劉 超,張雪寧,劉 東,閔 蘇
天津醫(yī)科大學(xué)第二醫(yī)院 1放射科 2神經(jīng)外科,天津300211 3重慶醫(yī)科大學(xué)附屬第一醫(yī)院麻醉科,重慶 400016
異丙酚、人參皂苷Rg-1、蛋白磷酸酯酶-2A和氯化鋰對(duì)大鼠電休克后學(xué)習(xí)記憶及海馬內(nèi)谷氨酸含量的影響
劉 超1,張雪寧1,劉 東2,閔 蘇3
天津醫(yī)科大學(xué)第二醫(yī)院1放射科2神經(jīng)外科,天津3002113重慶醫(yī)科大學(xué)附屬第一醫(yī)院麻醉科,重慶 400016
目的觀察異丙酚、人參皂苷Rg-1、蛋白磷酸酯酶-2A(PP-2A)和氯化鋰對(duì)電休克 (ECT)后嗅球切除抑郁模型大鼠學(xué)習(xí)記憶和海馬內(nèi)谷氨酸 (Glu)濃度的影響。方法按隨機(jī)單位組設(shè)2個(gè)干預(yù)因素,即ECT干預(yù) (2水平:無處置、施行1療程ECT)和藥物干預(yù) (5水平:海馬CA1區(qū)分別微量注射生理鹽水、異丙酚、人參皂苷Rg-1、PP-2A、氯化鋰,20 g/L)的所有組合 (2×5析因設(shè)計(jì))。全部ECT處置結(jié)束24 h內(nèi)開始Morris水迷宮檢測(cè),高效液相色譜法檢測(cè)Glu在海馬內(nèi)的濃度。結(jié)果單獨(dú)使用異丙酚或ECT均可造成學(xué)習(xí)記憶障礙,而二者聯(lián)合使用則會(huì)緩解ECT后的學(xué)習(xí)記憶障礙;人參皂苷Rg-1、PP-2A和氯化鋰對(duì)學(xué)習(xí)記憶無明顯影響,但與ECT合用則可改善ECT后的學(xué)習(xí)記憶;ECT干預(yù)與藥物干預(yù)存在交互作用。ECT可明顯增加海馬中Glu濃度;異丙酚和人參皂苷Rg-1在ECT前后均可減少Glu濃度;且ECT干預(yù)與藥物干預(yù)存在交互作用。PP-2A和氯化鋰在ECT前后對(duì)Glu濃度無明顯影響。結(jié)論 ECT可使海馬Glu濃度升高,導(dǎo)致學(xué)習(xí)記憶障礙;異丙酚與人參皂苷Rg-1、PP-2A和氯化鋰均可改善ECT后的學(xué)習(xí)記憶;前兩者與降低海馬中Glu濃度有關(guān),后兩者與此無關(guān)。
異丙酚;人參皂苷Rg-1;蛋白磷酸酯酶-2A;氯化鋰;電休克;學(xué)習(xí)記憶能力;谷氨酸
Acta Acad Med Sin,2014,36(3):234-240
抑郁癥是一種心理障礙性疾?。?],電休克 (electmconrulsive therapy,ECT)是重度抑郁患者的首選治療方法。電抽搐發(fā)作時(shí)間超過120~180 s可造成認(rèn)知障礙,其原因?yàn)楣劝彼?(glutamic acid,Glu)信號(hào)系統(tǒng)功能異常[2]引起氧化應(yīng)激,導(dǎo)致海馬長(zhǎng)時(shí)程增強(qiáng)作用 (long-term potentiation,LTP) 飽和狀態(tài)[3],造成突觸可塑性障礙[4],最終導(dǎo)致記憶的缺失。
異丙酚 (又名二異泊酚)作用于中樞神經(jīng)系統(tǒng),其產(chǎn)生麻醉作用的藥理機(jī)制與抑制 Glu[5]及離子型GluR有關(guān),可通過減弱神經(jīng)系統(tǒng)的興奮性毒性減輕ECT導(dǎo)致的學(xué)習(xí)記憶障礙[2,4]。人參皂苷Rg-1是人參的主要成分之一,具有保護(hù)中樞神經(jīng)系統(tǒng)的作用[6],可易化學(xué)習(xí)記憶的獲得、鞏固和再現(xiàn)。蛋白磷酸酯酶-2A(protein phosphatase 2A,PP-2A)是活性最強(qiáng)的p-tau磷酸酯酶[7],可緩解 Tau蛋白的過磷酸化[8-9]。鋰可誘導(dǎo)糖原合成酶激酶-3β (glycogen synthase kinase-3β,GSK-3β)在Ser9位點(diǎn)的磷酸化水平增加,進(jìn)而抑制GSK-3β的活性[10],緩解Tau蛋白過磷酸化[11]。本研究旨在觀察異丙酚與人參皂苷 Rg-1、PP-2A和氯化鋰對(duì)ECT后嗅球切除大鼠抑郁模型學(xué)習(xí)記憶和海馬內(nèi)Glu濃度的影響,并分析其神經(jīng)機(jī)制的異同。
