• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research of Energy-saving Control of Oil-well Power Heater Based on RNN Neural Network

    2014-09-14 06:55:42SUNJingenYANGYang
    沈陽理工大學(xué)學(xué)報 2014年4期
    關(guān)鍵詞:金發(fā)

    SUN Jingen,YANG Yang

    (Shenyang Ligong University,Shenyang 110159,China)

    Research of Energy-saving Control of Oil-well Power Heater Based on RNN Neural Network

    SUN Jingen,YANG Yang

    (Shenyang Ligong University,Shenyang 110159,China)

    For the beam pumping unit,the power consumption of oil-well power heater accounts for a large part of the pumping unit.Decreasing the energy consumption of the power heater is an important approach to reduce that of the pumping unit.To decrease the energy consumption of oil-well power heater,the proper control method is needed.Based on summarizing the existing control method of power heater,a control method of oil-well power heater of beam pumping unit based on RNN neural network is proposed.The method is forecasting the polished rod load of the beam pumping unit through RNN neural network and using the polished rod load for real-time closed-loop control of the power heater,which adjusts average output power,so as to decrease the power consumption.The experimental data show that the control method is entirely feasible.It not only ensures the oil production,but also improves the energy-saving effect of the pumping unit.

    RNN neural network;oil-wells;power heating;energy-saving

    As the environment is getting worse and worse,people′s daily life has been affected.So we must strive to develop green economy and strengthen energy conservation and emissions reduction measures.Oil exploitation is a relatively large energy consuming industry,so it needs energy conservation and emissions reduction.In oil exploitation,beam pumping unit is the most commonly used oil extraction equipment,and the use count is huge.As to how to decrease the energy consumption of the pumping unit,the related articles present methods of energy conservation[1].For most of the oil field,due to the long-term exploitation,the oil wells have no enough liquid supplying and its submergence depth is very low and there are complicated conditions of oil extraction such as high viscosity and wax,sandy,too much gas,flooded and strong corrosion and so on appear,In order to guarantee the normal work and oil production of the pumping unit,for oil wells which have high viscosity and,wax and,sandy,the pumping unit always configures power heaters which can heat the oil wells,to lower oil viscosity and lighten the load of the pumping unit.In this way,it can not only increase oil production,but also decrease the failure rate of the pumping unit[2].The power consumption of the pumping unit equipped with power heaters includes two parts,the power consumption of motor and that of the power heater.The second part almost accounts for half of the whole power consumption.So decreasing the power consumption of the power heater can directly reduce the power consumption of the pumping unit.Aiming at the current situation of power heater control and energy-saving measures,the article proposes an energy-saving control method of the oil well power heater based on RNN neural network.The core of the method is forecasting the polished rod load of the pumping unit through RNN neural network and constituting a closed-loop control of the power heater by the polished rod load.The experimental data show that the control method is completely feasible.It can decrease the power consumption of the power heater and the energy-saving effect is obvious.It can achieve the purpose of energy conservation and emissions reduction of the oil field[3].

    1 THE OVERVIEW OF THE CONTROL METHOD OF OIL-WELL POWER HEATER

    With the continuous deepening of the oil field development,for the oil production plants based on high pour-point oil,the pumping unit must configures power heater through which heat the oil and light it,so that we can lift the crude oil to the ground smoothly.At present the physical methods of oil well heating includes two kinds.One is hollow rod hot-line;the other is the energy into heat energy and lighting the crude oil by heating it in order to lift it to the ground.At present,there are three kinds of commonly used methods of oil-well power heater control[4],as outlined below:

    1)Continuous control method

    In order to guarantee the normal work and oil production of the pumping unit,the power heater operates at full power and runs continuously long-term.Although this method can ensure the pumping unit work normal,the oil production continues to decrease with the submergence depth of the oil-well becomes lower and the continuously running power heater will waste a lot of electrical energy[5].So the method has no energy-saving effect.

    2)Changing the power method

    This method is periodically altering the output power of the power heater to achieve the energy-saving purpose.But how to determine the output power time of the power heater is very difficult and it can only rely on the technicians′ experience to adjust the power heater′s power.So it does not have operability[6].

    3)Timing control method

    This method make the power heater operates at full power,but it runs periodically by clock control,not runs continuously.The shortcomings of the method is the same with the changing power method-it is difficult to determine the running time and the stop time of the power heater and it also can only rely on the technicians′ experience to determine the time.Due to the continuously change of the oil-well condition,this metod does not have operability[7].

    All of the methods above can′t break through the open-loop control of the power heater and can′t realize the power heater adjusting automatically as the load of the pumping unit changes.To realize the real time automatic control of the power heater,a closed loop control system regarding the power heater as control object should be formed.

