be two set-valued contractive mappings with same contractive constants θ∈(0,1),i.e.,

    Theorem 3.1For each i∈{1,2},let Cibe a nonempty closed convex subset of a uniformly smooth Banach space Biwith ρBi(t)≤Dit2for some Di>0.For fixed (λi,ωi)∈Λi×Ωi,Fi:Ci×Ci×Λi→R,ηi:Bi×Bi×Ωi→Biand φi:Ci×Ci→R satisfy all conditions of Theorem 2.1 where F, θ, δ, η, τ, σ and φare replaced by Fi, θi, δi, ηi, τi, σiand φi.Let Mi:C1×C2×B1×B2×Ω1×Ω2→Bibe(m(i,1),m(i,2),m(i,3),m(i,4))-mixed Lipschitz continuous in first to fourth arguments,Ti:B1×Ω1→C(B1) be-μi-Lipschitz continuous in first argument,Si:B2×Ω2→CB(B2) be-si-Lipschitz continuous in first argument and gi:Ki×Λi→Kibe γi-strongly accretive and βi-lipschitz continuous in first argument.If the following conditions hold for ρ1,ρ2>0:

    Then for any (x1,x2,λ1,λ2,ω1,ω2)∈C1×C2×Λ1×Λ2×Ω1×Ω2, Ψ(x1,x2,λ1,λ2,ω1,ω2)∈C(B1×B2) and Ψis a uniform*-contraction mapping with respect to (λi,ωi)∈Λi×Ωi,i=1,2,where*is a Hausdorff metric on C(B1×B2).Moreover,for each fixed (λi,ωi)∈Λi×Ωi,i=1,2,the solution set S(λ1,λ2,ω1,ω2) of the SPGMIEP (1) is nonempty closed.

    ProofLet(x1,x2,λ1,λ2,ω1,ω2) be an arbitrary element in C1×C2×Λ1×Λ2×Ω1×Ω2.Since for i=1,2,Tiand Siare all compact-valued,and,giand Miare all continuous.By the definitions of Φ1and Φ2,we have Φ1(x1,x2,λ1,ω1,ω2)∈C(B1) and Φ2(x1,x2,λ2,ω1,ω2)∈C(B2)and hence Ψ(x1,x2,λ1,λ2,ω1,ω2)∈C(B1×B2).For any fixed(x1,x2,λ1,λ2,ω1,ω2),(1,2,λ1,λ2,ω1,ω2)∈C1×C2×Λ1×Λ2×Ω1×Ω2and for each(a1,a2)∈Ψ(x1,x2,λ1,λ2,ω1,ω2),by definitions of Ψ and Φi,i∈{1,2},we have that there exist(u1,v1)∈T1(x1,ω1) ×S1(x2,ω2) and (u2,v2)∈T2(x1,ω1) ×S2(x2,ω2) such that

    This shows that the solution set S(λ1,λ2,ω1,ω2)) of the SPGIQVLI(1) is a*-Lipschitz continuous mapping from Λ1×Λ2×Ω1×Ω2into B1×B2.This completes the proof.

    [1] Dafermos S.Sensitivity analysis in variational inequalities[J].Math Oper Res,1988,13:421-434.

    [2] Mukherjee R N,Verma H L.Sensitivity analysis of generalized variational inequalities[J].J Math Anal Appl,1992,167:299-304.

    [3] Noor M A.Sensitivity analysis for quasi-variational inequalities[J].J Optim Theory Appl,1997,95:399-407.

    [4] Yen N D.Lipschitz continuity of solutions of variational inequalities with a parametric polyhedral constraint [J].Math Oper Res,1995,20:695-708.

    [5] Verma R U.Sensitivity analysis for generalized strongly monotone variational inclusions based on the (A,η)-resolvent operator technique[J].Appl Math Lett,2006,19:1409-1413.

    [6] Robinson S M.Sensitivity analysis for variational inequalities by normal-map technique[C]//Giannessi F,Maugeri A.Variational Inequalities and Network Equilibrium Problems.New York:Plenum Press,1995.

    [7] Adly S.Perturbed algorithms and sensitivity analysis for a general class of variational inclusions [J].J Math Anal Appl,1996,201:609-630.

    [8] Noor M A,Noor K I.Sensitivity analysis for quasi-variational inclusions[J].J Math Anal Appl,1999,236:290-299.