主要試劑及儀器異丙酚純品 (2,6-Diisopropylphenol,產(chǎn)品編號(hào)D126608,純度>97%,美國(guó)Sigma公司),人參皂苷Rg-1單體 (Ginsenoside Rg-1,純度>98%,安徽蕪湖甙而塔醫(yī)療科技有限公司),氯化鋰 (Lithium,純度>97%,上海實(shí)驗(yàn)試劑有限公司);蛋白質(zhì)磷酸酶-2A(抗原)(protein phosphatae-2A,PP-2A,上海雅吉生物科技有限公司),純品L-谷氨酸 (L-Glutamic acid,美國(guó)Sigma公司);Harvard嚙齒類動(dòng)物電休克儀 (美國(guó)自然基因有限公司),Morris水迷宮視頻分析系統(tǒng) (北京軍事醫(yī)學(xué)科學(xué)院),HPLC色譜系統(tǒng) (美國(guó)Waters公司),18-ODS色譜柱(美國(guó)Dima公司),Centrifuge 5810R型低溫高速離心機(jī) (德國(guó)Eppendof公司)。
實(shí)驗(yàn)動(dòng)物及模型建立24周齡健康雄性SD大鼠,體重250~300 g,由天津醫(yī)科大學(xué)實(shí)驗(yàn)動(dòng)物科學(xué)部提供。將大鼠置于通風(fēng)良好、12 h明暗交替、自由飲水?dāng)z食條件,每日觸摸2 min,使其適應(yīng)實(shí)驗(yàn)室環(huán)境及實(shí)驗(yàn)人員操作。適應(yīng)性飼養(yǎng)1周后,建立大鼠嗅球切除抑郁模型[12]:2.75%戊巴比妥鈉 (55 mg·kg-1,上海西塘生物科技有限公司)腹腔麻醉大鼠,在兩耳聯(lián)線中點(diǎn)處切開皮膚暴露顱骨,在距前囟前7~8 mm、與正中縫兩側(cè)旁開2 mm交點(diǎn),用電動(dòng)磨鉆將顱骨鉆兩個(gè)直徑2 mm小孔,用探針攪動(dòng)破壞嗅球后用真空泵將其吸出,待全部嗅球組織吸出后方結(jié)束,吸收性明膠海綿填入小孔止血。青霉素溶液 (2×104萬U·L-1,上海醫(yī)藥集團(tuán)上海新先鋒藥業(yè)有限公司)沖洗切口,縫合皮膚,肌注青霉素鈉 (2×104萬U·L1,4萬U/只,上海醫(yī)藥集團(tuán)上海新先鋒藥業(yè)有限公司),連續(xù)給藥3 d。術(shù)后每天對(duì)大鼠撫摸和稱重,恢復(fù)2周后進(jìn)行Open field測(cè)試,每次測(cè)試均于上午9:00開始,選取曠場(chǎng)箱內(nèi)水平計(jì)分及垂直計(jì)分總分在30~120 s之間的80只大鼠。本實(shí)驗(yàn)按照美國(guó)醫(yī)學(xué)研究協(xié)會(huì)《實(shí)驗(yàn)動(dòng)物處理原則》及美國(guó)科學(xué)學(xué)會(huì)和國(guó)家衛(wèi)生研究院《實(shí)驗(yàn)動(dòng)物使用和處理指南》進(jìn)行;遵循雙盲原則;大鼠行單籠飼養(yǎng)。
實(shí)驗(yàn)動(dòng)物分組采用隨機(jī)單位組析因設(shè)計(jì):將每只大鼠視為1個(gè)單位給予2個(gè)處理因素,即ECT干預(yù)(2水平:無處置、施行1療程 ECT)和藥物干預(yù)(5水平:海馬腦區(qū)CA1區(qū)立體定位微量注射生理鹽水、異丙酚、人參皂苷Rg-1、PP-2A和氯化鋰)的所有組合 (2×5析因設(shè)計(jì),共10組)。80只實(shí)驗(yàn)大鼠隨機(jī)分為10個(gè)實(shí)驗(yàn)組 (n=8):Ⅰ組:海馬CA1區(qū)微量注射1 μl生理鹽水;Ⅱ組:海馬CA1區(qū)微量注射1 μl異丙酚純品,20 μg;Ⅲ組:海馬CA1區(qū)微量注射1 μl人參皂苷Rg-1,20 μg;Ⅳ組:海馬CA1區(qū)微量注射1 μl PP-2A,20 μg;Ⅴ組:海馬CA1區(qū)微量注射1 μl氯化鋰,20 μg;Ⅵ組:海馬CA1區(qū)微量注射1 μl生理鹽水+1個(gè)療程ECT;Ⅶ組:海馬CA1區(qū)微量注射1 μl異丙酚純品20 μg+1個(gè)療程ECT;Ⅷ組:海馬CA1區(qū)微量注射1 μl人參皂苷Rg-1 20 μg+1個(gè)療程ECT;Ⅸ組:海馬CA1區(qū)微量注射1 μl PP-2A 20 μg+1個(gè)療程ECT;Ⅹ組:海馬CA1區(qū)微量注射1 μl氯化鋰20 μg+1個(gè)療程ECT。
