• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      基于結(jié)構(gòu)性及各向異性的軟黏土變形性狀試驗

      2014-09-21 19:52:47柳艷華謝永利
      關(guān)鍵詞:巖土工程結(jié)構(gòu)性變形

      柳艷華+謝永利

      基金項目:國家自然科學(xué)基金項目(51208055);中國博士后科學(xué)基金項目(2012M511960)

      摘要:針對結(jié)構(gòu)性和各向異性兩大要素對天然軟黏土變形性狀的影響,對上海天然沉積軟黏土進行一維固結(jié)試驗、K0固結(jié)試驗以及三軸不排水剪切試驗。結(jié)果表明:上海天然沉積軟黏土具有明顯的結(jié)構(gòu)性及各向異性特征;壓縮特性在結(jié)構(gòu)屈服破壞前后存在顯著差別,具有結(jié)構(gòu)性軟黏土所特有的分段特征;不同初始固結(jié)應(yīng)力下的等壓及偏壓固結(jié)不排水應(yīng)力路徑曲線最終都趨近于同一臨界狀態(tài);在初始有效固結(jié)應(yīng)力低于軟黏土的結(jié)構(gòu)屈服應(yīng)力時,應(yīng)力應(yīng)變曲線呈應(yīng)變軟化型,隨著初始有效固結(jié)應(yīng)力的增加,當(dāng)其超過結(jié)構(gòu)屈服應(yīng)力后,應(yīng)力應(yīng)變曲線逐漸呈現(xiàn)硬化型特征;在初始有效固結(jié)應(yīng)力相同且低于結(jié)構(gòu)屈服應(yīng)力的前提下,偏壓固結(jié)模式所對應(yīng)的不排水剪切峰值強度高于等壓固結(jié)模式,且屈服后的應(yīng)變軟化程度相較于等壓固結(jié)模式更高;在不排水剪切強度達到峰值后,等壓和偏壓固結(jié)模式下的應(yīng)力應(yīng)變曲線逐漸趨于重合;在初始有效固結(jié)應(yīng)力相等的情況下,等壓固結(jié)模式下產(chǎn)生的孔隙水壓力較偏壓模式下要高。

      關(guān)鍵詞:巖土工程;軟黏土;固結(jié)試驗;結(jié)構(gòu)性;各向異性;變形

      中圖分類號:P642.13;TU41文獻標(biāo)志碼:A

      Test on Deformation Character of Soft Clay Based on Structure and Anisotropy

      LIU Yanhua, XIE Yongli

      (School of Highway, Changan University, Xian 710064, Shaanxi, China)

      Abstract: In order to find the influence of structure and anisotropy on deformation character of natural soft clay, onedimensional consolidation test, K0 consolidation test and triaxial undrained shear test were carried out for soft clay from natural sedimentation in Shanghai. The results show that the properties of soft clay from natural sedimentation in Shanghai are characterized by structure and anisotropy; the compression properties are significantly different before and after structural yielding, and the compression curve is divided into two parts as structural soft soil; the undrained stress path curves with different initial consolidation stresses finally approach the same critical state under isotropic and anisotropic consolidation modes; when initial effective consolidation stress is lower than structural yielding stress of soft clay, the stressstrain curve is strain softening, and when the initial stress is higher than the yielding stress, the characteristic of

      stressstrain curve is gradually hardening with the increase of the initial stress; when the initial stresses are the same, and are lower than the yielding stress, the peak of undrained shear strength under anisotropic consolidation mode is higher than that under isotropic consolidation mode, and the strain softening after yielding is higher than that under isotropic consolidation mode; after the peak of undrained shear strength arrives, the stressstain curves under isotropic and anisotropic consolidation modes approach coincidence; when the initial stresses are the same, the pore water pressure under isotropic consolidation mode is higher than that under anisotropic consolidation mode.

      Key words: geotechnical engineering; soft clay; consolidation test; structure; anisotropy; deformation

      0引言

      關(guān)于土結(jié)構(gòu)性研究的重要性,由土力學(xué)的奠基人太沙基最早指出,中國沈珠江將其稱為“21世紀(jì)土力學(xué)的核心”[1]。從廣義上講,大部分天然沉積土均具有一定的結(jié)構(gòu)性,而且有些黏土還具有很強的結(jié)構(gòu)性,如日本的有明黏土、瑞典黏土和中國湛江黏土等。作為天然沉積土的一個重要特性,結(jié)構(gòu)性對土的工程性質(zhì)有著不可忽視的影響[24],它是決定各類土力學(xué)性狀的一個最為根本的因素[5]。在過去的幾十年,關(guān)于結(jié)構(gòu)性的研究在巖土工程領(lǐng)域已經(jīng)引起廣泛重視,尤其是對天然沉積軟黏土結(jié)構(gòu)性的研究。結(jié)構(gòu)性對軟黏土的壓縮性、強度特性、滲透性、應(yīng)力應(yīng)變關(guān)系以及屈服特性均有著重要影響[623]。由于結(jié)構(gòu)性的存在,使得天然沉積軟黏土與其相應(yīng)的重塑土有著截然不同的性質(zhì)。同時,天然沉積軟黏土在沉積和固結(jié)過程中形成的固有各向異性以及在后期復(fù)雜加載狀態(tài)下所形成的應(yīng)力誘發(fā)各向異性是天然沉積土的另一個重要特性。國內(nèi)外諸多學(xué)者通過試驗證明了各向異性的廣泛存在,且對軟黏土的強度和應(yīng)力應(yīng)變關(guān)系有著顯著影響[2433]。