    [9] Agarwal R P,Cho Y J,Huang N J.Sensitivity analysis for strongly nonlinear quasi-variational inclusions[J].Appl Math Lett,2000,13(6):19-24.

    [10] Ding X P,Lou C L.On parametric generalized quasivariational inequalities[J].J Optim Theory Appl,1999,100(1):195-205.

    [11] Liu Z,Debnath L,Kang S M,et al.Sensitivity analysis for parametric completely generalized nonlinear implicit quasivariational inclusions[J].J Math Anal Appl,2003,277:142-154.

    [12] Salahuddin.Parametric generalized set-valued variational inclusions and resolvent equations[J].J Math Anal Appl,2004,198:146-156.

    [13] Park J Y,Jeong J U.Parametric generalized mixed variational inequalities[J].Appl Math Lett,2004,17:43-48.

    [14] Ding X P.Sensitivity analysis for generalized nonlinear implicit quasi-variational inclusions[J].Appl Math Lett,2004,17:225-235.

    [15] Ding X P.Sensitivity analysis of solution set for a new class of generalized implicit quasi-variational inclusions[J].Fixed Point Theory and Applications,2006,7:81-94.

    [16] Ding X P.Parametric completely generalized nonlinear implicit quasi-variational inclusions involving h-maximal monotone mappings[J].J Comput Appl Math,2005,182(2):252-289.

    [17] Peng J W,Long X L.Sensitivity analysis for parametric completely generalized strongly nonlinear implicit quasi-variational inclusions[J].Comput Math Appl,2005,50:869-880.

    [18] Agarwal R P,Huang N J,Tan M Y.Sensitivity analysis for a new system of generalized nonlinear mixed quasi-variational inclusions[J].Appl Math Lett,2004,17:345-352.

    [19] Ding X P,Yao J C.Sensitivity analysis for a system of parametric mixed quasi-variational inclusions[J].J Nonlinear Convex A-nal,2007,8(2):211-225.

    [20] Ding X P,Wang Z B.Sensitivity analysis for a system of parametric generalized mixed quasi-variational inclusions involving (K,η)-monotone mappings[J].Appl Math Comput,2009,214:318-327.

    [21] Ding X P,Ho J L.New Iterative algorithm for solving a system of generalized mixed implicit equilibrium problems in Banach spaces[J].Taiwan J Math.2011,15(2):673-695.

    [22]Kazmi K R,Khan E A.Sensitivity analysis for parametric generalized implicit quasi-variational-like inclusions involving P-η-accretive mappings[J].J Math Anal Appl.2008,337:1198-1211.

    [23] Ding X P.System of parametric generalized implicit quasi-variational-like inclusions involving H-η-monotone operators in Banach spaces[J].J Sichuan Normal Univ:Natural Sci,2010,33(6):1-11.

    [24] Moudafi A.Mixed equilibrium problems:sensitivity analysis and algorithmic aspects[J].Comput Math Appl,2002,44:1099-1108.

    [25]Huang N J,Lan H Y,Cho Y J.Sensitivity analysis for nonlinear generalized mixed implicit equilibrium problems with non-monotone set-valued mappings[J].J Comput Appl Math,2006,196:608-618.

    [26]Ding X P.Sensitivity analysis for a system of generalized mixed implicit equilibrium problems in uniformly smooth Banach spaces[J].Nonlinear Anal,2010,73:1264-1276.

    [27] Antipin A S.Iterative gradient prediction-type methods for computing fixed-point of extremal mappings[C]//Guddat J,Jonden H Th,Nizicka F,et al.Parametric Optimization and Related Topics IV.Frankfurt Main:Peter Lang,1997:11-24.

    [28] Ding X P,Tan K K.A minimax inequality with applications to existence of equilibrium point and fixed point theorems [J].Colloq Math,1992,63:233-247.

    [29] Ding X P.Existence and algorithm of solutions for mixed equilibrium problems and bilevel mixed equilibrium problems in Banach spaces[J].Acta Math Sinica,2012,28(3):503-514.

    [30] Pascali D,Surian S.Nonlinear Mappings of Monotone Type[M].Alphen aan den Rijn:Sijthoff and Noordhoff International Publishers,1978.

    [31] Kazmi K R,Khan F A.Existence and iterative approximation of solutions of generalized mixed equilibrium problems [J].Comput Math Appl,2008,56:1314-1321.