腦立體定位及海馬微量注射大鼠麻醉后參照大鼠腦立體定位圖譜,以Bregma為坐標(biāo)原點(diǎn),向海馬處(AP-3.8 mm,RL+/-2.5 mm,V2.5 mm)植入一直徑0.9 mm帶有內(nèi)芯的不銹鋼套管,用磷酸鋅水門汀(上海齒科材料廠)固定,外層用牙托粉加固,青霉素溶液 (2×104萬U·L-1,上海醫(yī)藥集團(tuán)上海新先鋒藥業(yè)有限公司)沖洗切口,縫合皮膚,肌注青霉素鈉 (2×104萬U·L1,4萬U/只,上海醫(yī)藥集團(tuán)上海新先鋒藥業(yè)有限公司),連續(xù)給藥3 d。術(shù)后正常飼養(yǎng),恢復(fù)1周后開始實(shí)驗(yàn)。實(shí)驗(yàn)中采用微量進(jìn)樣器通過埋植套管給海馬注射藥品。藥品用生理鹽水配置,勻速注射,1 min內(nèi)注完,停針1 min[13]。
ECT處置Ⅰ~Ⅴ組不施行ECT處理,Ⅵ~Ⅹ組每次注射藥物15 min后行ECT處置,于大鼠雙顳側(cè)安放電極,用Harvard嚙齒類動(dòng)物電休克儀行ECT,給予方波 (單個(gè)正弦半波20 ms,50 Hz),電流50 mA,持續(xù)1 s,引起大鼠強(qiáng)直陣攣抽搐發(fā)作為成功[4],隔天1次,共7次,于9:00 am開始。
Morris水迷宮視頻分析系統(tǒng)檢測(cè)大鼠的空間學(xué)習(xí)記憶ECT處置結(jié)束24 h內(nèi)開始Morris水迷宮檢測(cè)。Morris水迷宮被均分為Ⅰ、Ⅱ、Ⅲ、Ⅳ4個(gè)象限。水迷宮內(nèi)盛自來水,加墨汁渾濁,檢測(cè)前將平臺(tái)置于Ⅰ象限水面下2 cm。所有實(shí)驗(yàn)在9:00 am~3:00 pm進(jìn)行,室內(nèi)安靜,物品放置及燈光狀態(tài)一致,水溫(24±1)℃。Morris1.0軟件跟蹤記錄分析相關(guān)數(shù)據(jù)。第1~6天行定位航行實(shí)驗(yàn):按逆時(shí)針方向分別從Ⅰ、Ⅱ、Ⅲ、Ⅳ4個(gè)象限將大鼠面向池壁放入水中,觀察并計(jì)時(shí)120 s,檢測(cè)前將平臺(tái)置于Ⅰ象限正中水面下2 cm。攝像系統(tǒng)記錄大鼠尋找并爬上平臺(tái)的時(shí)間為逃避潛伏期 (escape latency,EL),若120 s內(nèi)還未找到平臺(tái),則引導(dǎo)其至平臺(tái),停留30 s,逃避潛伏期記為120 s。檢測(cè)結(jié)束后以第1~6天逃避潛伏期的平均值作為學(xué)習(xí)成績(jī),越短顯示學(xué)習(xí)能力越好。第7天空間行探索實(shí)驗(yàn):撤除平臺(tái),將大鼠從距原平臺(tái)最遠(yuǎn)Ⅲ象限面向池壁放入水中,攝像系統(tǒng)記錄大鼠在60 s內(nèi)各象限游泳時(shí)間,以原平臺(tái)象限Ⅰ象限游泳時(shí)間即空間探索時(shí)間 (space exploration time,SET)作為記憶成績(jī),越長(zhǎng)顯示記憶能力越好。
海馬中Glu含量的檢測(cè)采用高效液相色譜法(high performance liquid chromatography,HPLC)[13]:
取樣:在Morris水迷宮測(cè)試結(jié)束后24 h內(nèi)取大鼠的海馬,腹腔注射1.5 g/kg 20%氨基甲酸乙酯麻醉,快速斷頭開顱取全腦;在焦碳酸二乙酯 (diethy pyrocarbonate,DEPC)冰面上吸除血跡,分離雙側(cè)海馬,稱重,加入1 ml甲醇-水離心液,低溫勻漿,取勻漿液4℃、10 000×g、離心15 min,取上清,濾膜過濾后-80℃保存待測(cè)液 (Glu含量以μg·g-1計(jì))。
