陳涵,楊樹(shù)杰,牟朝霞
(海軍航空工程學(xué)院a.研究生管理大隊(duì);b.基礎(chǔ)部;c.軍事教育與訓(xùn)練系,山東煙臺(tái)264001)
脈沖隨機(jī)微分系統(tǒng)的均方指數(shù)穩(wěn)定性分析
陳涵a,楊樹(shù)杰b,牟朝霞c
(海軍航空工程學(xué)院a.研究生管理大隊(duì);b.基礎(chǔ)部;c.軍事教育與訓(xùn)練系,山東煙臺(tái)264001)
研究了脈沖隨機(jī)時(shí)滯微分泛函方程的均方指數(shù)穩(wěn)定性問(wèn)題。利用Lyapunov-Razumikhin型方法及隨機(jī)分析的一些技巧,建立了一類脈沖隨機(jī)泛函微分方程的均方指數(shù)穩(wěn)定性定理。
脈沖隨機(jī)微分方程;均方指數(shù)穩(wěn)定;Lyapunov-Krasovskii函數(shù)
近年來(lái),脈沖泛函微分系統(tǒng)(IFDSs)的穩(wěn)定性的問(wèn)題吸引著越來(lái)越多的學(xué)者在理論和實(shí)際應(yīng)用方面的研究[1-3],特別是在針對(duì)IFDS指數(shù)穩(wěn)定性方面的研究,并且建立了一些相應(yīng)的穩(wěn)定性理論。但隨機(jī)擾動(dòng)在現(xiàn)實(shí)系統(tǒng)中也是不可避免的,隨機(jī)模型在自然科學(xué)和工程領(lǐng)域的許多分支中正扮演著重要的角色。近幾年,脈沖隨機(jī)微分系統(tǒng)(ISDSs)穩(wěn)定性分析和脈沖隨機(jī)泛函微分系統(tǒng)的鎮(zhèn)定性問(wèn)題引起了學(xué)者們的廣泛興趣[4-14]。文獻(xiàn)[10]利用了一些微積分不等式和隨機(jī)分析的技巧,而非借助Lyapunov-Razumikhin方法研究了一類帶有混合時(shí)滯的脈沖隨機(jī)切換系統(tǒng)的均方指數(shù)穩(wěn)定性。文獻(xiàn)[4]利用數(shù)學(xué)分析方法和泛函Razumikhin方法,建立了基于Lyapunov-Krasovskii函數(shù)的一類IFDSs的均方穩(wěn)定的充分性判據(jù)。受到上述文獻(xiàn)的啟發(fā),并借助于其Lyapunov方法和隨機(jī)分析的技巧,本文進(jìn)一步探究了此類IFDSs的指數(shù)穩(wěn)定性問(wèn)題,得到了系統(tǒng)指數(shù)穩(wěn)定的充分性判據(jù)。然而,根據(jù)作者所知,目前大部分學(xué)者對(duì)脈沖隨機(jī)泛函微分方程指數(shù)穩(wěn)定性的研究,都是借助于Lyapunov函數(shù)V(t,φ)在脈沖點(diǎn)處左右極限的一些對(duì)應(yīng)關(guān)系來(lái)探究系統(tǒng)的穩(wěn)定性問(wèn)題的[12,14]。本文直接利用系統(tǒng)狀態(tài)x(t)在脈沖點(diǎn)處左右極限的關(guān)系研究一類脈沖隨機(jī)泛函微分系統(tǒng)的穩(wěn)定性問(wèn)題,建立了不同于文獻(xiàn)[12]的指數(shù)穩(wěn)定判定定理。
還需要如下引理。
引理1:[15](Chaplygin比較定理)假定f,F∈C()G,如果分別是兩個(gè)初值問(wèn)題的解,則對(duì)所有對(duì)于所有的
考慮如下脈沖隨機(jī)時(shí)滯泛函系統(tǒng)的均方指數(shù)穩(wěn)定性問(wèn)題:
下面將分2種情況考慮系統(tǒng)(1)的均方指數(shù)穩(wěn)定問(wèn)題。
定義1:對(duì)于任意可容許的脈沖時(shí)刻序列N,系統(tǒng)(1)的解稱為均方指數(shù)穩(wěn)定的,是指存在一個(gè)常數(shù)λ>0且對(duì)任意的ε>0,都存在常數(shù)δ=δ(ε)>0,使得對(duì)任意的初值函數(shù),對(duì)于任意t≥t0,都有