    [32] Ding X P.Existence and algorithm of solutions for a system of generalized mixed implicit equilibrium problems in Banach spaces[J].Appl Math Mech,2010,31(9):1049-1062.

    [33] Ding X P.Auxiliary principle and approximation solvability for system of new generalized mixed equilibrium problems in reflexive Banach spaces[J].Appl Math Mech,2011,32(2):231-240.

    [34]Petryshyn W V.A characterization of strictly convexity of Banach spaces and other uses of duality mappings [J].J Funct Anal,1970,6:282-291.

    [35] Lim T C.On fixed point stability for set-valued contractive mappings with application to generalized differential equations [J].J Math Anal Appl,1985,110:436-441.

    [36] Nadler S B.Multivalued contraction mapping[J].Pacific J Math,1969,30:475-488.

    精品人妻1区二区| 精品国内亚洲2022精品成人| 欧美黑人巨大hd| 免费av毛片视频| 中文字幕av成人在线电影| 国产精品亚洲美女久久久| 国产久久久一区二区三区| 欧美丝袜亚洲另类 | 麻豆精品久久久久久蜜桃| 久久久久九九精品影院| 99九九线精品视频在线观看视频| 久久精品久久久久久噜噜老黄 | 久久精品人妻少妇| 国产乱人伦免费视频| 联通29元200g的流量卡| 日日夜夜操网爽| 日本三级黄在线观看| 国产午夜精品久久久久久一区二区三区 | 欧美国产日韩亚洲一区| 很黄的视频免费| 夜夜夜夜夜久久久久| 99久久精品国产国产毛片| 春色校园在线视频观看| 丰满的人妻完整版| 成年女人看的毛片在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 国内久久婷婷六月综合欲色啪| 成人无遮挡网站| 国内揄拍国产精品人妻在线| 亚洲成人久久性| 国产激情偷乱视频一区二区| 亚洲欧美激情综合另类| www.www免费av| 女生性感内裤真人,穿戴方法视频| 两个人的视频大全免费| 亚洲欧美日韩高清在线视频| 国产精品一区www在线观看 | 欧美成人a在线观看| 深夜a级毛片| 欧美人与善性xxx| 性欧美人与动物交配| 色综合站精品国产| 亚洲av中文av极速乱 | 一区福利在线观看| av天堂中文字幕网| 日本一本二区三区精品| 中出人妻视频一区二区| 亚洲国产色片| 97热精品久久久久久| 亚洲精品久久国产高清桃花| 日韩高清综合在线| 国产麻豆成人av免费视频| 男人和女人高潮做爰伦理| 久久久久国内视频| 69av精品久久久久久| 深夜a级毛片| 午夜福利在线观看免费完整高清在 | 国产成人aa在线观看| 十八禁网站免费在线| 国产爱豆传媒在线观看| 国产熟女欧美一区二区| 伦理电影大哥的女人| 国产视频一区二区在线看| 少妇熟女aⅴ在线视频| 老司机福利观看| 国产欧美日韩一区二区精品| 琪琪午夜伦伦电影理论片6080| 亚洲真实伦在线观看| 人妻制服诱惑在线中文字幕| 成熟少妇高潮喷水视频| 能在线免费观看的黄片| 