色譜條件:18-ODS色譜柱柱溫35℃。流動(dòng)相A:0.1 mol·L-1醋酸鉀。流動(dòng)相B:甲醇,進(jìn)行二元梯度洗脫,梯度洗脫程序:(T,B%)(0,45%)(1,65%)(6,75%)(20,45%)。流動(dòng)相經(jīng)0.45 m微孔濾膜過濾,超聲脫氣。流速1.0 ml·min-1、激發(fā)波長(zhǎng)250 nm,發(fā)射波長(zhǎng)410 nm,以Glu峰面積定量。
氨基酸標(biāo)準(zhǔn)液的配制:Glu標(biāo)準(zhǔn)品配成100 μmol·L-1的標(biāo)準(zhǔn)溶液,測(cè)前稀釋。衍生及分析:取100 μl標(biāo)準(zhǔn)液或者組織樣品液于EP管中,加入100 μl衍生化試劑反應(yīng)2 min后進(jìn)樣20 μl。
Glu標(biāo)準(zhǔn)曲線的建立:配制濃度分別為0.15、0.30、0.74、1.47、2.94、3.68、5.88 mg·L-1的Glu標(biāo)準(zhǔn)溶液,衍生化處理后測(cè)定,采用外標(biāo)法進(jìn)行定量分析。
海馬中Glu含量的測(cè)定:將海馬勻漿上清液解凍,置入玻璃勻漿器,加入1 mol·L-1冰凍甲酸2 ml,冰浴下手動(dòng)充分勻漿。將勻漿液于4℃ 7 000 r·min-1離心30 min。取上清液置于-20℃保存?zhèn)溆?。? ml勻漿上清液加0.75 ml 4%的碳酸氫鈉溶液混勻,4℃、3 000 r·min-1離心5 min,取上清液0.45 μm濾膜過濾,分裝。取分裝液24 μl,在進(jìn)樣瓶中加入衍生試劑12 μl,四硼酸鈉緩沖液 (pH=9.18)960 μl,混勻,20℃下靜置3 min后依次進(jìn)樣,梯度洗脫,測(cè)定Glu含量。
統(tǒng)計(jì)學(xué)處理采用SPSS 17.0統(tǒng)計(jì)軟件,實(shí)驗(yàn)數(shù)據(jù)以均數(shù)±標(biāo)準(zhǔn)差表示;對(duì)各組樣本行方差齊性檢驗(yàn),采用析因設(shè)計(jì)方差分析方法分析各處理因素主效應(yīng)和交互效應(yīng);采用單因素方差分析方法分析各處理因素的單獨(dú)效應(yīng);行LSD檢驗(yàn)和SNK-q檢驗(yàn)進(jìn)行兩兩比較;P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
Morris水迷宮視頻分析系統(tǒng)檢測(cè)實(shí)驗(yàn)大鼠的EL和 SET ECT可造成大鼠學(xué)習(xí)記憶障礙,即延長(zhǎng)EL(F =147.258,P=0.000)并縮短SET(F=119.710,P =0.000)。異丙酚單獨(dú)使用亦可造成大鼠學(xué)習(xí)記憶障礙,即延長(zhǎng)EL并縮短EL,而ECT和異丙酚合用之后,其造成的學(xué)習(xí)記憶障礙程度反而減輕;人參皂苷Rg-1、PP-2A和氯化鋰單獨(dú)使用對(duì)大鼠學(xué)習(xí)記憶無明顯影響,但與ECT合用則可明顯改善ECT后的學(xué)習(xí)記憶 (EL:F=47.851,P=0.000;SET:F=33.145,P =0.000)。ECT干預(yù)與藥物干預(yù)存在交互作用 (EL:F=44.635,P=0.000;SET:F=22.125,P=0.000) (表1、表2)。
HPLC法檢測(cè)神經(jīng)遞質(zhì)Glu在海馬中含量ECT可明顯增加海馬中 Glu濃度 (F=349.310,P= 0.000),異丙酚和人參皂苷Rg-1在ECT前后均可減少海馬中Glu濃度 (ECT前:F=3.170,P=0.025; ECT后:F=9.159,P=0.000)(總效應(yīng):F=6.557,P=0.000),且ECT干預(yù)與異丙酚和人參皂苷Rg-1的藥物干預(yù)存在交互作用 (F=2.749,P=0.035),而PP-2A和氯化鋰在ECT前后對(duì)Glu濃度均無明顯影響(表3)。
表1 Morris水迷宮學(xué)習(xí)記憶成績(jī):EL(n=8,x-±s,s)Table 1 Morris water maze test:EL(n=8,x-±s,s)
表2 Morris水迷宮學(xué)習(xí)記憶成績(jī):SET(n=8,x-±s,s)Table 2 Morris water maze test:SET(n=8,x-±s,s)