    2 THE REALIZATION OF ELECTRIC HEATING CONTROL BASED ON RNN NEURAL NETWORKS

    2.1 The principe of how the RNN neural network predict the load of the pumping unit

    For the pumping unit normally produced,the polished rod load is mainly be affected by the flow condition,the extent of wax deposition and clotting of the oil in addition to the liquid production of the well.In the case of the liquid production is constant,when the flow condition is worse or the extent of wax deposition and clotting is deteriorated,the polished rod load will be obviously increased,otherwise the load will be reduced.So we can control the mode of operation of the electric heating through monitoring the load of the pumping unit[8].That is,starting the power heater when the load is large,and stopping it when the load is low.So the key to this problem is how to measure the polished rod load of the pumping unit.The method so far is regular inspection,and measuring directly by the load sensor requiring the halt and start-up each time.So the measure process is not only complex and has a knock on the pumping unit which will affect the lifetime of it,but also makes us don′t know the real time operating condition is complex due to the periodical inspection.In addition,the operating condition of the pumping unit is complex and the load sensor cannot adapt to the long-term working condition.That is to say the load sensor can not realize the real-time measurement of the polished rod load.Since we cannot directly measure the polished rod load of the pumping unit in real time,other methods should be used.Researchers have proposed indirect measurement of the polished rod load.However,the method requires the speed of the landing top and the speed of the top and bottom dead center of the beam pumping unit is zero,so the load error of this position is large.This article proposes an indirect measurement method which forecasting the polished rod load of the pumping unit based on the RNN neural network[9].The variation of physical quantities that the pumping unit involves are nonlinear and these physical quantities have no certain mathematical relationships,so we can build the mapping relationship between the main physical quantities which can be directly measured and the polished rod load utilizing the nonlinear approximation ability of the neutral network.Taking the real-time and complexity of the pumping unit into consideration,the main physical quantities selected should not only can be easily real time measured but also can reflect the polished rod load of the pumping unit,so choosing the motor power,polished rod displacement and motor current as the input variables of the neural network and the polished rod load as the output variable[10].Also,the continuity and dynamic characteristic of the polished rod load are considered.So the neural network structure is intended to be RNN neural network—recurrent neural network.RNN neural network train by BP algorithm,so the neural network that adopted in this paper might name it ′BP-RNN′ model as well.Descriptions of its working principle are below:

    The beam swing angle(θ),is measured by angle sensor,motor power(A),is measured by power transmitter,and motor current(I),is measured by current transmitter.The beam pumping unit is cyclically operating and the period of different type are not necessarily the same,but the pumping unit′s cranks are all rotated 360 degree in a period.So using the rotation angle of the crank to determine the number of measurement points in a cycle is more intuitive.Generally we can adopt 5,10 or 15 degree as measuring distance and one distance corresponding to a sampling point which is represented byk.The′BP-RNN′ model that this paper select has three input variables and one output variable,as show in figure 1.Three input variables are respectively the motor powerA(k),the polished rod displacementS(k)and motor currentI(k).Among them,S(k)is calculated by theθ(k)according to the beam forearm length and the output variable of the neural network is the polished rod loadP(k+1).Neural network hidden layer weightsWijand thresholdsBiin table 1 and table 2.The output layer weightsWkand thresholdsBkin table 3 and table 4.

    Figure 1 BP-RNN Neural network diagram

    Table1NEURALNETWORKHIDDENLAYERWEIGHTWij

    J1J2J3J4J5J6I1-0 6064-1 2240-0 6723-0 53800 8276-2 0144I2-0 56270 3436-0 7771-1 42250 6882-1 5930I30 0325-1 22341 71350 1430-0 8506-1 9010I4-1 56070 3105-1 1922-3 40711 77902 1424I53 5005-3 04833 4956-4 4224-3 7098-3 3918I6-0 2985-0 43751 3028-0 06940 83900 0168

    Table2NEURALNETWORKHIDDENLAYERTHRESHOLDBi

    i123456Bi-1 8872-1 13230 7334-0 3774-1 1323-1 8872

    Table3NEURALNETWORKOUTPUTLAYERWEIGHTWk

    k123456LWk0 91632 7138-1 24216 44272 35773 6090

    Table4NEURALNETWORKHIDDENLAYERTHRESHOLDBk

    k123456Bk-1 3529-0 98760 2673-0 7539-1 14621 7352

    As can be seen from the figure 1,the BP network of ′BP-RNN′ neural network model has three layers— input layer,hidden layer and output layer. The input layer has six input variables. In addition toA(k),S(k),I(k),the other three are the previous three values of the polished rod loadP(k+1)—P(k),P(k-1)andP(k-2).This can not only consider the dynamic characteristic,but also reduce the calculation amount of the neural network. The number of neurons of the hidden layer can be determined by the training precision. As for the BP theoretical computing process,this article won′t specify and it can be seen in resource[11].Generally speaking,the oilfield data center saved the historical data of each pumping unit.These data include well number,data of the indicator diagram(polished rod load and displacement),motor power,motor current,pumping parameters,speed,stroke,etc.That is to say,owning these historical data means owning the training sample data of the neural network.The composition of the sample data will be specified in the section of testing results and analysis.

    2.2 The realization of the closed-loop control of Oil well electric heating

    In order to achieve real-time closed-loop control of the oil well electric heating,the control system requires hardware devices and software programming.The control system block diagram is shown in Figure 2.

    Figure 2 Well electric heating control blook diagram

    As can be seen from Figure 2,the oil well electric heating control system is comprised by controller,angle sensor,power transmitter,current transmitter,data display and parameter setting unit,power heater,etc.The core of the system is controller which is to complete the tasks of measurement,data calculation,the prediction and control of the neural network.The working process of the system is shown as below:The angle sensor can use the beam pumping unit dedicated angle sensor which is used to measure the angle of the beam pumping unit movement(θ)and the controller convert the data of the angle sensor into polished rod displacement(S(k))through program;The power transmitter is in charge of converting the motor power into the signal that the controller received and the controller convert the received power signal into the real-time power of the motor(A(k));The current transmitter is to transform the motor current to the signal that the controller received and the controller convert the received current signal into real-time current of the motor(I(k));With the data ofA(k),S(k)andI(k),the controller forecasting the polished rod load in real-time through the trained neural network application.When the forecasting load is larger than the set start-up corresponding value,the controller starts up the power heater;when the forecasting load is lower than the set halt corresponding value,the controller stops the power heater.

