• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      CFRP中等約束鋼筋混凝土方柱反復(fù)受壓本構(gòu)模型

      2014-09-27 14:01:25王代玉王震宇喬鑫
      關(guān)鍵詞:方柱碳纖維

      王代玉+王震宇+喬鑫

      文章編號(hào):16742974(2014)04003908

      收稿日期:20130713

      基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(51078109,51278150);深圳市科技研發(fā)資金基礎(chǔ)研究重點(diǎn)項(xiàng)目(JC201005250051A)

      作者簡(jiǎn)介:王代玉(1984-),男,山東鄒城人,哈爾濱工業(yè)大學(xué)講師,博士

      通訊聯(lián)系人,E-mail:daiyuwang@hit.edu.cn

      摘要:為填補(bǔ)FRP約束混凝土滯回本構(gòu)模型的空白,對(duì)邊長(zhǎng)305mm,高915mm及邊長(zhǎng)204mm,高612mm兩種尺寸的CFRP約束鋼筋混凝土方柱,采用500t四棱柱壓力試驗(yàn)機(jī)進(jìn)行了單調(diào)及反復(fù)軸壓試驗(yàn).試驗(yàn)結(jié)果表明,大尺寸CFRP約束鋼筋混凝土方柱的應(yīng)力應(yīng)變關(guān)系曲線存在軟化段,CFRP的約束作用為中等約束,且尺寸效應(yīng)對(duì)CFRP的有效約束作用有明顯影響;箍筋對(duì)單調(diào)受壓應(yīng)力應(yīng)變曲線形狀、極限壓應(yīng)變、反復(fù)受壓卸載曲線和殘余應(yīng)變影響均較大.基于試驗(yàn)結(jié)果提出了考慮鋼筋、尺寸效應(yīng)及CFRP包裹層數(shù)等影響參數(shù)的CFRP中等約束混凝土方柱的反復(fù)受壓本構(gòu)模型.模型由描述包絡(luò)線的單調(diào)受壓本構(gòu)模型、曲線形式的卸載曲線及直線形式的再加載曲線3部分組成,模型預(yù)測(cè)結(jié)果與試驗(yàn)結(jié)果吻合較好.

      關(guān)鍵詞:碳纖維;約束混凝土;方柱;單軸受壓;應(yīng)力應(yīng)變模型

      中圖分類號(hào):TU352;TU375.3 文獻(xiàn)標(biāo)識(shí)碼:A

      CyclicStressstrainModelforCFRPModeratelyconfined

      ReinforcedConcreteSquareColumns

      

      WANGDaiyu1,2,WANGZhenyu1,2,QIAOXin3

      (1.KeyLabofStructuresDynamicBehaviorandControl(HarbinInstituteofTechnology),MinistryofEducation,Harbin,

      Heilongjiang150090,China;2.SchoolofCivilEngineering,HarbinInstituteofTechnology,Harbin,Heilongjiang150090,China;

      3.CCTEGShenyangEngineeringCoLtd,Shenyang,Liaoning110015,China)

      Abstract:ToaddresstheknowledgegapsofthecyclicstressstrainmodelofFRPconfinedconcrete,thispaperpresentedtheexperimentalresultsofCFRPconfinedplainandRCsquarecolumnsundermonotonicandcyclicaxialcompression.Thespecimensweredividedintotwogroupsonthebasisofsize.Thewidthofthecrosssectionandtheheightofthetotalcolumnwere305mm,915mmand204mm,612mmforthetwogroups,respectively.TestresultsshowedthatthestressstraincurvesoftheCFRPconfinedlargercolumnsexhibitedalocalizedstrainsofteningbehavior,inwhichtheconfinementofCFRPwrapwasmoderatelyconfinedandsignificantlyinfluencedbysizeeffect.Moreover,theultimatecompressionstrain,unloadingcurvesandplasticstrainwereremarkablyinfluencedbyhoops.Basedonthetestdata,acyclicaxialstressstrainmodelforFRPconfinedsquareconcretecolumnswasproposed.Theproposedcyclicaxialstressstrainmodelconsistsofthreemaincomponents,namely(i)amonotonicstressstrainmodeltodescribetheenvelopecurve,(ii)apolynomialexpressionfortheunloadingcurve,and(iii)astraightlineforthereloadingpath.Theinfluencesofinternalsteelreinforcements,sizeeffectandaswellasthenumberoflayersofCFRPwrapwereconsidered.Thegoodagreementbetweenthepredictionsoftheproposedmodelandthetestresultsdemonstratesthecapabilityandaccuracyoftheproposedmodel.

      Keywords:carbonfiber;confinedconcrete;squaresectionRCcolumns;cycliccompression;stressstrainmodel

      

      FRP約束混凝土反復(fù)受壓滯回本構(gòu)模型是對(duì)FRP加固混凝土構(gòu)件及結(jié)構(gòu)抗震性能進(jìn)行研究和分析的基礎(chǔ).目前,國(guó)內(nèi)外學(xué)者對(duì)FRP約束混凝土單調(diào)受壓性能進(jìn)行了許多研究,并提出了多種單調(diào)受壓本構(gòu)模型[1-10],但對(duì)反復(fù)受壓性能的研究卻較少;而已有的研究對(duì)象多為FRP約束小尺寸的素混凝土圓柱,考慮已有縱筋和箍筋的存在對(duì)反復(fù)受壓性能的研究則更少.