      對于軟黏土而言,在其沉積和固結(jié)過程中,結(jié)構(gòu)性和各向異性的形成是互為影響、不可分割的。同時,二者對天然軟黏土力學(xué)性狀的影響也是相互作用、密不可分的。筆者圍繞結(jié)構(gòu)性及各向異性兩大因素,對上海天然沉積軟黏土進行了一系列試驗研究,就結(jié)構(gòu)性和各向異性對天然軟黏土變形性狀的影響進行了探討。

      1試樣概況

      本次試驗的原狀軟黏土取自上海某基坑工程,埋深為10 m。為盡可能減小對土樣的擾動,本次試驗現(xiàn)場取樣采用PVC管切土法。當(dāng)基坑機械開挖到近10 m深度時,人工鏟除取土位置表層覆土,沿一側(cè)向下挖取深度大于2 m的斷面,觀察并判斷土層情況,選擇合適的取土位置;將內(nèi)外壁均涂有硅油的PVC管(直徑為250 mm,高度為200 mm)水平壓入土層,切取塊狀土樣;土樣切取好后,兩端皆涂上薄層黃油,并依次用保鮮膜、塑料薄膜纏繞密封,蓋上PVC圓形平板,貼上土樣記錄標(biāo)簽,用膠帶再次多層密封。試驗土樣基本物理性質(zhì)見表1。

      表1原狀軟黏土基本物理性質(zhì)

      Tab.1Basic Physical Properties of Undisturbed Soft Clay

      天然質(zhì)量含水量w/%液限wL/%塑限wP/%塑性指數(shù)IP液性指數(shù)IL相對密度Gs初始孔隙比e0超固結(jié)比

      51.844.1722.421.771.352.741.4021.0

      由表1可知,原狀軟黏土質(zhì)量含水量高于液限,孔隙比大于1.0,試樣飽和度達到98%以上,超固結(jié)比為1.0,屬于正常固結(jié)飽和軟黏土。根據(jù)10 m以上各土層的有效重度及其厚度,計算得到原位豎向應(yīng)力σ′vc為686 kPa。

      2軟黏土結(jié)構(gòu)性及各向異性

      2.1一維固結(jié)試驗

      為考察結(jié)構(gòu)性對上海天然沉積軟黏土一維壓縮性狀的影響,對軟黏土原狀樣進行了24 h的標(biāo)準(zhǔn)固結(jié)試驗。試驗所得孔隙比e與豎向有效固結(jié)壓力σ′v的關(guān)系見圖1。由圖1可見,壓縮曲線存在明顯的拐點(即結(jié)構(gòu)屈服破壞點),屈服點處所對應(yīng)的結(jié)構(gòu)屈服應(yīng)力σ′y為1105 kPa,大于試樣的前期固結(jié)壓力,對于本次試驗的正常固結(jié)土,前期固結(jié)壓力即為其上覆有效自重應(yīng)力σ′vc。結(jié)構(gòu)屈服應(yīng)力大于有效上覆應(yīng)力是天然沉積土受到土結(jié)構(gòu)性影響的主要特征之一。在結(jié)構(gòu)屈服破壞前后,土的壓縮性存在顯著區(qū)別,在固結(jié)壓力未達到土的結(jié)構(gòu)屈服應(yīng)力時,由于結(jié)構(gòu)初始抗力的存在,孔隙比的變化量較小,壓縮曲線較為平緩;

      而當(dāng)固結(jié)壓力超過土的結(jié)構(gòu)屈服應(yīng)力后,由于軟黏土的結(jié)構(gòu)性被破壞,孔隙比隨固結(jié)壓力的增大而急劇降低。根據(jù)Burland的建議,將結(jié)構(gòu)屈服應(yīng)力σ′y與前期固結(jié)壓力的比值定義為屈服應(yīng)力比[6],而龔曉南等則將此值稱為結(jié)構(gòu)應(yīng)力比以表征土結(jié)構(gòu)性的強弱[13]。按照以上建議,本次試驗上海天然沉積軟黏土的結(jié)構(gòu)應(yīng)力比近似為161。

      圖1軟黏土一維固結(jié)試驗曲線

      Fig.1Test Curve of Onedimensional Consolidation for Soft Clay

      需要特別指出的是,根據(jù)對結(jié)構(gòu)性軟黏土壓縮性狀的研究可知,由于天然沉積軟黏土結(jié)構(gòu)性的存在,使得其壓縮特性在結(jié)構(gòu)屈服前后存在顯著差異,即壓縮曲線存在突變點。但是在工程實踐中,常用100~200 kPa下的壓縮系數(shù)α12來表征土的壓縮變形特征,這種選擇加荷中間段的壓縮系數(shù)作為總體壓縮性評價指標(biāo)的方法對于結(jié)構(gòu)性顯著的軟黏土而言并不合理,應(yīng)根據(jù)工程實際施加的荷載區(qū)間對其壓縮性進行評價,否則可能引起較大偏差。

      2.2K0固結(jié)試驗

      天然軟黏土在沉積過程中,為了處于相對穩(wěn)定狀態(tài),長寬比大于1的顆粒在重力作用下將傾向于水平方向排列;另一方面,在固結(jié)過程中,由于其豎向有效應(yīng)力σ′vc大于其水平向有效應(yīng)力σ′hc,即天然沉積軟黏土往往處于K0=σ′hc/σ′vc固結(jié)狀態(tài)。由于上述兩方面的原因,使得天然沉積軟黏土具有初始各向異性。為研究各向異性對軟黏土變形性狀的影響,需要對軟黏土的靜止側(cè)壓力系數(shù)K0進行測定。