欧美成人a在线观看| 男女之事视频高清在线观看| 听说在线观看完整版免费高清| 十八禁网站免费在线| 久久久久精品国产欧美久久久| 91麻豆av在线| 欧美最黄视频在线播放免费| h日本视频在线播放| 久久精品人妻少妇| 国产精品,欧美在线| 免费看美女性在线毛片视频| 国产黄a三级三级三级人| 一个人观看的视频www高清免费观看| 成人性生交大片免费视频hd| 亚洲人成伊人成综合网2020| 久久精品国产亚洲网站| 欧美国产日韩亚洲一区| 国产在线男女| 日本黄色视频三级网站网址| 欧美日韩精品成人综合77777| 亚洲18禁久久av| 日韩av在线大香蕉| 欧美色视频一区免费| 干丝袜人妻中文字幕| 啦啦啦观看免费观看视频高清| 国产激情偷乱视频一区二区| 亚洲精品一卡2卡三卡4卡5卡| 亚洲成人久久性| 国产精品无大码| 在线免费观看的www视频| 深爱激情五月婷婷| 18禁裸乳无遮挡免费网站照片| 99热6这里只有精品| 中文字幕人妻熟人妻熟丝袜美| 成人精品一区二区免费| 熟女电影av网| 美女免费视频网站| 亚洲综合色惰| 亚洲性夜色夜夜综合| 久久久久国内视频| 婷婷丁香在线五月| 床上黄色一级片| 18禁在线播放成人免费| 舔av片在线| 校园人妻丝袜中文字幕| 给我免费播放毛片高清在线观看| 久99久视频精品免费| 欧美极品一区二区三区四区| 国产又黄又爽又无遮挡在线| 国产伦精品一区二区三区四那| 久久久精品大字幕| 精品99又大又爽又粗少妇毛片 | 特级一级黄色大片| 国产精品乱码一区二三区的特点| 免费观看在线日韩| 波野结衣二区三区在线| 亚洲人成网站在线播放欧美日韩| 22中文网久久字幕| 美女黄网站色视频| 嫩草影院新地址| 两个人视频免费观看高清| 欧美成人性av电影在线观看| 99久久无色码亚洲精品果冻| 免费搜索国产男女视频| 免费观看人在逋| 啪啪无遮挡十八禁网站| 亚洲av免费高清在线观看| 校园春色视频在线观看| 成人欧美大片| 国产精品98久久久久久宅男小说| 波野结衣二区三区在线| 国产乱人视频| 黄色女人牲交| 国产精品三级大全| 哪里可以看免费的av片| 久久久久久久久大av| 久久精品影院6| 天美传媒精品一区二区| 久久午夜福利片| 亚洲成a人片在线一区二区| 色视频www国产| 欧美3d第一页| 久久久久久久亚洲中文字幕| 亚洲最大成人中文| 成人特级黄色片久久久久久久| av中文乱码字幕在线| 色在线成人网| 亚州av有码| 我要搜黄色片| 毛片女人毛片| 可以在线观看的亚洲视频| 热99re8久久精品国产| 欧美色欧美亚洲另类二区| 一级黄片播放器| 久久久国产成人精品二区| 级片在线观看| 久久久久久久亚洲中文字幕| 十八禁国产超污无遮挡网站| 国产伦精品一区二区三区四那| 伦理电影大哥的女人| av在线蜜桃| 少妇被粗大猛烈的视频| 亚洲精品日韩av片在线观看| 久久精品夜夜夜夜夜久久蜜豆| 亚洲av美国av| 日本免费a在线| 真人一进一出gif抽搐免费| 内地一区二区视频在线| 久久久精品大字幕| 白带黄色成豆腐渣| 三级国产精品欧美在线观看| 一区二区三区激情视频| 麻豆成人av在线观看| 我的老师免费观看完整版| 自拍偷自拍亚洲精品老妇| 久久精品国产亚洲av香蕉五月| 一区二区三区四区激情视频 | 国产一区二区三区视频了| 此物有八面人人有两片| 日本五十路高清| 日本免费一区二区三区高清不卡| 12—13女人毛片做爰片一| ponron亚洲| 波野结衣二区三区在线| 熟女电影av网| 亚洲成人久久性| 亚洲精品一区av在线观看| 最新中文字幕久久久久| 999久久久精品免费观看国产| 欧美最黄视频在线播放免费| 黄色配什么色好看| 国产一区二区在线观看日韩| 国产精品国产三级国产av玫瑰| 久久久久久久久久黄片| 亚洲熟妇熟女久久| 最近视频中文字幕2019在线8| 一区二区三区四区激情视频 | 国产亚洲精品综合一区在线观看| 国产伦精品一区二区三区四那| 