      Shao等[11]對(duì)24個(gè)采用不同F(xiàn)RP材料和包裹層數(shù)約束的素混凝土圓柱進(jìn)行了不同加卸載水平的反復(fù)受壓試驗(yàn),發(fā)現(xiàn)殘余應(yīng)變與卸載應(yīng)變具有很好的線性關(guān)系,建立了FRP約束素混凝土的加卸載規(guī)則,提出了FRP素混凝土的強(qiáng)化型滯回本構(gòu)模型.Lam和Teng等[12-13]進(jìn)行了FRP約束素混凝土圓柱的反復(fù)受壓試驗(yàn),結(jié)果表明:加卸載歷史對(duì)反復(fù)受壓時(shí)的應(yīng)力應(yīng)變包絡(luò)線影響不大,可用單調(diào)受壓應(yīng)力應(yīng)變曲線代替反復(fù)受壓包絡(luò)線,反復(fù)加卸載可產(chǎn)生累積損傷,對(duì)殘余應(yīng)變及應(yīng)力的退化有影響.并在隨后的分析中建立了FRP約束混凝土圓柱的加、卸載規(guī)則,細(xì)化了再加載曲線的表述,將再加載曲線分為共同點(diǎn)之前的直線段和之后的曲線過(guò)渡段,建立了適于圓柱強(qiáng)約束的應(yīng)力應(yīng)變滯回模型.王震宇等[14]對(duì)12個(gè)CFRP約束素混凝土方柱進(jìn)行了反復(fù)受壓試驗(yàn),研究發(fā)現(xiàn)FRP約束方柱與約束圓柱的反復(fù)受壓性能有明顯差異:兩者具有不同的殘余應(yīng)變與卸載應(yīng)變關(guān)系,且再加載曲線形式也不同,圓柱近似為直線,而方柱的再加載曲線與卸載曲線相似,為下凸的曲線形式.隨后基于試驗(yàn)結(jié)果,建立了FRP約束素混凝土方柱的滯回本構(gòu)模型.Abbasnia等[15]對(duì)10個(gè)CFRP約束混凝土方柱開(kāi)展了反復(fù)受壓試驗(yàn),建立了殘余應(yīng)變與卸載應(yīng)變的線性關(guān)系,但并未提出相應(yīng)的反復(fù)受壓滯回本構(gòu)模型.

      針對(duì)目前FRP約束混凝土反復(fù)受壓性能研究較少,且研究對(duì)象也多為小尺寸的素混凝土柱,沒(méi)有考慮尺寸效應(yīng)及已有鋼筋對(duì)反復(fù)受壓應(yīng)力應(yīng)變滯回模型影響的情況,本文對(duì)較大尺寸CFRP約束鋼筋混凝土方柱開(kāi)展了單調(diào)及反復(fù)受壓的試驗(yàn)研究,考察了尺寸效應(yīng)、縱筋、箍筋和CFRP包裹層數(shù)對(duì)反復(fù)受壓應(yīng)力應(yīng)變關(guān)系的影響,在材料層面上建立了可用于CFRP約束鋼筋混凝土柱非線性分析的滯回本構(gòu)模型.

      1試驗(yàn)概況

      1.1試件設(shè)計(jì)

      共設(shè)計(jì)了30個(gè)試件,根據(jù)截面尺寸分為2個(gè)系列,其中S1系列試件為12個(gè)邊長(zhǎng)305mm,高915mm的方柱,包裹0~3層CFRP;S2系列試件為18個(gè)邊長(zhǎng)204mm,高612mm的方柱,分別包裹0~2層CFRP.未約束混凝土實(shí)測(cè)抗壓強(qiáng)度為25.5MPa,縱筋配筋率均為1.46%,箍筋體積配箍率分別為0,0.4%和0.8%;縱筋和箍筋分別采用HRB335和HPB235級(jí)鋼筋.為保證破壞出現(xiàn)在柱中,上下柱端采取箍筋加密并多包裹一層CFRP.試件尺寸及配筋如圖1所示,具體試件試驗(yàn)工況見(jiàn)表1.其中直徑分別為6,10和12mm鋼筋實(shí)測(cè)屈服強(qiáng)度分別為397,312和340MPa;CFRP的極限抗拉強(qiáng)度、彈性模量和單層厚度分別為4340MPa,2.4×105MPa和0.167mm;MS系列碳纖維配套粘結(jié)樹(shù)脂的抗拉強(qiáng)度及受拉彈性模量分別為46.3和2745MPa.

      圖1試件尺寸及配筋

      Fig.1Dimensionandreinforcementofspecimens

      

      表1試件工況及主要試驗(yàn)結(jié)果

      Tab.1Specimencharacteristicsandmaintestresults

      試件編號(hào)