      本次研究中的K0固結(jié)試驗以及等壓和偏壓固結(jié)三軸不排水剪切試驗均采用GDS應(yīng)力路徑三軸儀來完成。10 m深處軟黏土K0系數(shù)的測定結(jié)果見圖2。由試驗曲線得到上海天然沉積軟黏土的靜止側(cè)壓力系數(shù)K0為0.6。由于試驗土樣對應(yīng)的豎向有效應(yīng)力σ′vc=68.6 kPa,根據(jù)K0系數(shù)可計算得到水平向有效應(yīng)力σ′hc=41 kPa,并進一步確定其原位平均有效固結(jié)應(yīng)力p′0=50.3 kPa。

      圖2軟黏土的K0系數(shù)

      Fig.2K0 Coefficient for Soft Clay

      2.3三軸不排水剪切試驗

      為進一步調(diào)查結(jié)構(gòu)性及各向異性對天然沉積軟黏土變形性狀的影響,對上海天然沉積軟黏土進行了等壓及偏壓固結(jié)模式下的三軸不排水剪切試驗。偏壓固結(jié)中采用的K0系數(shù)為K0固結(jié)試驗中測得的06,試驗中采用的固結(jié)應(yīng)力見表2。其中:偏壓固結(jié)試驗CAU1與等壓固結(jié)試驗CIU1對應(yīng),二者的平均有效固結(jié)壓力均為50 kPa,與現(xiàn)場的原位平均有效固結(jié)應(yīng)力p′0(50.3 kPa)相近;偏壓固結(jié)試驗CAU2與等壓固結(jié)試驗CIU2對應(yīng),二者的平均有效固結(jié)壓力均為100 kPa,接近但仍低于結(jié)構(gòu)屈服應(yīng)力σ′y(110.5 kPa);偏壓固結(jié)試驗CAU3與等壓固結(jié)試驗CIU5對應(yīng),二者的平均有效固結(jié)壓力均為300 kPa,遠大于軟黏土的結(jié)構(gòu)屈服應(yīng)力。

      表2軟黏土三軸不排水剪切試驗固結(jié)條件

      Tab.2Consolidation Conditions of Triaxial Undrained Shear Tests for Soft Clay

      固結(jié)模式等壓固結(jié)不排水偏壓固結(jié)不排水

      試驗編號CIU1CIU2CIU3CIU4CIU5CAU1CAU2CAU3

      σ′hc/kPa50.0100.0150.0200.0300.041.081.8245.0

      σ′vc/kPa50.0100.0150.0200.0300.068.6136.4408.3

      圖3軟黏土三軸不排水試驗應(yīng)力路徑曲線

      Fig.3Stress Path Curves of Triaxial Undrained Shear Tests for Soft Clay

      圖3為等壓和偏壓固結(jié)測試所得到的試驗應(yīng)力路徑曲線。由圖3可見,兩種固結(jié)模式下的各組試驗曲線最終都趨近于同一臨界狀態(tài)線。其中,CAU3試驗所對應(yīng)的應(yīng)力路徑曲線與最終臨界狀態(tài)線存在一定距離,這是在較高的偏壓固結(jié)應(yīng)力下儀器位移傳感器的量程限制所導(dǎo)致的。由圖3確定的軟黏土臨界狀態(tài)線的斜率Mc為1277,與其對應(yīng)的有效內(nèi)摩擦角φ′為318°。其中:q為偏應(yīng)力;p為平均應(yīng)力。

      2.3.1初始固結(jié)應(yīng)力

      圖4給出了不同等壓固結(jié)應(yīng)力下上海天然沉積軟黏土三軸不排水剪切的應(yīng)力應(yīng)變(ε1)曲線。圖4(a)中,CIU1和CIU2試驗初始固結(jié)應(yīng)力均低于軟黏土的結(jié)構(gòu)屈服應(yīng)力(σ′y=110.5 kPa);圖4(b)中,CIU3、CIU4和CIU5試驗初始固結(jié)應(yīng)力均高于軟黏土的結(jié)構(gòu)屈服應(yīng)力。圖5給出了不同等壓固結(jié)應(yīng)力下三軸不排水剪切的孔壓(u)應(yīng)變曲線。

      圖4等壓固結(jié)三軸不排水剪切試驗應(yīng)力應(yīng)變曲線

      Fig.4Stressstrain Curves of Triaxial Undrained Shear Tests Under Isotropic Consolidation Mode

      圖5等壓固結(jié)三軸不排水試驗孔壓應(yīng)變曲線

      Fig.5Pore Water Pressurestrain Curves of Triaxial

      Undrained Shear Tests Under Isotropic Consolidation Mode

      由圖4、5可見:隨著初始有效固結(jié)應(yīng)力的增加,軟黏土的不排水剪切強度增大,孔隙水壓力亦逐漸升高;在初始有效固結(jié)應(yīng)力低于軟黏土的結(jié)構(gòu)屈服應(yīng)力時,由于固結(jié)應(yīng)力偏低,軟黏土的初始結(jié)構(gòu)性得以保留,應(yīng)力應(yīng)變曲線呈應(yīng)變軟化型,即在應(yīng)力達到峰值后,隨著應(yīng)變的繼續(xù)增加,應(yīng)力呈降低趨勢,應(yīng)力應(yīng)變曲線存在拐點;隨著初始固結(jié)應(yīng)力的增加,當(dāng)其超過結(jié)構(gòu)屈服應(yīng)力后,由于在固結(jié)階段土的初始結(jié)構(gòu)性已被破壞,土的性質(zhì)與重塑土類似,應(yīng)力應(yīng)變曲線呈現(xiàn)硬化型特征,不存在拐點。