    So it realized the closed-loop control of the power heater through the controller according to the polished rod load.The parameters that the control system required is inputted through data display and parameter setting unit and these parameters include some technical data of beam pumping unit(such as beam forearm length,maximum load,etc.),the weight parameters of neural network,the control frequency that the power heater allows to start and stop and so on.While the closed-loop control of power heater is realized by forecasting the polished rod load through neural network,considering the complexity of the working condition of pumping unit,in order to ensure the normal operation,other factors that influence the electrical heating should be considered.For example,set reasonable maximum and minimum load parameters that used for electric heating start-stop control and prevent frequent movement of the power heater and so on.The basic flow of the electric heating closed-loop control is shown in Figure 3.

    In Figure 3,PmaxandPminare the parameters of set maximum polished rod load and minimum polished rod load,which are the basis of starting and stopping the power heater.C1andC2are the counters.C1is used for accumulating the work cycle times of the pumping unit when the real-time polished rod is larger than the set load andC2is used for accumulating the work cycle times of the pumping unit when the real-time polished rod is lower than the set load.Their role is equivalent to time delaying function,preventing the frequent movement of the power heater.n1andn2are the set value corresponding to counterC1andC2.

    Figure 3 The flow chart of the well electric heating control

    3 TEST AND RESULT ANALYSIS

    3.1 The profile of the testing pumping unit

    The closed loop control system of oil well electric heating based on RNN neural network breakthrough the traditional oil well electric heating control method.Utilizing this method to test an oil well and the technical data of the testing well are as follows:

    Well number: JING29-35

    Pumping Model: CYJY12-12-5-73HB

    Motor rated power: 45kw

    Power heater rated power: 45kw

    Stroke: 5.30m

    Pumping speed: 2.84beats/min

    Mode of production: Within Hotline

    3.2 The samples collecting data of the neural network

    Get the historical data of JING29-35 from the oilfield data center and these data include the load,displacement,motor power and motor current of the pumping unit. Due to large amount of data,this article won’t list them.For illustrative purpose,take the example of the pumping unit data of one cycle to illustrate the composition of the sample data.The crank of the pumping unit turns 360 degree in a cycle and chooses 15 degree as one sampling point,so it needs 24 times of data sample in a cycle.Table 5 is about the historically original data of one cycle.From the historically original data in table 5 and according to the mapping relation of the input and output of the ‘BP-RNN’ model,can compose the sample data that the neural network training needed.Table 6 lists part of the sample data-six groups of samples.According to the rule of table 6,the historical data of a cycle can compose 24 samples of data groups.

    During the trial,the neural network is trained using offline mode and utilizing Matlab tools and the training results are directly applied to the controller program.Although table 6 only lists 24 groups of samples,the actual training is using multiple groups of data samples that composed by the data of multiple operating cycles of the pumping unit.The more data samples,the more accurate is the load that the neural network forecasted.

    Table 5 THE DATE OF A CYCLE

    Table6NEURALNETWORKTRAININGSAMPLEDATA

    SampleGroupnumber InputvariabledataTargetvalueA(k)S(k)I(k)P(k)P(k-1)P(k-2)P(k+1)13 600 006 4472 5970 8969 1080 5128 550 2115 2880 5172 5970 8992 33314 850 6226 5492 3380 5172 5997 49420 481 4136 6097 4992 3380 5197 49518 901 6433 7897 7997 4992 3397 86616 432 2929 3697 8697 7997 4997 79716 542 5929 5696 7397 8697 7997 84812 043 1621 5297 8496 7397 8697 3398 663 6215 4897 3397 8496 7397 32108 103 8614 4897 3297 3397 8497 02116 754 2912 0797 0297 3297 3397 92126 534 5911 6697 9297 0297 3297 12136 644 8011 8697 1297 9297 0297 44146 755 0812 0797 4497 1297 9297 94155 515 309 8597 9497 4497 1293 8516-0 345 00-0 4193 8597 9497 4494 0117-0 344 43-0 4194 0193 8597 9485 8518-0 453 72-0 5585 8594 0193 8572 2019-0 343 30-0 4172 2085 8594 0173 0920-0 342 65-0 4173 0972 2085 8566 2721-0 342 30-0 4166 2773 0972 2069 5722-0 341 65-0 4169 5766 2773 0969 1023-0 341 37-0 4169 1069 5766 2770 8924-0 230 37-0 2770 8969 1069 5772 59

    3.3 The simulation

    Matlab is acombination of two words matrix and laboratory,meaning matrix factory.Used to provide access to LINPACK and EISPACK matric interfaces package.Then it gradually developed into the general technological calculation chart visual interactive systems and programming languages.

    Figure 4 Matlab operate interface

    Figure 5 Matlab operate plotperform

    During the simulation,the accuracy of the neural network is tested.Some pre-processing is needed before the training data can be used by the network.Each column of the input data should be normalized to[0.0 1.0] linearly.Select 14 groups of experimental data as training sample of neural network,in addition to select 10 groups of experimental data as test sample.BP algorithm to select the initial learning rate parameter 0.03,the number of learning toN=1000 times.Learning rate changes with the number of learning in figure 4.From figure 5,the best validation performance of Matlab operate plotperform is 0.0061018 at epoch 7.And antinormalization should be preformed to achieve the orginal scale.The neural network toolbox in Matlab is applied in the simulation for training and testing.Figure 6 shows the difference between the output of the trained neural network and the target.