      b/mm

      h/mm

      縱筋

      箍筋

      L

      R/mm

      fcc

      /MPa

      εcc/%

      fcu/MPa

      εcu/%

      εh,rup/%

      εfe/%

      S1H1L0M

      305

      915

      1212

      6@80

      0

      0

      32.1

      0.373

      25.7

      0.662

      -

      -

      S1H2L0M

      305

      915

      1212

      6@40

      0

      0

      34.7

      0.412

      27.8

      0.684

      -

      S1H0L1M

      305

      915

      -

      -

      1

      30

      29.4

      0.313

      17.2

      0.786

      -0.843

      -0.880

      S1H0L2M

      305

      915

      -

      -

      2

      30

      32.3

      0.393

      24.4

      1.771

      -0.951

      -0.700

      S1H1L1M

      305

      915

      1212

      6@80

      1

      30

      35.1

      0.428

      24.1

      1.538

      -0.735

      -0.370

      S1H1L2M

      305

      915

      1212

      6@80

      2

      30

      34.9

      0.434

      30.7

      2.269

      -1.257

      -0.280

      S1H1L2C

      305

      915

      1212

      6@80

      2

      30

      33.9

      0.387

      27.9

      2.507

      -1.103

      -0.810

      S1H1L3M

      305

      915

      1212

      6@80

      3

      30

      36.9

      0.428

      33.3

      2.521

      -1.186

      -0.600

      S1H1L3C

      305

      915

      1212

      6@80

      3

      30

      36.5

      0.487

      33.9

      3.830

      -1.108

      -1.210

      S1H2L1M

      305

      915

      1212

      6@40

      1

      30

      30.7

      0.530

      29.6

      1.832

      -1.307

      -

      S1H2L2M

      305

      915

      1212

      6@40

      2

      30

      35.5

      0.416

      30.9

      2.104

      -1.002

      -0.330

      S1H2L3M

      305

      915

      1212

      6@40

      3

      30

      37.2

      0.529

      35.8

      2.584

      -1.093

      -1.240

      S2H1L0M

      204

      612

      810

      6@120

      0

      0

      29.9

      0.364

      23.9

      0.834

      -

      S2H2L0M

      204

      612

      810

      6@60

      0

      0

      32.5

      0.406

      26.0

      1.352

      -

      S2H0L1M

      204

      612

      -

      -

      1

      20

      28.7

      0.391

      25.0

      1.740

      -0.986

      -0.860

      S2H0L1P

      204

      612

      -

      -

      1

      20

      28.8

      0.308

      24.6

      1.699

      -0.919

      -0.990

      S2H0L1C

      204

      612

      -

      -

      1

      20

      31.2

      0.355

      23.5

      2.220

      -1.172

      -1.190

      S2H0L2M

      204

      612

      -

      -

      2

      20

      30.8

      0.481

      31.4

      2.287

      -1.212

      -0.620

      S2H0L2P

      204

      612

      -

      -

      2

      20

      31.9

      0.446

      27.9

      2.810

      -1.115

      -0.990

      S2H0L2C

      204

      612

      -

      -

      2

      20

      32.4

      1.512

      32.1

      3.162

      -1.024

      -1.090

      S2H1L1M

      204

      612

      810

      6@120

      1

      20

      35.5

      0.704

      34.4

      2.969

      -1.387

      -

      S2H1L1P

      204

      612

      810

      6@120

      1

      20

      33.1

      0.485

      31.0

      1.990

      -0.868

      -

      S2H1L1C

      204

      612

      810

      6@120

      1

      20

      33.5

      0.535

      32.8

      3.043

      -1.394

      -

      S2H1L2M

      204

      612

      810

      6@120

      2

      20

      34.6

      0.633

      40.0

      3.588

      -1.064

      -

      S2H1L2P

      204

      612

      810

      6@120

      2

      20

      37.7

      0.921

      43.8

      3.801

      -1.143

      -

      S2H1L2C

      204

      612

      810

      6@120

      2

      20

      34.6

      0.797

      38.6

      4.574

      -1.202

      -

      S2H2L1M

      204

      612

      810

      6@60

      1

      20

      33.0

      0.465

      31.6

      2.562

      -1.339

      -

      S2H2L1C

      204

      612

      810

      6@60

      1

      20

      34.1

      0.654

      34.8

      2.661

      -1.358

      -

      S2H2L2M

      204

      612

      810

      6@60

      2

      20

      34.3

      0.652

      40.8

      4.230

      -1.410

      -1.420

      S2H2L2C

      204

      612

      810

      6@60

      2

      20

      36.0

      0.801

      41.4

      4.839

      -1.198

      -0.960

      注:試件編號(hào)中S表示方柱,數(shù)字1和2分別代表截面邊長(zhǎng)305mm和204mm,H表示配箍率,數(shù)字0,1,2分別代表無(wú)箍筋及配箍率為0.4%和0.8%,L1,L2和L3分別表示CFRP的包裹層數(shù)為1,2和3層,M,C,P分別表示單調(diào)加載及完全和部分加卸載;b為柱截面寬度;h為柱高;R為倒角半徑;fcc,εcc分別為峰值點(diǎn)時(shí)混凝土的應(yīng)力和應(yīng)變;fcu,εcu分別為約束后極限應(yīng)力和應(yīng)變,未包裹CFRP鋼筋混凝土柱的極限強(qiáng)度取為其峰值強(qiáng)度的80%;εh,rup為所有應(yīng)變片量測(cè)的FRP斷裂應(yīng)變的平均值;εfe為倒角處應(yīng)變片量測(cè)的FRP斷裂應(yīng)變的平均值.

      1.2加載及量測(cè)裝置

      軸向荷載采用5000kN壓力機(jī)加載,縱向位移采用4個(gè)LVDT測(cè)量,量測(cè)范圍為柱中間1/3高度,箍筋和CFRP應(yīng)變采用應(yīng)變片量測(cè),量測(cè)方案如圖2所示.

      圖2LVDT及應(yīng)變片位置

      Fig.2LocationsofLVDTandstrain

      

      2試驗(yàn)結(jié)果與分析

      2.1破壞模式

      試件最終破壞均是由于標(biāo)距范圍倒角附近區(qū)域的CFRP由于應(yīng)力集中被拉斷導(dǎo)致,典型破壞模式如圖3所示.CFRP約束素混凝土試件(圖3(a))破壞時(shí)表現(xiàn)出明顯的脆性,柱中區(qū)域CFRP幾乎被同時(shí)拉斷,試件迅速喪失承載力.而包裹相同CFRP層數(shù)的鋼筋混凝土試件(圖3(b))則表現(xiàn)出一定的延性特征,CFRP隨荷載增加而逐步拉斷,直至擴(kuò)展到柱中間較大區(qū)域后試件才最終喪失承載力.試驗(yàn)結(jié)束后剝掉CFRP發(fā)現(xiàn),約束素混凝土柱(圖3(c))表面出現(xiàn)交叉斜裂縫;而約束鋼筋混凝土柱(圖3(d))則表現(xiàn)出明顯膨脹變形,箍筋由于混凝土的膨脹,受彎向外彎曲,縱筋受壓屈曲成燈籠狀.