      圖6給出了兩組偏壓固結(jié)應(yīng)力下上海天然沉積軟黏土三軸不排水剪切的應(yīng)力應(yīng)變曲線。圖6(a)中,CAU1和CAU2試驗初始固結(jié)應(yīng)力均低于軟黏土的結(jié)構(gòu)屈服應(yīng)力;圖6(b)中,CAU3試驗初始固結(jié)應(yīng)力高于軟黏土的結(jié)構(gòu)屈服應(yīng)力。圖7給出了不同偏壓固結(jié)應(yīng)力下三軸不排水剪切的孔壓應(yīng)變曲線。

      由圖6、7可見:與等壓固結(jié)的規(guī)律相類似,隨著初始平均有效固結(jié)應(yīng)力從CAU1試驗對應(yīng)的50 kPa增加到CAU3試驗對應(yīng)的300 kPa,軟黏土的不排水剪切強度增大,孔隙水壓力逐漸升高;當(dāng)初始平均有效固結(jié)應(yīng)力低于其結(jié)構(gòu)屈服應(yīng)力時,應(yīng)力應(yīng)變曲線均呈明顯的應(yīng)變軟化型,而初始平均有效固結(jié)應(yīng)力高于結(jié)構(gòu)屈服應(yīng)力時,應(yīng)力應(yīng)變曲線呈硬化型。

      圖6偏壓固結(jié)三軸不排水剪切試驗應(yīng)力應(yīng)變曲線

      Fig.6Stressstrain Curves in Triaxial Undrained Shear Tests Under Anisotropic Consolidation Mode

      圖7偏壓固結(jié)三軸不排水試驗孔壓應(yīng)變曲線

      Fig.7Pore Water Pressurestrain Curves of Triaxial Undrained Shear Tests Under Anisotropic Consolidation Mode

      2.3.2固結(jié)模式

      為進一步分析各向異性對天然軟黏土變形性狀的影響,對經(jīng)歷相同初始固結(jié)壓力的等壓和偏壓固結(jié)試驗進行了分析。

      圖8p′0=50 kPa下三軸不排水剪切試驗應(yīng)力應(yīng)變曲線

      Fig.8Stressstrain Curves of Triaxial Undrained

      Shear Tests with p′0=50 kPa

      圖9p′0=100 kPa下三軸不排水剪切試驗應(yīng)力應(yīng)變曲線

      Fig.9Stressstrain Curves of Triaxial Undrained

      Tests with p′0=100 kPa

      圖10p′0=100 kPa下三軸不排水剪切試驗孔壓應(yīng)變曲線

      Fig.10Pore Water Pressurestrain Curves of Triaxial

      Undrained Shear Tests with p′0=100 kPa

      圖8、9分別給出了初始平均有效固結(jié)應(yīng)力p′0分別為50 kPa和100 kPa時的等壓和偏壓固結(jié)模式下三軸不排水剪切應(yīng)力應(yīng)變關(guān)系曲線的對比情況。圖8、9中,等壓和偏壓固結(jié)應(yīng)力均低于軟黏土的結(jié)構(gòu)屈服應(yīng)力。而圖10、11是等壓和偏壓固結(jié)模式下三軸不排水剪切孔壓應(yīng)變關(guān)系曲線的對比結(jié)果。

      由圖8~11可見:無論是50 kPa還是100 kPa的初始平均有效固結(jié)應(yīng)力,偏壓固結(jié)模式所對應(yīng)的不排水剪切峰值強度均高于等壓固結(jié)模式,其屈服后的應(yīng)變軟化程度相較于等壓固結(jié)模式而言更加明顯,說明天然沉積軟黏土各向異性程度的增加在一定程度上提高了其初始結(jié)構(gòu)性;與不排水應(yīng)力路徑關(guān)系曲線一致,在不排水剪切強度達到峰值后,隨著結(jié)構(gòu)性的損傷,等壓和偏壓固結(jié)模式下應(yīng)力應(yīng)變曲線逐漸趨于重合;在初始固結(jié)應(yīng)力相等的前提下,等壓固結(jié)模式下產(chǎn)生的孔隙水壓力較偏壓固結(jié)模式下要高。

      圖11p′0=100 kPa下三軸不排水剪切試驗孔壓應(yīng)變曲線

      Fig.11Pore Water Pressurestrain Curves of Triaxial

      Undrained Shear Tests with p′0=100 kPa

      圖12p′0=300 kPa下三軸不排水剪切試驗應(yīng)力應(yīng)變曲線

      Fig.12Stressstrain Curves of Triaxial Undrained

      Shear Tests with p′0=300 kPa

      圖13p′0=300 kPa下三軸不排水剪切試驗孔壓應(yīng)變曲線

      Fig.13Pore Water Pressurestrain Curves of Triaxial

      Undrained Shear Tests with p′0=300 kPa

      圖12、13分別給出了初始平均有效固結(jié)應(yīng)力p′0為300 kPa時等壓和偏壓固結(jié)模式下三軸不排水剪切應(yīng)力應(yīng)變關(guān)系曲線以及孔壓應(yīng)變關(guān)系曲線的對比情況。圖12、13中,等壓和偏壓固結(jié)應(yīng)力遠高于軟黏土的結(jié)構(gòu)屈服應(yīng)力。