国产精品人妻久久久久久| 人人妻人人看人人澡| 国产蜜桃级精品一区二区三区| 亚洲成人中文字幕在线播放| 少妇丰满av| 国产精品国产三级国产av玫瑰| 丰满的人妻完整版| 国产精品免费一区二区三区在线| 88av欧美| 成年女人永久免费观看视频| 亚洲无线在线观看| 国产精品精品国产色婷婷| 国产一区二区三区在线臀色熟女| 亚洲七黄色美女视频| videossex国产| 日韩欧美精品免费久久| 性插视频无遮挡在线免费观看| 午夜老司机福利剧场| 岛国在线免费视频观看| 免费大片18禁| 亚洲七黄色美女视频| 毛片一级片免费看久久久久 | 深爱激情五月婷婷| 噜噜噜噜噜久久久久久91| 亚洲av一区综合| 男女边吃奶边做爰视频| 亚洲av.av天堂| 亚州av有码| 亚洲国产欧洲综合997久久,| 精品久久国产蜜桃| 亚洲av熟女| 一边摸一边抽搐一进一小说| 午夜老司机福利剧场| 桃红色精品国产亚洲av| 97热精品久久久久久| 乱人视频在线观看| 在线观看一区二区三区| 亚洲一区二区三区色噜噜| 亚洲专区中文字幕在线| 琪琪午夜伦伦电影理论片6080| 乱系列少妇在线播放| 别揉我奶头 嗯啊视频| 免费一级毛片在线播放高清视频| 看免费成人av毛片| 22中文网久久字幕| 亚洲内射少妇av| 俺也久久电影网| 欧美日韩亚洲国产一区二区在线观看| 亚洲在线观看片| av天堂中文字幕网| 精品久久久久久,| 狠狠狠狠99中文字幕| 制服丝袜大香蕉在线| 18禁裸乳无遮挡免费网站照片| 99热6这里只有精品| 久久人妻av系列| 免费看光身美女| 日本免费一区二区三区高清不卡| 99久久中文字幕三级久久日本| 亚洲欧美日韩无卡精品| 男女下面进入的视频免费午夜| 99九九线精品视频在线观看视频| 久9热在线精品视频| 亚洲av电影不卡..在线观看| 国产探花在线观看一区二区| 人妻制服诱惑在线中文字幕| 悠悠久久av| 久久九九热精品免费| 亚洲人成伊人成综合网2020| 高清在线国产一区| 99久久精品一区二区三区| 国产伦在线观看视频一区| 在线观看舔阴道视频| h日本视频在线播放| 国产高潮美女av| 最好的美女福利视频网| 男女下面进入的视频免费午夜| 国产91精品成人一区二区三区| 亚洲国产欧洲综合997久久,| 成人无遮挡网站| 如何舔出高潮| 窝窝影院91人妻| 国产免费男女视频| 成人av一区二区三区在线看| 国产男靠女视频免费网站| 最新中文字幕久久久久| 国产国拍精品亚洲av在线观看| 最近中文字幕高清免费大全6 | 在线观看美女被高潮喷水网站| 天美传媒精品一区二区| 毛片女人毛片| 亚洲av不卡在线观看| 小蜜桃在线观看免费完整版高清| 波多野结衣高清无吗| 国产伦人伦偷精品视频| 欧美成人免费av一区二区三区| 一个人看的www免费观看视频| 色综合亚洲欧美另类图片| 中亚洲国语对白在线视频| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品一卡2卡三卡4卡5卡| 国产91精品成人一区二区三区| 男插女下体视频免费在线播放| 国产又黄又爽又无遮挡在线| 精品不卡国产一区二区三区| 校园春色视频在线观看| 一级黄色大片毛片| 亚洲av成人av| 国产日本99.免费观看| 日日摸夜夜添夜夜添av毛片 | 欧美一区二区亚洲| 校园春色视频在线观看| 老熟妇乱子伦视频在线观看| 婷婷精品国产亚洲av在线| 国产精品国产三级国产av玫瑰| 中亚洲国语对白在线视频| 亚洲av电影不卡..