      圖3試件破壞模式

      Fig.3Failuremodesofspecimens

      

      2.2應(yīng)力應(yīng)變?cè)囼?yàn)曲線

      反復(fù)受壓試件及對(duì)應(yīng)工況下單調(diào)受壓試件的應(yīng)力應(yīng)變?cè)囼?yàn)曲線如圖4所示.圖中應(yīng)力為實(shí)測(cè)軸力

      除以試件截面面積,應(yīng)變?yōu)長(zhǎng)VDT量測(cè)位移平均值除以標(biāo)距,且應(yīng)力、應(yīng)變均以受壓為正受拉為負(fù).由圖4可知:1)與未約束鋼筋混凝土試件相比,F(xiàn)RP約束柱的極限壓應(yīng)變得到顯著提高,但承載力的提高幅度不大;2)應(yīng)力應(yīng)變關(guān)系試驗(yàn)曲線多為峰值點(diǎn)后存在軟化段的中等約束情況;3)單調(diào)受壓應(yīng)力應(yīng)變曲線與反復(fù)受壓時(shí)的包絡(luò)線整體趨勢(shì)基本一致;4)對(duì)S1和S2系列柱,全部CFRP應(yīng)變片量測(cè)的橫向斷裂應(yīng)變平均值分別為CFRP極限拉應(yīng)變的57%和68%,兩者相差不大;而柱倒角部位CFRP應(yīng)變片量測(cè)的橫向斷裂應(yīng)變平均值分別為CFRP極限拉應(yīng)變的40%和60%,由于方柱僅角部混凝土受到了FRP的有效約束,故計(jì)算FRP的有效約束作用時(shí)應(yīng)取倒角部位應(yīng)變片的量測(cè)結(jié)果平均值.

      圖4應(yīng)力應(yīng)變?cè)囼?yàn)曲線

      Fig.4Stressstraintestcurves

      

      2.3鋼筋對(duì)應(yīng)力應(yīng)變曲線的影響?yīng)?/p>

      單調(diào)受壓試驗(yàn)結(jié)果表明,鋼筋的存在對(duì)單調(diào)受壓應(yīng)力應(yīng)變關(guān)系曲線形狀、峰值應(yīng)力及極限應(yīng)變等有明顯影響,詳細(xì)結(jié)果討論見(jiàn)文獻(xiàn)[16-17].

      本文反復(fù)受壓試驗(yàn)結(jié)果表明:鋼筋的存在對(duì)加卸載曲線同樣有較大影響.部分包裹層數(shù)相同的鋼筋混凝土柱和素混凝土柱反復(fù)受壓應(yīng)力應(yīng)變關(guān)系試驗(yàn)曲線的比較如圖5所示.由圖5可知,卸載曲線前期近似為直線,后期呈明顯的曲線形式,素混凝土方柱在卸載后期的模量變化很大,而鋼筋混凝土方柱的卸載模量變化較??;在卸載應(yīng)變相同時(shí),鋼筋混凝土柱的殘余應(yīng)變明顯大于素混凝土柱.素混凝土方柱與鋼筋混凝土方柱的再加載曲線也不同,鋼筋混凝土方柱為直線,而素混凝土方柱為曲線.因此,在建立反復(fù)受壓應(yīng)力應(yīng)變關(guān)系模型時(shí)不應(yīng)忽略鋼筋的影響.

      軸向應(yīng)變

      圖5鋼筋對(duì)加卸載曲線的影響?yīng)?/p>

      Fig.5Influenceofsteelbarsonunloading/reloadingcurves

      3反復(fù)受壓應(yīng)力應(yīng)變模型

      本文試驗(yàn)結(jié)果表明,由于鋼筋的存在導(dǎo)致柱的倒角半徑不能做到很大,此時(shí)對(duì)截面尺寸較大的柱其應(yīng)力應(yīng)變關(guān)系曲線存在軟化段,CFRP的約束作用降低,為中等約束.已有FRP約束混凝土本構(gòu)模型多針對(duì)應(yīng)力應(yīng)變關(guān)系曲線為單調(diào)上升的強(qiáng)約束情況提出,中等約束本構(gòu)模型很少,考慮鋼筋影響的反復(fù)受壓本構(gòu)模型則更少.而在實(shí)際工程中,由于構(gòu)件截面尺寸較大且均為鋼筋混凝土,此時(shí)約束混凝土應(yīng)多為中等約束情況.故本文針對(duì)FRP中等約束鋼筋混凝土方柱建立反復(fù)受壓應(yīng)力應(yīng)變關(guān)系模型.

      3.1有效側(cè)向約束應(yīng)力

      前文試驗(yàn)結(jié)果表明,F(xiàn)RP約束鋼筋混凝土柱應(yīng)考慮箍筋約束對(duì)有效側(cè)向約束應(yīng)力的影響,故本文所建立的修正有效約束應(yīng)力模型為:

      flm=flf+fls,(1)

      flf=κa2EfntfεfeB=0.5κaρfEfεfe,(2)

      fls=0.5keskvρstfyt.(3)

      式中:flm為修正后有效側(cè)向約束應(yīng)力;flf為FRP有效側(cè)向約束應(yīng)力;fls為箍筋約束應(yīng)力;Ef為FRP彈性模量;n為FRP包裹層數(shù);tf為FRP單層厚度;ρf為FRP體積含纖率;εfe為FRP有效斷裂應(yīng)變,由前文可知應(yīng)取倒角部位應(yīng)變片量測(cè)結(jié)果平均值且應(yīng)考慮截面尺寸的影響,基于試驗(yàn)結(jié)果本文建議:當(dāng)約束方柱截面尺寸大于300mm時(shí),εfe=0.4εfu,當(dāng)截面尺寸小于300mm時(shí)取εfe=0.6εfu;ρst為體積配箍率;fyt為箍筋屈服強(qiáng)度;截面形狀系數(shù)κa及箍筋有效約束系數(shù)kes和kv分別為:

      κa=1-2B-2rc23Ag-ρg1-ρg,(4)

      Ag=B-4-πr2c,(5)

      kes=1-∑w2xi+w2yi/6B-2rc21-ρcc,(6)

      kv=1-s′/2B-2rc2.(7)

      式中:ρg和ρcc分別為全截面和核心區(qū)截面縱筋配筋率;rc為截面倒角半徑;wxi和wyi分別為沿截面兩垂直方向第i個(gè)縱筋間凈距.