    Figure 6 The actual output compared with training

    The simulation between the prediction and target proves the validity of the application of neural network.

    3.4 Test results

    The control system was put into operational testing in the oil well that the JING29-35 pumping unit was in and it set the electric heating start and stop parameters—Pmax=89.80kN,Pmin=79.00kN,n1=n2=10.Under normal working condition of the pumping unit,the data that the controller recorded when the power heater is operating are below:

    Working hours of the pumping unit:t=210.13 hours.

    Run time of the power heater:tON=158.6 hours.

    Stop time of the power heater:tOFF=51.53 hours.

    We might as well take the power saving rate of the power heater forηandη=tOFF/t.So the power saving rate of the power heater of the testing pumping unit is:

    η=tOFF/t

    =51.53.82/210.13×100%

    =24.52%

    The power saving rate above is defined relative to continuous run of the oil well electric heating.When the electric heating is continuous,the power heater is running in full power.So the power saving rate is zero on the definition above.From the power saving rate of the testing oil well,we can see that the power saving rate of the power heater reached 24.52%under normal working condition of the pumping unit and the energy-saving effect is very obvious.

    4 CONCLUSION

    1)For the energy consumption of the pumping unit,the power consumption of the power heater of oil-well accounts for the majority of the pumping unit.So decreasing the energy consumption of the power heater is an important approach to reduce that of the pumping unit.

    2)The control method of the oil well electric heating based on RNN neural network that the article proposed breakthrough the traditional oil well electric heating control method.The core of the method is forecasting the polished rod load of the pumping unit through artificial neural network and constituting a closed-loop control of the power heater to adjust the output average power of the power heater for the purpose of electric heating energy saving.

    3)In control method of the oil well electric heating based on RNN neural network that the article proposed breakthrough the traditional oil well electric heating control method.Else,other factor is considered.

    4)The application instance verified the validity of the electric heating control method.For the testing oil well,under normal working condition of the pumping unit,the power saving rate of the power heater reached 24.52%and the energy-saving effect is very obvious.If the method was volume applied,it will greatly reduce the electricity costs of oil producting and achieve the purpose of energy conservation and emission reduction reaching green economy.

    [1]Su Desheng,Liu Xiangang,Lu weixiang,et al.Summarizes of energy saving of Weak-beam Oil-pumping Units[J].Petroleum Machine,2001,29(5):49-53.

    [2]Cai Xiuli,Zhou li.Pilot Study of oil-pumping energy saving[J].Oil Field Energy Saving,2006,17(2):24-29.

    [3]Ramkamal Bhagavatula,Olu A.Fashesan,Loyd R,et al.A Computational Method for Planned Kinematic Analysis of Beam Pumping Units[J].Journal of Energy Resources Technology,2007,12(6):19-26.

    [4]Wang Heyan,Wang Zonghe.Develop Intelligent Control Device[J].Modern Making Engineering,2005,22(9):97-99.

    [5]Ma Guangjie,Zhang Jizhen,Yang Jing,et al.Develop Power Device of Weak-beam Oil-pumping Units[J].Petroleum Machine,2006,34(5):32-34.

    [6]DING Bao,QI Wei-gui,ZHU Xue-li.A Study of Energy2Saving Control of Oil Pump Based on Fuzzy Neural Network Prediction[J].ACTA ELECTRONICA SINICA,2004,32(10):1742-1745.

    [7]Bernie Miller,Nicholas Boyaci.Hydraulic diaphragm electric submersible pump improves completion design lowers lifting costs[J].World Oil,2006,23(7):42-35.

    [8]Li Xiaopeng,Meng Tao,Zhao Chun.Experimental Study on a Novel Linear Electromagnetic Pumping Unit[J].IEEE Transactions on Magnetics,2007,9(3):36-58.

    [9]Barry J,Ding Li Yu.Selecting radial basis function network centers with recursive orthogonal least squares training[J].IEEE Trans Neural Networks,2000,11(3):306-314.

    [10]Zhang Jianjun,Li Changxi.Indirect Measure Method of Dynamometer Card of Beam Pumping Unit[J].J.Huazhong Univ.of Sci.& Tech(Nature Science Edition),2004,32(11):35-37.

    [11]Rahman S,Bhatnagar R.An expert system based algorithm for short-term load forecast[J].IEEE Trans on Power System,1998.3(2):392-399.

    馬金發(fā))

    date: 2013-12-09

    Biography: SUN Jingen(1962—),male,associate professor,Research direction:mainly engaged in intelligent control,power electronic technology,energy saving control,PLC application aspects of teaching and scientific research work.