      由圖12、13可見:與50 kPa以及100 kPa的平均有效固結(jié)應(yīng)力相類似,在300 kPa的固結(jié)應(yīng)力下,偏壓固結(jié)模式所對應(yīng)的不排水剪切峰值強度高于等壓固結(jié)模式,而孔隙水壓力則低于等壓固結(jié)模式下的孔隙水壓力;與低于結(jié)構(gòu)屈服應(yīng)力的50 kPa以及100 kPa固結(jié)壓力相比,由于作用的初始固結(jié)應(yīng)力300 kPa遠大于其結(jié)構(gòu)屈服應(yīng)力,所以軟黏土的大部分結(jié)構(gòu)性在等壓及偏壓固結(jié)階段已經(jīng)被破壞,致使其應(yīng)力應(yīng)變曲線完全呈現(xiàn)硬化型特征,且完全沒有重合的趨勢。

      3結(jié)語

      (1)上海天然沉積軟黏土具有明顯的結(jié)構(gòu)性及各向異性特征。

      (2)一維壓縮曲線存在明顯的結(jié)構(gòu)屈服應(yīng)力點,壓縮特性在結(jié)構(gòu)屈服破壞前后存在顯著差別。在固結(jié)壓力未達到結(jié)構(gòu)屈服應(yīng)力前,由于結(jié)構(gòu)初始抗力的存在,孔隙比變化量?。划?dāng)固結(jié)壓力超過土的結(jié)構(gòu)屈服應(yīng)力時,大部分初始結(jié)構(gòu)被破壞,孔隙比大幅度降低。

      (3)不同初始固結(jié)應(yīng)力下的等壓及偏壓固結(jié)不排水應(yīng)力路徑曲線最終都趨近于同一臨界狀態(tài),驗證了臨界狀態(tài)在高應(yīng)變時對軟黏土的適用性。

      (4)在初始有效固結(jié)應(yīng)力低于軟黏土的結(jié)構(gòu)屈服應(yīng)力時,三軸不排水應(yīng)力應(yīng)變曲線呈應(yīng)變軟化型,隨著初始固結(jié)應(yīng)力的增加,當(dāng)其超過結(jié)構(gòu)屈服應(yīng)力后,應(yīng)力應(yīng)變曲線逐漸呈現(xiàn)硬化型特征。

      (5)在初始固結(jié)應(yīng)力相同且低于結(jié)構(gòu)屈服應(yīng)力的前提下,偏壓固結(jié)模式所對應(yīng)的不排水剪切峰值強度高于等壓固結(jié)模式,其屈服后的應(yīng)變軟化程度相較于等壓固結(jié)模式而言更加明顯;在不排水剪切強度達到峰值后,等壓和偏壓固結(jié)模式下的不排水應(yīng)力應(yīng)變曲線逐漸趨于重合;而在初始固結(jié)應(yīng)力高于結(jié)構(gòu)屈服應(yīng)力的情況下,偏壓固結(jié)模式的峰值剪切強度仍然高于等壓固結(jié)模式,但二者的不排水應(yīng)力應(yīng)變曲線均呈硬化型,無重合的趨勢。

      (6)無論是等壓還是偏壓固結(jié),隨著初始固結(jié)應(yīng)力的增加,孔隙水壓力逐漸增大;在初始固結(jié)應(yīng)力相等的情況下,等壓固結(jié)模式下產(chǎn)生的孔隙水壓力較偏壓模式下要高。

      (7)對于天然沉積軟黏土而言,結(jié)構(gòu)性及各向異性對其變形性狀有重要影響。在本構(gòu)關(guān)系的建立中,要對這兩個因素應(yīng)進行合理考慮。由于試驗儀器的限制,本文所進行的三軸試驗研究并不能靈活考慮主應(yīng)力系數(shù)及初始各向異性角度對軟黏土變形及強度性狀的影響,需要在后續(xù)工作中考慮。

      參考文獻:

      References:

      [1]沈珠江.土體結(jié)構(gòu)性的數(shù)學(xué)模型——21世紀(jì)土力學(xué)的核心問題[J].巖土工程學(xué)報,1996,18(1):9597.

      SHEN Zhujiang.An Elastoplastic Damage Model for Cemented Clays—Essential Question of Soil Mechanics in 21th Century[J].Chinese Journal of Geotechnical Engineering,1996,18(1):9597.

      [2]劉恩龍,羅開泰,張樹祎.初始應(yīng)力各向異性結(jié)構(gòu)性土的二元介質(zhì)模型[J].巖土力學(xué),2013,34(11):31033109.

      LIU Enlong,LUO Kaitai,ZHANG Shuyi.Binary Medium Model for Structured Soils with Initial Stressinduced Anisotropy[J].Rock and Soil Mechanics,2013,34(11):31033109.

      [3]安然,謝康和,鄧岳保,等.變荷載下結(jié)構(gòu)性土一維固結(jié)近似解[J].巖土力學(xué),2012,33(10):31943200.

      AN Ran,XIE Kanghe,DENG Yuebao,et al.Approximate Solution for Onedimensional Consolidation of Structured Soils Under Timedependent Loading[J].Rock and Soil Mechanics,2012,33(10):31943200.