      目前多以FRP側(cè)向約束應(yīng)力與未約束混凝土峰值應(yīng)力之比即約束比進(jìn)行FRP強(qiáng)弱約束的界定,但已有界定標(biāo)準(zhǔn)大都未考慮鋼筋及截面尺寸對(duì)側(cè)向約束作用的影響;故本文基于建立的修正后有效側(cè)向約束應(yīng)力模型(式(1))與未約束混凝土峰值應(yīng)力之比對(duì)強(qiáng)弱約束重新進(jìn)行了界定:即當(dāng)修正約束比大于0.17時(shí)為強(qiáng)約束,小于0.09時(shí)為弱約束,介于兩者之間時(shí)為中等約束.對(duì)于FRP約束鋼筋混凝土強(qiáng)弱約束的劃分已有另文介紹,限于篇幅,本文不再重復(fù)介紹,詳見(jiàn)文獻(xiàn)[16-17].

      3.2包絡(luò)線

      本文試驗(yàn)及已有研究[11-12]均表明,F(xiàn)RP約束混凝土反復(fù)受壓時(shí)的包絡(luò)線可用其單調(diào)受壓時(shí)的應(yīng)力應(yīng)變曲線代替.故本文采用文獻(xiàn)[16]已提出的FRP中等約束鋼筋混凝土柱單調(diào)受壓應(yīng)力應(yīng)變模型作為反復(fù)受壓時(shí)的包絡(luò)線,其方程形式為:

      y=Ax+3-2Ax2+A-2x3,x≤1.0;y=x/αx-12+x,1.0<x≤xct;y=ycu,xct<x≤xcu.(8)

      式中:y=fc/fcc;ycu=fcu/fcc;x=εc/εcc;xct=εct/εcc;xcu=εcu/εcc;fc,εc分別為混凝土軸向應(yīng)力和應(yīng)變;fcc,εcc分別為峰值點(diǎn)應(yīng)力和應(yīng)變;fcu,εcu分別為極限點(diǎn)應(yīng)力和應(yīng)變;εct為轉(zhuǎn)折點(diǎn)應(yīng)變;A=Ec/Ep為初始上升段曲線控制參數(shù),Ec=4730fc0為混凝土初始彈性模量,fc0為素混凝土峰值應(yīng)力,Ep=fcc/εcc為約束后峰值點(diǎn)割線模量;α為下降段控制參數(shù).

      上式中各參數(shù)的詳細(xì)計(jì)算公式在文獻(xiàn)[16-17]中根據(jù)單調(diào)受壓試驗(yàn)結(jié)果已經(jīng)回歸得到.本文基于反復(fù)受壓試驗(yàn)結(jié)果,又對(duì)各參數(shù)進(jìn)行了重新修正,修正后的極限應(yīng)力和應(yīng)變及下降段控制參數(shù)表達(dá)式分別為:

      fcu=fc00.2+3.47flffc00.64+0.59flsfc00.20,(9)

      εcu=εc02+73.31flffc01.07+5.06flsfc00.03,(10)

      α=1-fcu/fcc1.66.(11)

      式中:εc0=0.002為未約束混凝土峰值點(diǎn)應(yīng)變.

      3.3卸載曲線

      根據(jù)試驗(yàn)卸載曲線的形狀特征,CFRP約束鋼筋混凝土方柱的卸載曲線描述如下:

      fcσun=B0εc-εpεun-εpB1+1-B1εc-εpεun-εp.(12)

      式中:σun和εun分別為卸載點(diǎn)應(yīng)力和應(yīng)變;εp為卸載殘余應(yīng)變;B0和B1為卸載曲線形狀系數(shù),由試驗(yàn)數(shù)據(jù)回歸分析可得:

      B0=0.5+0.48flffc00.32-0.16flsfc00.04.(13)

      對(duì)約束鋼筋混凝土柱:

      B1=-0.1εunεc01.28+0.33εunεc0+2.15.(14)

      對(duì)約束素混凝土柱:

      B1=-0.26εunεc01.31+0.89εunεc0+1.51.(15)

      已有研究表明[11-15],殘余應(yīng)變與卸載應(yīng)變成線性關(guān)系,本文試驗(yàn)得到同樣結(jié)論,但鋼筋的存在對(duì)殘余應(yīng)變有較大影響,如圖6所示.

      由試驗(yàn)結(jié)果可知,當(dāng)卸載應(yīng)變小于0.001時(shí),試件處于彈性段無(wú)殘余應(yīng)變產(chǎn)生,當(dāng)卸載應(yīng)變大于0.001時(shí),回歸分析得到的殘余應(yīng)變表達(dá)式如下.

      約束鋼筋混凝土柱時(shí):

      εp=0.580εun-0.0006,0.001≤εun≤0.004;

      0.930εun-0.002,εun>0.004.(16)

      約束素混凝土柱時(shí):

      εp=0.443εun-0.0004,0.001≤εun≤0.004;

      0.836εun-0.002,εun>0.004.(17)

      卸載應(yīng)變εun

      圖6殘余應(yīng)變和卸載應(yīng)變關(guān)系

      Fig.6Lasticstrainsversusunloadingstrains

      

      3.4再加載曲線

      根據(jù)試驗(yàn)得到的再加載曲線特征,采用直線模型描述再加載曲線,其表達(dá)式為:

      fc=σnewεnew-εpεc-εp.(18)

      式中:σnew和εnew分別為卸載曲線與再加載曲線交點(diǎn)處的應(yīng)力和應(yīng)變,由試驗(yàn)結(jié)果分析可知其分別與σun和εun成線性關(guān)系,如圖7和圖8所示.