表3 Glu在大鼠海馬組織中的含量 (n=8,x-±s,μmol/gprot)Table 3 The content of glutamate in the hippocampus of rats(n=8,x-±s,μmol/gprot)
海馬CA1區(qū)和齒狀回在大鼠空間長(zhǎng)時(shí)記憶形成中具有重要作用[14-15],認(rèn)知地圖即儲(chǔ)存于海馬[15-16]。水迷宮主要測(cè)試空間記憶,故本實(shí)驗(yàn)選擇海馬區(qū)域進(jìn)行研究。Glu對(duì)學(xué)習(xí)記憶的影響具有雙向作用,適當(dāng)激動(dòng)N-甲基-D-天門冬氨酸受體 (N-methyl-D-aspartate receptor,NMDAR)是學(xué)習(xí)記憶所必須的,但如果腦內(nèi)Glu釋放過多,過度激動(dòng)膜電位依賴式GluR會(huì)導(dǎo)致Ca2+大量?jī)?nèi)流[17-18],激活對(duì) Ca2+敏感的各種酶類,產(chǎn)生氧自由基,導(dǎo)致線粒體損害,激活磷酸肌醇環(huán)路,破壞細(xì)胞的超微結(jié)構(gòu)[19],使神經(jīng)元變性乃至死亡,進(jìn)而造成學(xué)習(xí)記憶障礙。ECT后學(xué)習(xí)記憶障礙與Glu信號(hào)系統(tǒng)功能異常有關(guān)[2,20]。本研究發(fā)現(xiàn)ECT后導(dǎo)致的學(xué)習(xí)記憶障礙伴發(fā)海馬內(nèi)Glu濃度升高,驗(yàn)證了過高濃度的Glu可誘發(fā)興奮性毒性,揭示了ECT導(dǎo)致認(rèn)知障礙的機(jī)制。
本研究發(fā)現(xiàn)單獨(dú)使用異丙酚會(huì)導(dǎo)致學(xué)習(xí)記憶減退,但與ECT合用時(shí)則可明顯減輕ECT后的學(xué)習(xí)記憶障礙。而且異丙酚可以減少海馬中Glu的濃度,尤其以ECT后為甚,此點(diǎn)或與異丙酚改善ECT后認(rèn)知功能相關(guān)。結(jié)合既往研究,推測(cè)其機(jī)制如下:異丙酚可抑制神經(jīng)元合成和釋放Glu[21];異丙酚的苯環(huán)基團(tuán)可作用于NMDAR的苯環(huán)己哌啶結(jié)合位點(diǎn),非競(jìng)爭(zhēng)性拮抗NMDAR,減少因NMDAR過度興奮導(dǎo)致的神經(jīng)元損傷;異丙酚通過升高蛋白激酶 B性抑制神經(jīng)元凋亡[22];異丙酚直接作為 NMDAR阻滯劑而發(fā)揮作用[23]。
本研究還發(fā)現(xiàn)人參皂苷Rg-1、PP-2A和氯化鋰均可緩解ECT后學(xué)習(xí)記憶障礙。人參皂苷含有由17個(gè)碳原子排列成4個(gè)環(huán)的gonane類固醇核,其中人參二醇類皂苷Rgl是人參的主要活性成分。人參皂甙Rg-l對(duì)應(yīng)激性認(rèn)知障礙產(chǎn)生保護(hù)作用的機(jī)制可能是:調(diào)節(jié)海馬內(nèi)的鈣濃度;增加海馬的突觸密度;增加ChAT活性,抑制AchE活性;增加突觸體對(duì)膽堿的攝取、提高腦中去甲腎上腺素、多巴胺的含量;減少Glu的釋放,增加神經(jīng)膠質(zhì)細(xì)胞對(duì)Glu的再攝取,抑制Glu興奮性毒性;增加神經(jīng)元的細(xì)胞膜和突觸小體膜流動(dòng)性;通過JNK/p38 MAPK途徑、GSK3β途徑或CDK5途徑使過度磷酸化的Tau蛋白去磷酸化[24-26];上調(diào)學(xué)習(xí)記憶相關(guān)蛋白NR1和NR2B的表達(dá)以及基底前腦神經(jīng)生長(zhǎng)因子 (nerve growth factor,NGF)的表達(dá)[27]。PP-2A是真核生物體內(nèi)的主要絲/蘇氨酸蛋白磷酸酶,可催化人腦Tau蛋白多個(gè)位點(diǎn)去磷酸化[28],使Tau蛋白恢復(fù)生物學(xué)功能[29];占人腦總Tau蛋白磷酸酯酶活性的71%。