      [4]LEROUEIL S,VAUGHAN P R.The General and Congruent Effects of Structure in Natural Soils and Weak Rocks[J].Geotechnique 1990,40(3):467488.

      [5]謝定義,齊吉琳.土結(jié)構(gòu)性及其定量化參數(shù)研究的新途徑[J].巖土工程學(xué)報,1999,21(6):651656.

      XIE Dingyi,QI Jilin.Soil Structure Characteristics and New Approach in Research on Its Quantitative Parameter[J].Chinese Journal of Geotechnical Engineering,1999,21(6):651656.

      [6]BURLAND J B.On the Compressibility and Shear Strength of Natural Clays[J].Geotechnique,1990,40(3):329378.

      [7]SMITH P R,JARDINE R J,HIGHT D W.The Yielding of Bothkennar Clay[J].Geotechnique,1992,42(2):257274.

      [8]CALLISTO L,CALABRESI G.Mechanical Behaviour of a Natural Soft Clay[J].Geotechnique,1998,48(4):495513.

      [9]CHAI J C,MIURA N,ZHU H H,et al.Compression and Consolidation Characteristics of Structured Natural Clay[J].Canadian Geotechnical Journal,2004,41(6):12501258.

      [10]HONG Z S,YIN J,CUI Y J.Compression Behaviour of Reconstituted Soils at High Initial Water Contents[J].Geotechnique,2010,60(9):691700.

      [11]CHUNG S G,PRASAD K N,NAGARAJ T S,et al.Assessment of Compressibility Behavior of Naturally Cemented Soft Clays[J].Marine Georesources and Geotechnology,2004,22(1/2):120.

      [12]殷杰.土結(jié)構(gòu)性對天然軟黏土壓縮特性的影響[J].巖土力學(xué),2012,33(1):4852.

      YIN Jie.Effect of Soil Structure on Compression Behavior of Natural Soft Clays[J].Rock and Soil Mechanics,2012,33(1):4852.

      [13]龔曉南,熊傳祥,項可祥,等.粘土結(jié)構(gòu)性對其力學(xué)性質(zhì)的影響及形成原因分析[J].水利學(xué)報,2000,31(10):4347.

      GONG Xiaonan,XIONG Chuanxiang,XIANG Kexiang,et.al.The Formation of Clay Structure and Its Influence on Mechanical Characteristics of Clay[J].Journal of Hydraulic Engineering,2000,31(10):4347.

      [14]曹宇春,楊建輝.基于有效固結(jié)應(yīng)力法確定結(jié)構(gòu)性黏性土不排水抗剪強度[J].巖土力學(xué),2013,34(11):30853090.

      CAO Yuchun,YANG Jianhui.Undrained Shear Strength Determination of Structured Clays Based on Effective Consolidation Stress Method[J].Rock and Soil Mechanics,2013,34(11):30853090.

      [15]曾玲玲,洪振舜,劉松玉,等.天然沉積結(jié)構(gòu)性土的次固結(jié)變形預(yù)測方法[J].巖土力學(xué),2011,32(10):31363142.

      ZENG Lingling,HONG Zhenshun,LIU Songyu,et al.A Method for Predicting Deformation Caused by Secondary Consolidation for Naturally Sedimentary Structural Clays[J].Rock and Soil Mechanics,2011,32(10):31363142.

      [16]陳昌祿,邵生俊,佘芳濤.土結(jié)構(gòu)性變化對開挖邊坡穩(wěn)定性的影響分析[J].巖土工程學(xué)報,2011,33(12):19381942.

      CHEN Changlu,SHAO Shengjun,SHE Fangtao.Impact of Structural Change of Soils on Stability in Slope Excavation[J].Chinese Journal of Geotechnical Engineering,2011,33(12):19381942.

      [17]劉恩龍,羅開泰.軸向循環(huán)加載條件下人工制備結(jié)構(gòu)性土力學(xué)特性[J].北京工業(yè)大學(xué)學(xué)報,2012,38(2):180185.

      LIU Enlong,LUO Kaitai.Mechanical Properties of Artificially Prepared Structured Soils Subjected to Axially Cyclic Loading[J].Journal of Beijing University of Technology,2012,38(2):180185.

      [18]齊吉琳,謝定義.孔隙分布曲線及其在土的結(jié)構(gòu)性分析中的應(yīng)用[J].西安公路交通大學(xué)學(xué)報,2000,20(2):68.

      QI Jilin,XIE Dingyi.The Pore Size Distribution Curve and Its Application in Soil Structure Analysis[J].Journal of Xian Highway University,2000,20(2):68.

      [19]丁伯陽,張勇.杭州第四系軟土動力特性試驗與土結(jié)構(gòu)性影響的探討[J].巖土力學(xué),2012,33(2):336342.

      DING Boyang,ZHANG Yong.Discussion on Dynamic Test and Characteristics of Structural Properties of Quaternary Soft Clay in Hangzhou Region[J].Rock and Soil Mechanics,2012,33(2):336342.

      [20]方麗莉,齊吉琳,馬巍.凍融作用對土結(jié)構(gòu)性的影響及其導(dǎo)致的強度變化[J].冰川凍土,2012,34(2):435440.

      FANG Lili,QI Jilin,MA Wei.Freezethaw Induced Changes in Soil Structure and Its Relationship with Variations in Strength[J].Journal of Glaciology and Geocryology,2012,34(2):435440.