      卸載點(diǎn)應(yīng)力σun/MPa

      圖7共同點(diǎn)應(yīng)力和卸載應(yīng)力關(guān)系

      Fig.7Stressofcommonpointsversusunloadstress

      

      卸載點(diǎn)應(yīng)變εun

      圖8共同點(diǎn)應(yīng)變和卸載應(yīng)變關(guān)系

      Fig.8Strainsofcommonpointsversusunloadstrains

      

      基于試驗(yàn)數(shù)據(jù)的回歸,σnew和εnew確定如下:

      σnew=0.921σun,(19)

      εnew=εun.(20)

      3.5本文模型與試驗(yàn)結(jié)果的比較驗(yàn)證

      以前述單調(diào)受壓應(yīng)力應(yīng)變曲線作為骨架曲線,結(jié)合加卸載曲線模型,即可建立CFRP中等約束鋼筋混凝土方柱的滯回本構(gòu)模型.部分卸載時(shí)先按完全卸載曲線卸載至殘余應(yīng)力點(diǎn),然后從殘余應(yīng)力點(diǎn)以直線加載至共同點(diǎn),并與骨架曲線延伸相交.部分計(jì)算結(jié)果與試驗(yàn)結(jié)果的比較,如圖9所示.由圖9可以看出,本文所提滯回本構(gòu)模型對(duì)CFRP約束鋼筋混凝土及素混凝土柱在完全卸載和部分卸載時(shí)均與試驗(yàn)結(jié)果吻合較好,模型精度較高.

      圖9計(jì)算結(jié)果與試驗(yàn)結(jié)果的比較

      Fig.9Comparisonofcalculationresultsversustestdata

      4結(jié)論

      本文對(duì)CFRP約束鋼筋混凝土方柱單調(diào)及反復(fù)受壓性能進(jìn)行了試驗(yàn)研究,在此基礎(chǔ)上建立了反復(fù)受壓應(yīng)力應(yīng)變滯回本構(gòu)模型,得到以下主要結(jié)論:

      1)對(duì)大尺寸鋼筋混凝土方柱CFRP約束后明顯改善了柱的延性,但對(duì)應(yīng)力提高幅度不大,其應(yīng)力應(yīng)變關(guān)系曲線多為峰值點(diǎn)后存在軟化段的中等約束情況.

      2)單調(diào)受壓試件的應(yīng)力應(yīng)變關(guān)系曲線與相同工況反復(fù)受壓試件的包絡(luò)線基本一致,鋼筋對(duì)約束混凝土反復(fù)受壓時(shí)的加卸載曲線形狀及殘余應(yīng)變大小有明顯影響,殘余應(yīng)變與卸載應(yīng)變成很好的線性關(guān)系.

      3)提出了CFRP中等約束鋼筋混凝土方柱單調(diào)受壓應(yīng)力應(yīng)變曲線、卸載曲線和再加載曲線的數(shù)學(xué)描述,在此基礎(chǔ)上建立了反復(fù)受壓應(yīng)力應(yīng)變滯回本構(gòu)模型,模型預(yù)測(cè)結(jié)果與試驗(yàn)結(jié)果吻合較好,可用于CFRP約束鋼筋混凝土結(jié)構(gòu)及構(gòu)件的非線性分析.

      參考文獻(xiàn)[1] XIAO Y, WU H. Compressive behavior of concrete confined by fiber composite jackets[J]. Journal of Materials in Civil Engineering, 2000, 12(2):139-146.

      參考文獻(xiàn)[2] ACI 440.2R-08 Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures[S]. MI, USA:American Concrete Institute(ACI), Farmington Hills,2008.[3] 丁洪濤, 易偉建, 冼巧玲. 碳纖維布(CFRP)加固壓彎構(gòu)件全過(guò)程分析[J]. 湖南大學(xué)學(xué)報(bào):自然科學(xué)版, 2003, 30(3):139-141.DING Hongtao, YI Weijian, XIAN Qiaoling. Nonlinear analysis of carbon fiber sheets (CFRP) strengthened members subjected to axial load and lateral shear[J]. Journal of Hunan University:Natural Sciences, 2003, 30(3):139-141.(In Chinese)[4] JIANG T,TENG J G.Analysisoriented stressstrain models for FRPconfined concrete[J]. Engineering Structures, 2007, 29(11): 2968-2986.[5] TENG J G,JIANG T,LAM L,et al.Refinement of a designoriented stressstrain model for FRPconfined concrete[J]. Journal of Composites for Construction, 2009, 13(4):269-278.[6] HARAJLI M H. Axial stressstrain relationship for FRP confined circular and rectangular concrete columns[J]. Cement & Concrete Composites, 2006, 28(10):938-948.[7] YOUSSEF M N,FENG M Q,MOSALLAM A S.Stressstrain model for concrete confined by FRP composites[J]. Composites: Part B, 2007, 38(5/6):614-628.[8] EID R,PAULTRE P.Analytical model for FRPconfined circular reinforced concrete columns[J]. Journal of Composites for Construction, 2008, 12(5):541-552.[9]TURGAY T,POLAT Z,KOKSAL H O,et al.Compressive behavior of largescale square reinforced concrete columns confined with carbon fiber reinforced polymer wraps[J]. Materials and Design, 2010, 31(1):357-364.[10]吳剛, 呂志濤. FRP約束混凝土圓柱無(wú)軟化段時(shí)的應(yīng)力應(yīng)變關(guān)系研究[J].建筑結(jié)構(gòu)學(xué)報(bào), 2003, 24(5):1-9.WU Gang, LV Zhitao. Study on the stressstrain relationship of FRPconfined concrete circular column without a strainsoftening response[J].Journal of Building Structures,2003,24(5):1-9.(In Chinease)[11]SHAO Y,ZHU Z,MIRMIRAN A.Cyclic modeling of FRPconfined concrete with improved ductility[J].Cement & Concrete Composites, 2006, 28(10):959-968.[12]LAM L,TENG J G,CHEUNG C H,et al.FRPconfined concrete under axial cyclic compression[J].Cement & Concrete Composites, 2006, 28(10):949-958.[13]LAM L,TENG J G.Stressstrain model for FRPconfined concrete under cyclic axial compression[J]. Engineering Structures, 2009, 31(2):308-321.[14]王震宇, 李洪鵬. 重復(fù)荷載作用下碳纖維預(yù)設(shè)混凝土加卸載準(zhǔn)則 [J]. 建筑結(jié)構(gòu), 2009, 39(7):100-103. WANG Zhenyu, LI Hongpeng. Loading and unloading criteria of FRPconfined concrete under cyclic compression[J]. Building Structure, 2009, 39(7): 100-103. (In Chinese)[15]ABBASNIA R,ZIAADIAN H.Behavior of concrete prisms confined with FRP composites under axial cyclic compression[J].Engineering Structures, 2010, 32(3):648-655.[16]王震宇, 王代玉, 呂大剛,等.CFRP中等約束鋼筋混凝土方柱單軸受壓應(yīng)力應(yīng)變模型[J]. 建筑結(jié)構(gòu)學(xué)報(bào), 2011, 32(4):101-109. WANG Zhenyu,WANG Daiyu,LV Dagang,et al.Stressstrain model for CFRP moderatelyconfined reinforced concrete square columns[J]. Journal of Building Structures, 2011, 32(4):101-109. (In Chinese)[17]WANG Z Y,WANG D Y,SMITH S T,et al.CFRPconfined square RC columns. I: experimental investigation [J]. Journal of Composites for Construction, ASCE, 2012, 16(2):150-160.endprint