氯化鋰神經(jīng)元保護(hù)機(jī)制可能是:通過抑制GSK-3β的活性[10]抑制Tau蛋白磷酸化;通過激活磷酸肌醇3-激酶或抑制早期基因的磷酸化,抑制神經(jīng)元凋亡[30];作用于Wnt通路,拮抗由易凝聚蛋白引起的毒性;阻斷Glu的興奮毒性,下調(diào)NMDA受體活性[31];通過防止脂質(zhì)過氧化和DNA的斷裂拮抗Glu引起的氧化損傷。本研究結(jié)果顯示,人參皂苷Rg-1、PP-2A和氯化鋰單獨(dú)短期內(nèi)應(yīng)用對(duì)學(xué)習(xí)記憶沒有明顯影響,但與ECT合用則可明顯逆轉(zhuǎn)ECT后的學(xué)習(xí)記憶能力。在4種實(shí)驗(yàn)藥物中,氯化鋰改善應(yīng)激后學(xué)習(xí)記憶的效果最為明顯。
比較4種藥物改善認(rèn)知功能的機(jī)制,發(fā)現(xiàn)無論行ECT與否,異丙酚和人參皂苷Rg-1均可減少海馬中Glu濃度;而PP-2A和氯化鋰對(duì)Glu濃度似無明顯影響。綜合相關(guān)研究和本研究的實(shí)驗(yàn)結(jié)果,可知4種藥物作用機(jī)制不同:異丙酚、人參皂苷Rg-1可減少Glu濃度、拮抗其興奮性毒性;氯化鋰可拮抗Glu興奮性毒性;而PP-2A似乎通過拮抗Glu興奮性毒性以外的途徑改善應(yīng)激后的學(xué)習(xí)和記憶能力。
綜上,異丙酚在ECT過程中使用,不但可以使患者進(jìn)入麻醉狀態(tài),減輕ECT治療的痛苦,還可緩解ECT治療后的認(rèn)知障礙。此外,本研究還提示,若在ECT治療中使用人參皂苷Rg-1、PP-2A和氯化鋰,亦可明顯減輕ECT治療后的認(rèn)知障礙。因此,本研究進(jìn)一步比較和分析這4種藥物緩解ECT治療后認(rèn)知障礙的藥理學(xué)機(jī)制,對(duì)于制定最優(yōu)ECT治療方案具有重要的臨床價(jià)值。
[1] Ebert M,Loosen P,Nurcombe B,et al.Current diagnosis and treatment psychiatry[M].2th ed.New York:McGraw-Hill Press,2008:306.
[2] Luo J,Min S,Wei K,et al.Propofol protects against impairment of learning-memory and imbalance of hippocampal Glu/GABA induced by electroconvulsive shock in depressed rats[J].J Anesth,2011,25(5):657-665.
[3] Andrade C,Singh NM,Thyagarajan S,et al.Possible glutamatergic and lipid signalling mechanisms in ECT-induced retrograde amnesia:experimental evidence for involvement of COX-2,and review of literature[J].J Psychiatr Res,2008,42(10):837-850.
[4] Dong J,Min S,Wei K,et al.Effects of electroconvulsive therapy and propofol on spatial memory and glutamatergic system in hippocampus of depressed rats[J].J ECT,2010,26 (2):126-130.
[5] Zhang H,Wang W,Gao W,et al.Effect of propofol on the levels of neurotransmitters in normal human brain:a magnetic resonance spectroscopy study[J].Neurosci Lett,2009,467(3):247-251.
[6] Fang F,Chen X,Huang T,et al.Multi-faced neuroprotective effects of Ginsenoside Rg1 in an Alzheimer mouse model[J].Biochim Biophys Acta,2011,1822(2):286-292.