      [21]王軍,陳云敏.考慮土結(jié)構(gòu)性影響的砂井地基固結(jié)度計算[J].中國公路學(xué)報,2001,14(2):2226.

      WANG Jun,CHEN Yunmin.Calculation of Sand Drains Ground Consolidation Degree with Consideration of Soil Structure Characteristics Influence[J].China Journal of Highway and Transport,2001,14(2):2226.

      [22]雷華陽,姜巖,陸培毅,等.交通荷載作用下結(jié)構(gòu)性軟土的孔徑分布試驗[J].中國公路學(xué)報,2009,22(2):611.

      LEI Huayang,JIANG Yan,LU Peiyi,et al.Pore Size Distribution Test of Structural Soft Soil Under Traffic Loading[J].China Journal of Highway and Transport,2009,22(2):611.

      [23]姜巖,雷華陽,鄭剛,等.循環(huán)荷載下結(jié)構(gòu)性軟土變形預(yù)測[J].交通運輸工程學(xué)報,2011,11(1):1318.

      JIANG Yan,LEI Huayang,ZHENG Gang,et al.Deformation Prediction of Structured Soft Clay Under Cyclic Load[J].Journal of Traffic and Transportation Engineering,2011,11(1):1318.

      [24]LADD C C,F(xiàn)OOTT R.The Behavior of Embankments on Clay Foundations:Discussion[J].Canadian Geotechnical Journal,1980,17(3):454460.

      [25]王洪瑾,張國平,周克驥.固有和誘發(fā)各向異性對擊實粘性土強度和變形特性的影響[J].巖土工程學(xué)報,1996,18(3):110.

      WANG Hongjin,ZHANG Guoping,ZHOU Keji.Effects of Inherent and Induced Anisotropy on Strength and Deformation Characteristics of Compacted Cohesive Soil[J].Chinese Journal of Geotechnical Engineering,1996,18(3):110.

      [26]DIAZRODRIGUEZ J A,LEROUEIL S,ALEMAN J D.Yielding of Mexico City Clay and Other Natural Clays[J].Journal of Geotechnical Engineering,1992,118(7):981995.

      [27]沈愷倫,王立忠.天然軟黏土屈服面及流動法則試驗研究[J].土木工程學(xué)報,2009,42(4):119127.

      SHEN Kailun,WANG Lizhong.Experimental Study on the Yield Surface and Flow Rule of Natural Clays[J].China Civil Engineering Journal,2009,42(4):119127.

      [28]范慶來,欒茂田.各向異性軟黏土地基上淺基礎(chǔ)破壞包絡(luò)面研究[J].巖石力學(xué)與工程學(xué)報,2010,29(11):23622369.

      FAN Qinglai,LUAN Maotian.Study of Failure Envelope of Shallow Foundation on Anisotropic Soft Clay[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(11):23622369.

      [29]嚴(yán)佳佳,李伯安,陳利明,等.原狀軟粘土各向異性及其對工程影響研究[J].西北地震學(xué)報,2011,33(增):155159.

      YAN Jiajia,LI Boan,CHEN Liming,et al.Anisotropy of Undisturbed Soft Clay and Its Influence on Practical Engineering[J].Northwestern Seismological Journal,2011,33(S):155159.

      [30]ZDRAVKOVIC L,POTTS D M,HIGHT D W.The Effect of Strength Anisotropy on the Behaviour of Embankments on Soft Ground[J].Geotechnique,2002,52(6):447457.

      [31]張茂花,謝永利,劉保健.濕陷性黃土變形的各向異性及與浸水路徑的無關(guān)性[J].中國公路學(xué)報,2006,19(4):1116.

      ZHANG Maohua,XIE Yongli,LIU Baojian.Anisotropy of Collapsible Loess Deformation and Independence of Deformation and Soak Paths[J].China Journal of Highway and Transport,2006,19(4):1116.

      [32]羅開泰,聶青,張樹祎,等.人工制備初始應(yīng)力各向異性結(jié)構(gòu)性土方法探討[J].巖土力學(xué),2013,34(10):28152820,2834.

      LUO Kaitai,NIE Qing,ZHANG Shuyi,et al.Investigation on Artificially Structured Soils with Initial Stressinduced Anisotropy[J].Rock and Soil Mechanics,2013,34(10):28152820,2834.

      [33]雷華陽,姜巖,陸培毅.循環(huán)荷載作用下軟粘土的強度判別標(biāo)準(zhǔn)試驗[J].長安大學(xué)學(xué)報:自然科學(xué)版,2009,29(6):5458.

      LEI Huayang,JIANG Yan,LU Peiyi.Test on Shear Strength Criterion of Soft Soil Under Cyclic Loading[J].Journal of Changan University:Natural Science Edition,2009,29(6):5458.

      [28]范慶來,欒茂田.各向異性軟黏土地基上淺基礎(chǔ)破壞包絡(luò)面研究[J].巖石力學(xué)與工程學(xué)報,2010,29(11):23622369.

      FAN Qinglai,LUAN Maotian.Study of Failure Envelope of Shallow Foundation on Anisotropic Soft Clay[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(11):23622369.

      [29]嚴(yán)佳佳,李伯安,陳利明,等.原狀軟粘土各向異性及其對工程影響研究[J].西北地震學(xué)報,2011,33(增):155159.