    1003-1251(2014)04-0087-08

    TH71DocumentcodeA

    猜你喜歡
    金發(fā)
    Angle-resolved spectra of the direct above-threshold ionization of diatomic molecule in IR+XUV laser fields?
    誰喝光了我的湯
    College Teaching Quality Evaluation Model and Implementation
    The Application and Simulation of Fuzzy Adaptive PID in Household Heating Metering System
    Research on Orbit Formation and Stability Control Based on High Orbit
    Research on Synchronization Technology of DSSS Signal Based on UQPSK
    Study on Image-denoising of Liquid Column in Investment Casting Auto-pouring System
    Research of the Visualization Temperature Field of the Communication Room Based on the Reconstruction of Three-dimensional Temperature Field
    Fault Diagnosis of Analog Circuit Based on PSO and BP Neural Network
    Design of the Control Circuit of C523 Vertical Lathe on PLC
    欧美性长视频在线观看| 2018国产大陆天天弄谢| 美女主播在线视频| 日韩制服骚丝袜av| 欧美日韩亚洲国产一区二区在线观看 | 一本大道久久a久久精品| 啦啦啦啦在线视频资源| 日韩精品免费视频一区二区三区| 亚洲人成77777在线视频| 久9热在线精品视频| 高清av免费在线| 日韩免费高清中文字幕av| 婷婷色av中文字幕| 国产精品二区激情视频| 久9热在线精品视频| 9色porny在线观看| 久久久久久人人人人人| 日本黄色日本黄色录像| 欧美日韩福利视频一区二区| 91精品伊人久久大香线蕉| 黄色 视频免费看| 亚洲第一青青草原| 日本av免费视频播放| 久久午夜综合久久蜜桃| 日韩一区二区三区影片| 精品少妇黑人巨大在线播放| 亚洲人成电影免费在线| 色播在线永久视频| 18禁观看日本| 成人亚洲欧美一区二区av| 久久精品久久久久久噜噜老黄| 日本av手机在线免费观看| 九色亚洲精品在线播放| 亚洲国产精品999| 亚洲av国产av综合av卡| 天堂8中文在线网| 亚洲成人免费电影在线观看 | 脱女人内裤的视频| 天天躁夜夜躁狠狠躁躁| 夫妻性生交免费视频一级片| 可以免费在线观看a视频的电影网站| av电影中文网址| av天堂在线播放| 国产精品一区二区在线观看99| 日本一区二区免费在线视频| av电影中文网址| 精品亚洲成国产av| 国产成人精品久久二区二区91| 中文精品一卡2卡3卡4更新| 两个人看的免费小视频| 亚洲情色 制服丝袜| 精品国产乱码久久久久久男人| 精品国产乱码久久久久久男人| 丝袜人妻中文字幕| 一区在线观看完整版| 成人国产av品久久久| 建设人人有责人人尽责人人享有的| 中文字幕亚洲精品专区| 国产亚洲精品第一综合不卡| 亚洲av在线观看美女高潮| 国产主播在线观看一区二区 | 免费av中文字幕在线| 人人妻人人添人人爽欧美一区卜| 天天躁日日躁夜夜躁夜夜| 久热爱精品视频在线9| av天堂在线播放| 国产91精品成人一区二区三区 | 美女视频免费永久观看网站| 精品国产一区二区三区四区第35| 亚洲国产日韩一区二区| 日本vs欧美在线观看视频| 丝袜美足系列| 国产野战对白在线观看| 日韩人妻精品一区2区三区| 国产高清videossex| 亚洲精品成人av观看孕妇| 国产不卡av网站在线观看| 麻豆av在线久日| 国产高清videossex| 亚洲成人免费电影在线观看 | 亚洲精品国产av成人精品| 一个人免费看片子| 久久天躁狠狠躁夜夜2o2o | 国产在线免费精品| 桃花免费在线播放| 777久久人妻少妇嫩草av网站| 久久精品熟女亚洲av麻豆精品| av网站免费在线观看视频| svipshipincom国产片| 国产日韩欧美视频二区| 男女床上黄色一级片免费看| 色婷婷av一区二区三区视频| 下体分泌物呈黄色| 国产伦理片在线播放av一区| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧美一区二区三区久久| 