在线观看| 搞女人的毛片| 亚洲18禁久久av| 国产中年淑女户外野战色| 日日摸夜夜添夜夜添小说| 亚洲第一区二区三区不卡| 久久精品影院6| 乱系列少妇在线播放| 在线国产一区二区在线| 欧美日本亚洲视频在线播放| 国产精品自产拍在线观看55亚洲| 国产69精品久久久久777片| 国产探花极品一区二区| 男人舔女人下体高潮全视频| 亚洲最大成人av| 欧美3d第一页| 欧美+日韩+精品| av在线观看视频网站免费| 久久久精品欧美日韩精品| 午夜爱爱视频在线播放| 联通29元200g的流量卡| 12—13女人毛片做爰片一| 国产蜜桃级精品一区二区三区| 天美传媒精品一区二区| 亚洲成a人片在线一区二区| 欧美+日韩+精品| 波多野结衣高清无吗| 91在线精品国自产拍蜜月| 国产色爽女视频免费观看| 国产精品综合久久久久久久免费| 嫩草影院精品99| 女的被弄到高潮叫床怎么办 | 他把我摸到了高潮在线观看| 日本 欧美在线| 国产色婷婷99| 精品久久久久久,| 国产精品久久久久久av不卡| 成人综合一区亚洲| 国产爱豆传媒在线观看| 99九九线精品视频在线观看视频| 国产精品久久久久久久久免| 亚洲专区国产一区二区| 九九热线精品视视频播放| 久久精品国产99精品国产亚洲性色| 日韩欧美在线乱码| 永久网站在线| 国产免费av片在线观看野外av| 国产精品自产拍在线观看55亚洲| 亚洲欧美清纯卡通| 欧美日韩亚洲国产一区二区在线观看| 天天一区二区日本电影三级| 日本五十路高清| 亚洲最大成人av| 99精品久久久久人妻精品| 久久久久免费精品人妻一区二区| 黄片wwwwww| 日韩亚洲欧美综合| 国产激情偷乱视频一区二区| 国产高清视频在线播放一区| 久久精品影院6| a在线观看视频网站| av黄色大香蕉| 欧美激情久久久久久爽电影| 亚洲av.av天堂| 99精品久久久久人妻精品| 日日夜夜操网爽| 中文字幕av成人在线电影| 琪琪午夜伦伦电影理论片6080| 亚洲成a人片在线一区二区| 日本熟妇午夜| 久久精品国产自在天天线| 国模一区二区三区四区视频| 亚洲欧美精品综合久久99| 熟妇人妻久久中文字幕3abv| 日韩欧美精品v在线| 欧美成人一区二区免费高清观看| 日韩大尺度精品在线看网址| 欧美又色又爽又黄视频| 99国产精品一区二区蜜桃av| 黄色丝袜av网址大全| 午夜福利在线观看免费完整高清在 | 五月伊人婷婷丁香| 一本久久中文字幕| 国产成人一区二区在线| 久久中文看片网| 狂野欧美白嫩少妇大欣赏| 欧美最新免费一区二区三区| 欧美精品国产亚洲| 简卡轻食公司| 成人永久免费在线观看视频| 99久久精品热视频| 免费看日本二区| 男人舔奶头视频| 久久久色成人| 亚洲av二区三区四区| 国产亚洲91精品色在线| 极品教师在线视频| 老熟妇仑乱视频hdxx| 制服丝袜大香蕉在线| 久久久久久久亚洲中文字幕| 一a级毛片在线观看| 免费观看人在逋| 一进一出抽搐动态| 成人高潮视频无遮挡免费网站| 女生性感内裤真人,穿戴方法视频| 午夜久久久久精精品| 日本 av在线| 精品午夜福利视频在线观看一区| 亚洲 国产 在线| 99久久精品国产国产毛片| 亚洲人成网站在线播放欧美日韩| 国模一区二区三区四区视频| 精品福利观看| 日本a在线网址| 国产亚洲精品av在线| 淫秽高清视频在线观看| 看片在线看免费视频| 香蕉av资源在线| 内地一区二区视频在线| 一级a爱片免费观看的视频| 精品无人区乱码1区二区| 亚洲一区二区三区色噜噜| www.www免费av| 国产乱人伦免费视频| 少妇裸体淫交视频免费看高清| av专区在线播放| 色综合亚洲欧美另类图片| 免费在线观看成人毛片| 国产免费一级a男人的天堂| 少妇猛男粗大的猛烈进出视频 | 久久人人精品亚洲av| 丝袜美腿在线中文| 在线观看舔阴道视频| 噜噜噜噜噜久久久久久91| 国产精品野战在线观看| 我的女老师完整版在线观看| 亚洲男人的天堂狠狠| 精品人妻视频免费看| 麻豆精品久久久久久蜜桃| 不卡一级毛片| 成人无遮挡网站| 免费av不卡在线播放| 午夜福利在线观看吧| 白带黄色成豆腐渣| 色综合站精品国产| 黄色欧美视频在线观看| 国产成年人精品一区二区| 国产成人a区在线观看| 亚洲精品色激情综合| 尤物成人国产欧美一区二区三区| 国产主播在线观看一区二区| 亚洲avbb在线观看| 日韩精品有码人妻一区| 亚洲一区高清亚洲精品| 波多野结衣高清无吗| 一级黄片播放器| 婷婷精品国产亚洲av在线| 国产真实乱freesex| 亚洲一区二区三区色噜噜| 久久九九热精品免费| 国内精品美女久久久久久| 国内精品宾馆在线| 三级国产精品欧美在线观看| 亚洲av免费高清在线观看| av.