      YAN Jiajia,LI Boan,CHEN Liming,et al.Anisotropy of Undisturbed Soft Clay and Its Influence on Practical Engineering[J].Northwestern Seismological Journal,2011,33(S):155159.

      [30]ZDRAVKOVIC L,POTTS D M,HIGHT D W.The Effect of Strength Anisotropy on the Behaviour of Embankments on Soft Ground[J].Geotechnique,2002,52(6):447457.

      [31]張茂花,謝永利,劉保健.濕陷性黃土變形的各向異性及與浸水路徑的無關(guān)性[J].中國公路學(xué)報,2006,19(4):1116.

      ZHANG Maohua,XIE Yongli,LIU Baojian.Anisotropy of Collapsible Loess Deformation and Independence of Deformation and Soak Paths[J].China Journal of Highway and Transport,2006,19(4):1116.

      [32]羅開泰,聶青,張樹祎,等.人工制備初始應(yīng)力各向異性結(jié)構(gòu)性土方法探討[J].巖土力學(xué),2013,34(10):28152820,2834.

      LUO Kaitai,NIE Qing,ZHANG Shuyi,et al.Investigation on Artificially Structured Soils with Initial Stressinduced Anisotropy[J].Rock and Soil Mechanics,2013,34(10):28152820,2834.

      [33]雷華陽,姜巖,陸培毅.循環(huán)荷載作用下軟粘土的強度判別標(biāo)準(zhǔn)試驗[J].長安大學(xué)學(xué)報:自然科學(xué)版,2009,29(6):5458.

      LEI Huayang,JIANG Yan,LU Peiyi.Test on Shear Strength Criterion of Soft Soil Under Cyclic Loading[J].Journal of Changan University:Natural Science Edition,2009,29(6):5458.

      [28]范慶來,欒茂田.各向異性軟黏土地基上淺基礎(chǔ)破壞包絡(luò)面研究[J].巖石力學(xué)與工程學(xué)報,2010,29(11):23622369.

      FAN Qinglai,LUAN Maotian.Study of Failure Envelope of Shallow Foundation on Anisotropic Soft Clay[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(11):23622369.

      [29]嚴(yán)佳佳,李伯安,陳利明,等.原狀軟粘土各向異性及其對工程影響研究[J].西北地震學(xué)報,2011,33(增):155159.

      YAN Jiajia,LI Boan,CHEN Liming,et al.Anisotropy of Undisturbed Soft Clay and Its Influence on Practical Engineering[J].Northwestern Seismological Journal,2011,33(S):155159.

      [30]ZDRAVKOVIC L,POTTS D M,HIGHT D W.The Effect of Strength Anisotropy on the Behaviour of Embankments on Soft Ground[J].Geotechnique,2002,52(6):447457.

      [31]張茂花,謝永利,劉保健.濕陷性黃土變形的各向異性及與浸水路徑的無關(guān)性[J].中國公路學(xué)報,2006,19(4):1116.

      ZHANG Maohua,XIE Yongli,LIU Baojian.Anisotropy of Collapsible Loess Deformation and Independence of Deformation and Soak Paths[J].China Journal of Highway and Transport,2006,19(4):1116.

      [32]羅開泰,聶青,張樹祎,等.人工制備初始應(yīng)力各向異性結(jié)構(gòu)性土方法探討[J].巖土力學(xué),2013,34(10):28152820,2834.

      LUO Kaitai,NIE Qing,ZHANG Shuyi,et al.Investigation on Artificially Structured Soils with Initial Stressinduced Anisotropy[J].Rock and Soil Mechanics,2013,34(10):28152820,2834.

      [33]雷華陽,姜巖,陸培毅.循環(huán)荷載作用下軟粘土的強度判別標(biāo)準(zhǔn)試驗[J].長安大學(xué)學(xué)報:自然科學(xué)版,2009,29(6):5458.

      LEI Huayang,JIANG Yan,LU Peiyi.Test on Shear Strength Criterion of Soft Soil Under Cyclic Loading[J].Journal of Changan University:Natural Science Edition,2009,29(6):5458.

      猜你喜歡
      巖土工程結(jié)構(gòu)性變形
      談詩的變形
      中華詩詞(2020年1期)2020-09-21 09:24:52
      基于應(yīng)力結(jié)構(gòu)性參數(shù)的典型黃土結(jié)構(gòu)性試驗研究
      “我”的變形計
      例談拼圖與整式變形
      切實抓好去產(chǎn)能促進供給側(cè)結(jié)構(gòu)性改革
      會變形的餅
      巖土工程基礎(chǔ)施工中深基坑支護施工技術(shù)的應(yīng)用探析
      巖土工程特點與專項監(jiān)理技術(shù)探析
      基礎(chǔ)地質(zhì)在巖土工程勘察中的應(yīng)用探討
      關(guān)于巖土工程勘察新技術(shù)應(yīng)用的探討
      庆云县| 棋牌| 辉县市| 米泉市| 健康| 吉木乃县| 建宁县| 同江市| 晋宁县| 揭东县| 长寿区| 五常市| 内乡县| 文登市| 民县| 亳州市| 耒阳市| 英山县| 临西县| 沛县| 东平县| 奎屯市| 玛纳斯县| 南阳市| 镇赉县| 萝北县| 淮安市| 芜湖县| 寿光市| 宜宾县| 崇文区| 句容市| 宝鸡市| 拉孜县| 驻马店市| 山东省| 莱西市| 乌审旗| 皮山县| 岳阳市| 乌鲁木齐县|