久久精品aⅴ一区二区三区四区| 日韩av在线免费看完整版不卡| 9色porny在线观看| 天天躁夜夜躁狠狠躁躁| 久久人妻福利社区极品人妻图片 | 久久九九热精品免费| 欧美国产精品一级二级三级| 老司机靠b影院| 女性生殖器流出的白浆| 大片电影免费在线观看免费| 欧美日韩黄片免| 啦啦啦 在线观看视频| 美女主播在线视频| 欧美日韩国产mv在线观看视频| 丁香六月天网| 免费看十八禁软件| 我的亚洲天堂| 亚洲少妇的诱惑av| 亚洲精品久久久久久婷婷小说| 久久久久久久久免费视频了| 精品亚洲成国产av| 电影成人av| 丰满人妻熟妇乱又伦精品不卡| 久久人人爽人人片av| 亚洲久久久国产精品| 国产极品粉嫩免费观看在线| 欧美人与性动交α欧美软件| av视频免费观看在线观看| 免费人妻精品一区二区三区视频| 9191精品国产免费久久| 午夜免费观看性视频| 久久99精品国语久久久| 9191精品国产免费久久| 1024香蕉在线观看| 女人精品久久久久毛片| 精品少妇一区二区三区视频日本电影| 亚洲中文av在线| 性少妇av在线| 侵犯人妻中文字幕一二三四区| 亚洲av美国av| 十分钟在线观看高清视频www| 国产老妇伦熟女老妇高清| 另类亚洲欧美激情| 少妇人妻 视频| 欧美 亚洲 国产 日韩一| 久久精品熟女亚洲av麻豆精品| 在线观看免费日韩欧美大片| 夜夜骑夜夜射夜夜干| 久久亚洲精品不卡| 欧美日韩视频精品一区| av不卡在线播放| 午夜福利一区二区在线看| 制服诱惑二区| 欧美国产精品va在线观看不卡| 考比视频在线观看| 少妇人妻久久综合中文| 九色亚洲精品在线播放| 成人亚洲精品一区在线观看| 国产人伦9x9x在线观看| 精品人妻一区二区三区麻豆| 只有这里有精品99| 美国免费a级毛片| 欧美变态另类bdsm刘玥| 亚洲伊人久久精品综合| 久久人人爽人人片av| 五月开心婷婷网| 成人国语在线视频| 又紧又爽又黄一区二区| 国产男女超爽视频在线观看| 在线观看国产h片| 成人国产一区最新在线观看 | 激情视频va一区二区三区| 国产一区二区激情短视频 | 欧美国产精品va在线观看不卡| 18禁国产床啪视频网站| 国产成人av教育| 高清欧美精品videossex| 女人高潮潮喷娇喘18禁视频| 考比视频在线观看| 一级毛片黄色毛片免费观看视频| 大香蕉久久成人网| 多毛熟女@视频| 日本欧美国产在线视频| 亚洲图色成人| 捣出白浆h1v1| 久久久亚洲精品成人影院| 中文字幕色久视频| 男男h啪啪无遮挡| 精品国产超薄肉色丝袜足j| 欧美黑人精品巨大| 亚洲一码二码三码区别大吗| 性少妇av在线| 亚洲成人手机| 女人被躁到高潮嗷嗷叫费观| 国产在线视频一区二区| 精品久久蜜臀av无| 成年av动漫网址| 伊人亚洲综合成人网| 亚洲,一卡二卡三卡| 欧美精品高潮呻吟av久久| 在线观看免费日韩欧美大片| 亚洲午夜精品一区,二区,三区| 久久久久精品人妻al黑| 欧美另类一区| 免费黄频网站在线观看国产| 欧美日韩一级在线毛片| 亚洲精品第二区| 五月开心婷婷网| 午夜久久久在线观看| 飞空精品影院首页| 视频在线观看一区二区三区| 又黄又粗又硬又大视频| 国产在线免费精品| 久久久精品94久久精品| 日本91视频免费播放| 丝袜人妻中文字幕| 天天躁日日躁夜夜躁夜夜| 欧美激情 高清一区二区三区| av片东京热男人的天堂| 老司机靠b影院| 99国产精品一区二区蜜桃av | 男女无遮挡免费网站观看| 亚洲一码二码三码区别大吗| 一级片'在线观看视频| 国产精品99久久99久久久不卡| 国产又爽黄色视频| 国产精品久久久久久人妻精品电影 | 韩国高清视频一区二区三区| 大话2 男鬼变身卡| 精品国产国语对白av| 另类亚洲欧美激情| 欧美日韩亚洲国产一区二区在线观看 | 老汉色av国产亚洲站长工具| 国产片内射在线| 午夜免费成人在线视频| 天天操日日干夜夜撸| 又粗又硬又长又爽又黄的视频| 水蜜桃什么品种好| 欧美黄色片欧美黄色片| 亚洲精品久久久久久婷婷小说| 久久ye,这里只有精品| 亚洲欧美激情在线| 一二三四社区在线视频社区8| 日本色播在线视频| 一级毛片电影观看| 侵犯人妻中文字幕一二三四区| 亚洲男人天堂网一区| 久久精品亚洲av国产电影网| 国产99久久九九免费精品| 纯流量卡能插随身wifi吗| 久久中文字幕一级| 国产成人啪精品午夜网站| 妹子高潮喷水视频| 波野结衣二区三区在线| av网站在线播放免费| 国产无遮挡羞羞视频在线观看| 精品国产一区二区三区久久久樱花| 多毛熟女@视频| 国产成人欧美| 欧美激情高清一区二区三区| √禁漫天堂资源中文www| 激情视频va一区二区三区| 大陆偷拍与自拍| 高清av免费在线| 久久久久久免费高清国产稀缺| 看十八女毛片水多多多| 国产97色在线日韩免费| 高清欧美精品videossex| 无遮挡黄片免费观看| 中文字幕人妻丝袜制服| 各种免费的搞黄视频| 一区二区三区乱码不卡18| 国产精品久久久av美女十八| 纵有疾风起免费观看全集完整版| svipshipincom国产片| 