      參考文獻(xiàn)[2] ACI 440.2R-08 Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures[S]. MI, USA:American Concrete Institute(ACI), Farmington Hills,2008.[3] 丁洪濤, 易偉建, 冼巧玲. 碳纖維布(CFRP)加固壓彎構(gòu)件全過(guò)程分析[J]. 湖南大學(xué)學(xué)報(bào):自然科學(xué)版, 2003, 30(3):139-141.DING Hongtao, YI Weijian, XIAN Qiaoling. Nonlinear analysis of carbon fiber sheets (CFRP) strengthened members subjected to axial load and lateral shear[J]. Journal of Hunan University:Natural Sciences, 2003, 30(3):139-141.(In Chinese)[4] JIANG T,TENG J G.Analysisoriented stressstrain models for FRPconfined concrete[J]. Engineering Structures, 2007, 29(11): 2968-2986.[5] TENG J G,JIANG T,LAM L,et al.Refinement of a designoriented stressstrain model for FRPconfined concrete[J]. Journal of Composites for Construction, 2009, 13(4):269-278.[6] HARAJLI M H. Axial stressstrain relationship for FRP confined circular and rectangular concrete columns[J]. Cement & Concrete Composites, 2006, 28(10):938-948.[7] YOUSSEF M N,FENG M Q,MOSALLAM A S.Stressstrain model for concrete confined by FRP composites[J]. Composites: Part B, 2007, 38(5/6):614-628.[8] EID R,PAULTRE P.Analytical model for FRPconfined circular reinforced concrete columns[J]. Journal of Composites for Construction, 2008, 12(5):541-552.[9]TURGAY T,POLAT Z,KOKSAL H O,et al.Compressive behavior of largescale square reinforced concrete columns confined with carbon fiber reinforced polymer wraps[J]. Materials and Design, 2010, 31(1):357-364.[10]吳剛, 呂志濤. FRP約束混凝土圓柱無(wú)軟化段時(shí)的應(yīng)力應(yīng)變關(guān)系研究[J].建筑結(jié)構(gòu)學(xué)報(bào), 2003, 24(5):1-9.WU Gang, LV Zhitao. Study on the stressstrain relationship of FRPconfined concrete circular column without a strainsoftening response[J].Journal of Building Structures,2003,24(5):1-9.(In Chinease)[11]SHAO Y,ZHU Z,MIRMIRAN A.Cyclic modeling of FRPconfined concrete with improved ductility[J].Cement & Concrete Composites, 2006, 28(10):959-968.[12]LAM L,TENG J G,CHEUNG C H,et al.FRPconfined concrete under axial cyclic compression[J].Cement & Concrete Composites, 2006, 28(10):949-958.[13]LAM L,TENG J G.Stressstrain model for FRPconfined concrete under cyclic axial compression[J]. Engineering Structures, 2009, 31(2):308-321.[14]王震宇, 李洪鵬. 重復(fù)荷載作用下碳纖維預(yù)設(shè)混凝土加卸載準(zhǔn)則 [J]. 建筑結(jié)構(gòu), 2009, 39(7):100-103. WANG Zhenyu, LI Hongpeng. Loading and unloading criteria of FRPconfined concrete under cyclic compression[J]. Building Structure, 2009, 39(7): 100-103. (In Chinese)[15]ABBASNIA R,ZIAADIAN H.Behavior of concrete prisms confined with FRP composites under axial cyclic compression[J].Engineering Structures, 2010, 32(3):648-655.[16]王震宇, 王代玉, 呂大剛,等.CFRP中等約束鋼筋混凝土方柱單軸受壓應(yīng)力應(yīng)變模型[J]. 建筑結(jié)構(gòu)學(xué)報(bào), 2011, 32(4):101-109. WANG Zhenyu,WANG Daiyu,LV Dagang,et al.Stressstrain model for CFRP moderatelyconfined reinforced concrete square columns[J]. Journal of Building Structures, 2011, 32(4):101-109. (In Chinese)[17]WANG Z Y,WANG D Y,SMITH S T,et al.CFRPconfined square RC columns. I: experimental investigation [J]. Journal of Composites for Construction, ASCE, 2012, 16(2):150-160.endprint