在线天堂| 久久久久国内视频| 在线天堂最新版资源| 久久久久九九精品影院| 午夜福利在线观看免费完整高清在 | 国产中年淑女户外野战色| 久久欧美精品欧美久久欧美| 国产麻豆成人av免费视频| 黄色配什么色好看| 亚洲av第一区精品v没综合| 在线观看舔阴道视频| 淫秽高清视频在线观看| 国产伦精品一区二区三区四那| 哪里可以看免费的av片| 免费人成在线观看视频色| 丰满人妻一区二区三区视频av| 免费黄网站久久成人精品| 亚洲专区中文字幕在线| 日本 欧美在线| 国产午夜精品论理片| 五月玫瑰六月丁香| 亚洲av成人精品一区久久| 最新中文字幕久久久久| 国产麻豆成人av免费视频| 国内少妇人妻偷人精品xxx网站| 真人一进一出gif抽搐免费| 两个人的视频大全免费| 99精品久久久久人妻精品| 欧美三级亚洲精品| 毛片女人毛片| 成人特级黄色片久久久久久久| 日韩高清综合在线| 波野结衣二区三区在线| 久久久久久久精品吃奶| 伦理电影大哥的女人| 欧美成人a在线观看| 日韩精品中文字幕看吧| 色播亚洲综合网| 亚洲经典国产精华液单| 亚洲va在线va天堂va国产| 两个人的视频大全免费| 久99久视频精品免费| 久久欧美精品欧美久久欧美| 无人区码免费观看不卡| 午夜免费成人在线视频| 欧美3d第一页| 午夜影院日韩av| 免费看av在线观看网站| 少妇丰满av| 色尼玛亚洲综合影院| 九九久久精品国产亚洲av麻豆| 直男gayav资源| 高清日韩中文字幕在线| av在线老鸭窝| 香蕉av资源在线| 婷婷丁香在线五月| 精品一区二区免费观看| 久久精品国产鲁丝片午夜精品 | 久久久国产成人精品二区| 国产男靠女视频免费网站| 老司机午夜福利在线观看视频| 精品国产三级普通话版| 久久国产精品人妻蜜桃| 波多野结衣高清作品| 精品一区二区三区av网在线观看| 亚洲熟妇中文字幕五十中出| 啦啦啦韩国在线观看视频| 亚洲无线在线观看| 久久久久免费精品人妻一区二区| 观看美女的网站| 国产白丝娇喘喷水9色精品| 桃红色精品国产亚洲av| 日本黄大片高清| 99在线视频只有这里精品首页| 日本黄大片高清| 成年人黄色毛片网站| 日韩欧美 国产精品| 99热这里只有是精品在线观看| 黄片wwwwww| 级片在线观看| 国产亚洲91精品色在线| 日日摸夜夜添夜夜添av毛片 | 国产精品电影一区二区三区| 久久久久久国产a免费观看| 伦精品一区二区三区| 久久天躁狠狠躁夜夜2o2o| 国产一级毛片七仙女欲春2| 午夜爱爱视频在线播放| 日本五十路高清| 91麻豆av在线| 久久久久久久久大av| 免费人成在线观看视频色| 久久久精品欧美日韩精品| 欧美绝顶高潮抽搐喷水| 啪啪无遮挡十八禁网站| 波野结衣二区三区在线| 欧美色视频一区免费| 久久久午夜欧美精品| 成年女人毛片免费观看观看9| 成年女人毛片免费观看观看9| 在线观看66精品国产| 久久香蕉精品热| 97热精品久久久久久| 尤物成人国产欧美一区二区三区| 亚洲av美国av| 成人高潮视频无遮挡免费网站| 亚洲va在线va天堂va国产| 三级国产精品欧美在线观看| 久久草成人影院| 床上黄色一级片| 国产精品不卡视频一区二区| 在线观看午夜福利视频| 此物有八面人人有两片| 国产av一区在线观看免费| 18禁在线播放成人免费| 国产一级毛片七仙女欲春2| 美女 人体艺术 gogo| 日韩精品有码人妻一区| 午夜日韩欧美国产| 亚洲va在线va天堂va国产| 国产精品福利在线免费观看| 天堂网av新在线| 欧美性猛交╳xxx乱大交人| 欧美不卡视频在线免费观看| 日韩 亚洲 欧美在线|