亚洲欧美日韩另类电影网站| 亚洲视频免费观看视频| 免费人妻精品一区二区三区视频| 亚洲 欧美一区二区三区| 成人国产一区最新在线观看 | 亚洲综合色网址| 丝袜脚勾引网站| 国产又色又爽无遮挡免| 欧美日韩福利视频一区二区| 欧美日韩黄片免| 日韩一本色道免费dvd| 又黄又粗又硬又大视频| 国产熟女欧美一区二区| 99久久99久久久精品蜜桃| 一本一本久久a久久精品综合妖精| 久久久国产一区二区| av天堂在线播放| 69精品国产乱码久久久| 精品国产超薄肉色丝袜足j| 电影成人av| 夜夜骑夜夜射夜夜干| 女人久久www免费人成看片| 在线观看国产h片| 精品一品国产午夜福利视频| 午夜激情久久久久久久| 美女午夜性视频免费| 国产麻豆69| 欧美 日韩 精品 国产| 国产黄色免费在线视频| 国产精品一区二区精品视频观看| 99国产精品一区二区蜜桃av | 欧美日韩成人在线一区二区| 亚洲精品成人av观看孕妇| 国产成人精品无人区| 天天躁日日躁夜夜躁夜夜| 美女高潮到喷水免费观看| 国产精品一区二区免费欧美 | 中国美女看黄片| 王馨瑶露胸无遮挡在线观看| av在线老鸭窝| 久久狼人影院| 午夜福利,免费看| 亚洲色图 男人天堂 中文字幕| 99国产精品99久久久久| 在线观看免费视频网站a站| 国产精品亚洲av一区麻豆| 天天躁夜夜躁狠狠躁躁| 久久精品久久久久久噜噜老黄| 免费看av在线观看网站| 成人黄色视频免费在线看| 国产视频一区二区在线看| 天天操日日干夜夜撸| 欧美性长视频在线观看| 最近最新中文字幕大全免费视频 | 视频区欧美日本亚洲| 看免费av毛片| 国产精品九九99| 久久人人爽av亚洲精品天堂| 欧美人与善性xxx| 搡老乐熟女国产| 日韩欧美一区视频在线观看| 日本猛色少妇xxxxx猛交久久| 国产精品麻豆人妻色哟哟久久| 色婷婷av一区二区三区视频| 久久久国产欧美日韩av| 久久久久国产一级毛片高清牌| 男女午夜视频在线观看| 国产成人欧美在线观看 | svipshipincom国产片| 美女中出高潮动态图| 亚洲精品乱久久久久久| 久久国产精品男人的天堂亚洲| 亚洲成国产人片在线观看| 人人妻,人人澡人人爽秒播 | 999久久久国产精品视频| 只有这里有精品99| 91九色精品人成在线观看| 无遮挡黄片免费观看| 交换朋友夫妻互换小说| 国产一区二区 视频在线| 国产高清视频在线播放一区 | 老汉色∧v一级毛片| 国产日韩欧美亚洲二区| 亚洲黑人精品在线| 啦啦啦在线免费观看视频4| 无遮挡黄片免费观看| 一区二区三区精品91| 亚洲精品久久午夜乱码| 丁香六月天网| 久久久久久久久久久久大奶| 欧美久久黑人一区二区| 久久精品国产a三级三级三级| 亚洲精品自拍成人| netflix在线观看网站| 国产91精品成人一区二区三区 | 久久人人97超碰香蕉20202| av网站免费在线观看视频| 黄色毛片三级朝国网站| 久久精品aⅴ一区二区三区四区| 欧美日韩福利视频一区二区| 99国产精品99久久久久| 国产日韩欧美在线精品| 色精品久久人妻99蜜桃| 国产免费视频播放在线视频| 美女午夜性视频免费| 中文字幕人妻熟女乱码| 水蜜桃什么品种好| 90打野战视频偷拍视频| 精品一区在线观看国产| 精品亚洲乱码少妇综合久久| 久久精品成人免费网站| 99久久99久久久精品蜜桃| 1024香蕉在线观看| 久久九九热精品免费| 亚洲欧美清纯卡通| 看免费成人av毛片| 久久久精品94久久精品| 97在线人人人人妻| 天天躁夜夜躁狠狠久久av| 女性被躁到高潮视频| 亚洲一码二码三码区别大吗| 侵犯人妻中文字幕一二三四区| 最新的欧美精品一区二区| 亚洲中文字幕日韩| 成人黄色视频免费在线看| 中文字幕亚洲精品专区| 日本vs欧美在线观看视频| 在线观看人妻少妇| 免费久久久久久久精品成人欧美视频| 国产精品国产av在线观看| 国产高清videossex| 免费在线观看完整版高清| 50天的宝宝边吃奶边哭怎么回事| 19禁男女啪啪无遮挡网站| 真人做人爱边吃奶动态| 肉色欧美久久久久久久蜜桃| 午夜激情av网站| 一级,二级,三级黄色视频| 亚洲熟女毛片儿| 亚洲色图 男人天堂 中文字幕| 欧美 日韩 精品 国产| bbb黄色大片| 乱人伦中国视频| 操美女的视频在线观看| 欧美97在线视频| 熟女少妇亚洲综合色aaa.| av视频免费观看在线观看| 丰满迷人的少妇在线观看| 捣出白浆h1v1| 亚洲国产最新在线播放| 亚洲av日韩在线播放| a 毛片基地| 久久久亚洲精品成人影院| 亚洲中文字幕日韩| 又大又黄又爽视频免费| tube8黄色片| 国产激情久久老熟女| 蜜桃在线观看..