      參考文獻(xiàn)[2] ACI 440.2R-08 Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures[S]. MI, USA:American Concrete Institute(ACI), Farmington Hills,2008.[3] 丁洪濤, 易偉建, 冼巧玲. 碳纖維布(CFRP)加固壓彎構(gòu)件全過(guò)程分析[J]. 湖南大學(xué)學(xué)報(bào):自然科學(xué)版, 2003, 30(3):139-141.DING Hongtao, YI Weijian, XIAN Qiaoling. Nonlinear analysis of carbon fiber sheets (CFRP) strengthened members subjected to axial load and lateral shear[J]. Journal of Hunan University:Natural Sciences, 2003, 30(3):139-141.(In Chinese)[4] JIANG T,TENG J G.Analysisoriented stressstrain models for FRPconfined concrete[J]. Engineering Structures, 2007, 29(11): 2968-2986.[5] TENG J G,JIANG T,LAM L,et al.Refinement of a designoriented stressstrain model for FRPconfined concrete[J]. Journal of Composites for Construction, 2009, 13(4):269-278.[6] HARAJLI M H. Axial stressstrain relationship for FRP confined circular and rectangular concrete columns[J]. Cement & Concrete Composites, 2006, 28(10):938-948.[7] YOUSSEF M N,FENG M Q,MOSALLAM A S.Stressstrain model for concrete confined by FRP composites[J]. Composites: Part B, 2007, 38(5/6):614-628.[8] EID R,PAULTRE P.Analytical model for FRPconfined circular reinforced concrete columns[J]. Journal of Composites for Construction, 2008, 12(5):541-552.[9]TURGAY T,POLAT Z,KOKSAL H O,et al.Compressive behavior of largescale square reinforced concrete columns confined with carbon fiber reinforced polymer wraps[J]. Materials and Design, 2010, 31(1):357-364.[10]吳剛, 呂志濤. FRP約束混凝土圓柱無(wú)軟化段時(shí)的應(yīng)力應(yīng)變關(guān)系研究[J].建筑結(jié)構(gòu)學(xué)報(bào), 2003, 24(5):1-9.WU Gang, LV Zhitao. Study on the stressstrain relationship of FRPconfined concrete circular column without a strainsoftening response[J].Journal of Building Structures,2003,24(5):1-9.(In Chinease)[11]SHAO Y,ZHU Z,MIRMIRAN A.Cyclic modeling of FRPconfined concrete with improved ductility[J].Cement & Concrete Composites, 2006, 28(10):959-968.[12]LAM L,TENG J G,CHEUNG C H,et al.FRPconfined concrete under axial cyclic compression[J].Cement & Concrete Composites, 2006, 28(10):949-958.[13]LAM L,TENG J G.Stressstrain model for FRPconfined concrete under cyclic axial compression[J]. Engineering Structures, 2009, 31(2):308-321.[14]王震宇, 李洪鵬. 重復(fù)荷載作用下碳纖維預(yù)設(shè)混凝土加卸載準(zhǔn)則 [J]. 建筑結(jié)構(gòu), 2009, 39(7):100-103. WANG Zhenyu, LI Hongpeng. Loading and unloading criteria of FRPconfined concrete under cyclic compression[J]. Building Structure, 2009, 39(7): 100-103. (In Chinese)[15]ABBASNIA R,ZIAADIAN H.Behavior of concrete prisms confined with FRP composites under axial cyclic compression[J].Engineering Structures, 2010, 32(3):648-655.[16]王震宇, 王代玉, 呂大剛,等.CFRP中等約束鋼筋混凝土方柱單軸受壓應(yīng)力應(yīng)變模型[J]. 建筑結(jié)構(gòu)學(xué)報(bào), 2011, 32(4):101-109. WANG Zhenyu,WANG Daiyu,LV Dagang,et al.Stressstrain model for CFRP moderatelyconfined reinforced concrete square columns[J]. Journal of Building Structures, 2011, 32(4):101-109. (In Chinese)[17]WANG Z Y,WANG D Y,SMITH S T,et al.CFRPconfined square RC columns. I: experimental investigation [J]. Journal of Composites for Construction, ASCE, 2012, 16(2):150-160.endprint

      猜你喜歡
      方柱碳纖維
      基于LBM的方柱流固耦合數(shù)值研究
      上游切角倒角小間距比串列方柱大渦模擬研究
      全風(fēng)向角下雙方柱脈動(dòng)氣動(dòng)性能試驗(yàn)研究
      串列多方柱氣動(dòng)特性的試驗(yàn)研究
      一種碳纖維加固用浸漬膠的研究
      上海建材(2019年4期)2019-05-21 03:13:02
      HP-RTM碳纖維復(fù)合材料中通道加強(qiáng)板研究
      中間相瀝青基碳纖維及其在飛機(jī)上的應(yīng)用
      日本東麗開(kāi)發(fā)出新型碳纖維
      IACMI力挺碳纖維預(yù)浸料廢料 回收項(xiàng)目再立項(xiàng)
      2017年中考數(shù)學(xué)模擬試題(十)
      泌阳县| 大洼县| 孝昌县| 怀来县| 新乐市| 密山市| 红原县| 浙江省| 甘肃省| 高唐县| 靖远县| 桐庐县| 比如县| 博湖县| 揭西县| 乌拉特前旗| 鄂州市| 化德县| 盐源县| 开化县| 垫江县| 昆明市| 南溪县| 资溪县| 宿松县| 原平市| 富川| 萨嘎县| 资阳市| 无为县| 阜平县| 吉隆县| 长治市| 桂平市| 巴彦淖尔市| 青神县| 赣州市| 临洮县| 宿松县| 遂平县| 平山县|