[7] Zhang Y,Liang J,Sun L,et al.Inhibition of PP2A and the consequent activation of JNK/c-Jun are involved in tributyltininduced apoptosis in human amnionic cells[J].Environ Toxicol,2013,28(7):390-400.
[8] Liu F,Liang Z,Gong CX.Hyperphosphorylation of tau and protein phosphatases in Alzheimer disease[J].Panminerva Med,2006,48(2):97-108.
[9] Liang Z,Liu F,Iqbal K,et al.Decrease of protein phosphatase 2A and its association with accumulation and hyperphosphorylation of tau in Down syndrome[J].J Alzheimers Dis,2008,13(3):295-302.
[10] Zhao L,Wang F,Gui B,et al.Prophylactic lithium alleviates postoperative cognition impairment by phosphorylating hippocampal glycogen synthase kinase-3β (Ser9)in aged rats[J].Exp Gerontol,2011,46(12):1031-1036.
[11] 陸文惠,屈秋民,曹紅梅,等.鋰對(duì)慢性鋁暴露大鼠腦內(nèi)CDK5和PP2A表達(dá)的影響[J].西安交通大學(xué)學(xué)報(bào):醫(yī)學(xué)版,2010,31(4):463-466.
[12] Tasset I,Medina FJ,Pe?a J,et al.Olfactory bulberctomy induced oxidative and cell damage in rat:protective effect of melatonin[J].Physiol Res,2010,59(1):105-112.
[13] 董素平,徐暢,原婷婷,等.海馬NMDA受體經(jīng)SP-NK1受體通路參與慢性應(yīng)激誘發(fā)的抑郁樣行為[J].心理學(xué)報(bào),2011,43(9):1045-1054.
[14] Wall AM,Corcoran AE,O’Halloran KD,et al.Effects of prolyl-hydroxylase inhibition and chronic intermittent hypoxia on synaptic transmission and plasticity in the rat CA1 and dentate gyrus[J].Neurobiol Dis,2014,62(1):8-17.
[15] Preissmann D,Bertholet L,Sierro G,et al.Accurate performance of a rat model of schizophrenia in the water maze depends on visual cue availability and stability:a distortion in cognitive mapping abilities[J].Behav Brain Res,2011,223(1):145-153.
[16] Dennis SH,Jaafari N,Cimarosti H,et al.Oxygen/glucose deprivation induces a reduction in synaptic AMPA receptors on hippocampal CA3 neurons mediated by mGluR1 and adenosine A3 receptors[J].J Neurosci,2011,31(33):11941-11952.
[17] Vieira M,F(xiàn)ernandes J,Burgeiro,et al.Excitotoxicity through Ca2+-permeable NMDA receptors requires Ca2+-dependent JNK activation[J].Neurobiol Dis,2010,40(3):645-655.
[18] Bliss RM,F(xiàn)inckbone VL,Trice J,et al.Tumor necrosis factor-α(TNF-α)augments NMDA-induced Purkinje neuron toxicity[J].Brain Res,2011,1386(1):1-14.
[19] Kartalci S,Karabulut AB,Ozcan AC,et al.Acute and chronic effects of electroconvulsive treatment on oxidative parameters in schizophrenia patients[J].Prog Neuropsychopharmacol Biol Psychiatry,2011,35(7):1689-1694.
[20] Kato N.Neurophysiological mechanisms of electroconvulsive therapy for depression[J].Neurosci Res,2009,64(1):3-11.
[21] Yagmurdur H,Ayyildiz A,Karaguzel E,et al.Propofol reduces nitric oxide-induced apoptosis in testicular ischemiareperfusion injury by downregulating the expression of inducible nitric oxide synthase[J].Acta Anaesthesiol Scand,2008,52(3):350-357.
[22] Wang HY,Wang GL,Yu YH,et al.The role of phosphoinositide-3-kinase/Akt pathway in propofol-induced postconditioning against focal cerebral ischemia-reperfusion injury in rats[J].Brain Res,2009,1297(4):177-184.
[23] Kingston S,Mao L,Yang L,et al.Propofol inhibits phosphorylation of N-methyl-D-aspartate receptor NR1 subunits in neurons[J].Anesthesiology,2006,104(4):736-739.
[24] Song XY,Hu JF,Chu SF,et al.Ginsenoside Rg1 attenuates okadaic acid induced spatial memory impairment by the GSK3β/tau signaling pathway and the Aβ formation prevention in rats[J].Eur J Pharmacol,2013,710(1-3):29-38.
[25] Li W,Chu Y,Zhang L,et al.Ginsenoside Rg1 attenuates tau phosphorylation in SK-N-SH induced by Aβ-stimulated THP-1 supernatant and the involvement of p38 pathway activation[J].Life Sci,2012,91(15-16):809-815.