| 欧美久久黑人一区二区| 国产免费现黄频在线看| 欧美精品啪啪一区二区三区 | 制服诱惑二区| av天堂在线播放| 亚洲国产欧美在线一区| 1024香蕉在线观看| 久久国产亚洲av麻豆专区| 丝袜美腿诱惑在线| 2021少妇久久久久久久久久久| cao死你这个sao货| 麻豆乱淫一区二区| 日本一区二区免费在线视频| 国产精品久久久av美女十八| 另类亚洲欧美激情| 亚洲国产精品一区三区| 久久久国产精品麻豆| 我要看黄色一级片免费的| 亚洲av欧美aⅴ国产| 亚洲中文字幕日韩| 亚洲欧美成人综合另类久久久| 丝袜喷水一区| 国产人伦9x9x在线观看| 女人久久www免费人成看片| 婷婷色综合www| 久久免费观看电影| 国产成人欧美| 一本—道久久a久久精品蜜桃钙片| 成年动漫av网址| 久久影院123| 女人久久www免费人成看片| 夜夜骑夜夜射夜夜干| 久久久久久久久久久久大奶| 超碰97精品在线观看| 国产精品偷伦视频观看了| 黄色视频在线播放观看不卡| 国产又爽黄色视频| 久久久国产精品麻豆| 日本av手机在线免费观看| 赤兔流量卡办理| 精品欧美一区二区三区在线| 黄色 视频免费看| 91国产中文字幕| 国产亚洲av高清不卡| 永久免费av网站大全| 日本欧美国产在线视频| 久久中文字幕一级| 国产成人a∨麻豆精品| www.av在线官网国产| 欧美中文综合在线视频| 免费在线观看黄色视频的| 国产精品熟女久久久久浪| 美女脱内裤让男人舔精品视频| 亚洲中文日韩欧美视频| 国产精品九九99| 看免费av毛片| 捣出白浆h1v1| 脱女人内裤的视频| 99国产精品免费福利视频| 亚洲情色 制服丝袜| 欧美老熟妇乱子伦牲交| 国产高清videossex| 国产一区二区激情短视频 | 麻豆乱淫一区二区| 亚洲国产av影院在线观看| avwww免费| 亚洲欧美日韩高清在线视频 | 岛国毛片在线播放| av不卡在线播放| 超色免费av| 精品人妻1区二区| 久久久精品94久久精品| 亚洲av日韩精品久久久久久密 | 国产有黄有色有爽视频| 国产日韩欧美视频二区| 热99国产精品久久久久久7| 国产女主播在线喷水免费视频网站| 免费看av在线观看网站| 各种免费的搞黄视频| 亚洲,欧美精品.| 亚洲中文日韩欧美视频| 久久久亚洲精品成人影院| 国产欧美日韩一区二区三区在线| 午夜激情久久久久久久| 欧美日本中文国产一区发布| 欧美乱码精品一区二区三区| 欧美日韩成人在线一区二区| 精品亚洲成国产av| 黑人欧美特级aaaaaa片| 国产精品av久久久久免费| 国产亚洲av高清不卡| 极品人妻少妇av视频| 亚洲精品久久成人aⅴ小说| 啦啦啦中文免费视频观看日本| 久久精品国产亚洲av高清一级| 亚洲av综合色区一区| 国产97色在线日韩免费| 亚洲男人天堂网一区| 一本大道久久a久久精品| 大香蕉久久成人网| 波多野结衣av一区二区av| 黑人欧美特级aaaaaa片| 男女之事视频高清在线观看 | 免费看十八禁软件| 午夜免费成人在线视频| 成人18禁高潮啪啪吃奶动态图| 99精国产麻豆久久婷婷| 丰满饥渴人妻一区二区三| 免费不卡黄色视频| 尾随美女入室| 不卡av一区二区三区| 国产一区二区三区av在线| 国产精品久久久av美女十八| 国产99久久九九免费精品| 男女下面插进去视频免费观看| 国产高清视频在线播放一区 | 一级黄色大片毛片| 少妇人妻 视频| 国产午夜精品一二区理论片| 亚洲欧美一区二区三区久久| 国产精品偷伦视频观看了| 波多野结衣av一区二区av| 我的亚洲天堂| 国产成人精品无人区| 狠狠精品人妻久久久久久综合| 国产精品 欧美亚洲| 成人免费观看视频高清| 久久久久国产精品人妻一区二区| 精品一区二区三区四区五区乱码 | 亚洲综合色网址| 国产在线免费精品| 一级a爱视频在线免费观看| 亚洲伊人久久精品综合| 国产伦理片在线播放av一区| av不卡在线播放| 99香蕉大伊视频| 一区二区日韩欧美中文字幕| 色播在线永久视频| 国产精品偷伦视频观看了| 搡老岳熟女国产| 久久99热这里只频精品6学生| 满18在线观看网站| 久久人人97超碰香蕉20202| 国产一区二区 视频在线| 少妇裸体淫交视频免费看高清 | 久久久国产欧美日韩av| xxxhd国产人妻xxx| 一级片免费观看大全| 97在线人人人人妻| 黄色a级毛片大全视频| 国产成人精品无人区| www.自偷自拍.com| 国产人伦9x9x在线观看| 国产伦人伦偷精品视频| 飞空精品影院首页| 一级毛片电影观看| 欧美激情高清一区二区三区| 欧美成人精品欧美一级黄| 国产亚洲午夜精品一区二区久久| 欧美日韩综合久久久久久| 亚洲精品国产区一区二| www.精华液| 国产精品av久久久久免费| 老司机靠b影院| 男女高潮啪啪啪动态图| 精品国产一区二区三区久久久樱花| 国产精品久久久久久精品古装| 日本猛色少妇xxxxx猛交久久| 成在线人永久免费视频| 国产一级毛片在线| 免费av中文字幕在线| 你懂的网址亚洲精品在线观看| 久久久久久久大尺度免费视频| √禁漫天堂资源中文www| 欧美日韩亚洲综合一区二区三区_| 亚洲国产欧美日韩在线播放| 久久久精品94久久精品| 黄频高清免费视频| 在线亚洲精品国产二区图片欧美| 国产片内射在线| 久久精品国产亚洲av高清一级| 丝瓜视频免费看黄片| 丰满迷人的少妇在线观看| 欧美精品一区二区大全| 国产亚洲精品第一综合不卡| 啦啦啦在线免费观看视频4|