[26] He Y,Zhao H,Su G.Ginsenoside Rg1 decreases neurofibrillary tangles accumulation in retina by regulating activities of neprilysin and PKA in retinal cells of AD mice model[J].J Mol Neurosci,2014,52(1):101-106.
[27] 鄔偉,楊景全,何志勇,等.人參皂苷Rg1聯(lián)合骨髓間充質(zhì)干細(xì)胞移植對(duì)癡呆大鼠學(xué)習(xí)記憶能力的影響[J].中國(guó)中西醫(yī)結(jié)合雜志,2011,31(6):799-802.
[28] Xiong Y,Jing XP,Zhou XW,et al.Zinc induces protein phosphatase 2A inactivation and tau hyperphosphorylation through Src dependent PP2A(tyrosine 307)phosphorylation[J].Neurobiol Aging,2013,34(3):745-756.
[29] Liu P,Zou LB,Wang LH,et al.Xanthoceraside attenuates tau hyperphosphorylation and cognitive deficits in intracerebroventricular-streptozotocin injected rats[J].Psychopharmacology(Berl),2014,231(2):345-356.
[30] Bhavsar SK,Merches K,Bobbala D,et al.AKT/SGK-sensitive phosphorylation of GSK3 in the regulation of L-selectin and perforin expression as well as activation induced cell death of T-lymphocytes[J].Biochem Biophys Res Commun,2012,425(1):6-12.
[31] Liu RJ,F(xiàn)uchikami M,Dwyer JM,et al.GSK-3 inhibition potentiates the synaptogenic and antidepressant-like effects of subthreshold doses of ketamine[J].Neuropsychopharmacology,2013,38(11):2268-2277.
Effects of Propofol,Ginsenoside Rg-1,Protein Phosphatae-2A,and Lithium on the Learning and Memory in Rats and the Content of Glutamic Acid in Hippocampus after the Electmconrulsive Therapy
LIU Chao1,ZHANG Xue-ning1,LIU Dong2,MIN Su3
1Department of Radiology,2Department of Neurosurgery,the Second Hospital of Tianjin Medical University,Tianjin 300211,China3Department of Anesthesiology,the First Affiliated Hospital of Chongqing Medical University,Chongqing 400016,China
ZHANG Xue-ning Tel:022-28331788,E-mail:luckyxn@126.com
Objective To explore and compare the effects of propofol,ginsenoside Rg-1,protein phosphatae-2A,and lithium on the learning and memory and the concentration of glutamic acid in hippocampus after the electmconrulsive therapy(ECT)in the model of depressed rats induced after the removal of olfactory bulb.Methods The depressed rats were randomized into ECT intervention(two levels:no disposition and a course of e-lectroconvulsive shock)and drug intervention(five levels:microinjection of saline injection,propofol,ginsenoside Rg-1,protein phosphatae-2A,and lithium,20 g/L).Learning and memory were evaluated using the Morris water maze test within 24 h after the course of ECT.Glutamate contents in the hippocampus of rats were examined using high-performance liquid chromatography.Results Both propofol alone and ECT alone induced the impairment of learning and memory in depressed rats,but their combination alleviated the such impairment caused by ECT.Ginsenoside Rg-1,protein phosphatae-2A,and lithium had no obvious effect on the leaning and improved the learning and memory when in combination with ECT.There was a synergic effect between ECT intervention and drug intervention.ECT remarkably increased the glutamate content in the hippocampus of depressed rats,which could be reduced by both propofol and ginsenoside Rg-1.Protein phosphatae-2A and lithium did not affect glutamate content in the hippocampus of depressed rats before and after ECT.Conclusions ECT can increase the content of glutamate in hippocampus and thus cause the impairment of learning and memory in depressed rats.Propofol and ginsenoside Rg-1 can ameliorate the impairment by reducing the content of glutamate in hippocampus.Protein phosphatae-2A and lithium may also improve the learning and memory in depressed rats.
propofol;ginsenoside Rg-1;protein phosphatae-2A;lithium;electroconvulsive therapy;learning and memory ability;glutamic acid
張雪寧 電話:022-28331788,電子郵件:luckyxn@126.com
R395.1
A
1000-503X(2014)03-0234-07
10.3881/j.issn.1000-503X.2014.03.002
國(guó)家自然科學(xué)基金 (30972831)和國(guó)家博士后科學(xué)基金 (2013M530880)Supported by the National Natural Sciences Foundation of China (30972831)and China Postdoctoral Science Foundation(2013M530880)
2013-12-02)
·論 著·