定義2:[2]稱函數(shù)屬于V(1,2),如果:
2)V(t,x)關(guān)于x是局部Lipschitz的;
3)對(duì)任意k=1,2,…,以下極限存在且有限:,且
定理1:假定存在常數(shù)b>a>0,λτ>0,β>0,及Lyapunov-Krasovskii函數(shù),使得以下條件成立:,則系統(tǒng)(1)關(guān)于脈沖集是均方指數(shù)穩(wěn)定的。
證明:對(duì)任意給定的ε>0,選取假定初值函數(shù),并記系統(tǒng)(1)通過(guò)()t0,φ的解對(duì)于,根據(jù)公式,對(duì)于t≠tk,k=1,2,…,有
式中,
因此只需證明,對(duì)任意t∈(t0,t1),式(5)成立即可。如果不成立,則一定存在s∈(t0,t1),使得
結(jié)合式(3)、(4)及條件C2)、C3),對(duì),有
這就與式(8)及(9)矛盾,假設(shè)不成立,從而式(5)成立。
于是需要考慮以下2種情形。
(11)成立。于是根據(jù)條件C3),式(5)及引理1,得到
這就與假設(shè)矛盾。
由式(1)、(2)及(12)有:
如果用條件D1)代替定理1中的條件C1),則得到如下結(jié)果。
定理2:假定存在常數(shù)b>a>0、λτ>0、β>0、及Lyapunov-Krasovskii函數(shù),使得條件:D1)、C2)及C3)成立,則系統(tǒng)(1)對(duì)任意脈沖序列Ninf(β)是均方指數(shù)穩(wěn)定的。
證明:證明方法類似于定理1,故略去。證畢。
注1:對(duì)比定理1和定理2,可發(fā)現(xiàn)系統(tǒng)(1)的均方指數(shù)穩(wěn)定性受到函數(shù)V(t,x(t))中時(shí)滯的影響。
注2:當(dāng)μ≥1時(shí),脈沖可能破壞穩(wěn)定性,所以需要脈沖發(fā)生得不要太頻繁,即脈沖間距要比較大。
條件C1)成立;
D2):只要成立,就有成立,則:
證明:證明結(jié)論Ⅰ),Ⅱ)的證明與Ⅰ)類似,故略去。
考慮到μ<1,故存在充分小的常數(shù)使
現(xiàn)在要證明式(5)在(t0,t1)成立。否則,存在s∈(t0,t1),使得式(7)成立。
進(jìn)而得到
再由條件D2),意味著對(duì)
由引理1,式(19)、(21)及D3)有
這就與式(18)矛盾。
事實(shí)上,根據(jù)式(1)、(2)、(16)條件C1)和D3),有
本文研究了一類脈沖隨機(jī)泛函微分系統(tǒng)的均方指數(shù)穩(wěn)定性問(wèn)題。利用Lyapunov函數(shù)和Razumikhin型方法,建立了系統(tǒng)均方指數(shù)穩(wěn)定的充分性判據(jù)。本文為了方便,僅討論了系統(tǒng)的均方指數(shù)穩(wěn)定性,其結(jié)果可以推廣到p階矩指數(shù)穩(wěn)定性上來(lái)。
[1]GOPALSAMY K,ZHANG B.On delay differential equations with impulses[J].Journal of Mathematical Analysis andApplications,1989,139:100-122.
[2]STAMOVA I,STAMOV G.Lyapunov-Razumikhin method for impulsive functional equations and applications to the population dynamic[J].Journal of Computational and Applied Mathematics,2001,130:163-171.
[3]NAGHSHTABRIZI P,HESPANHAJ.Exponential stability of impulsive systems with application to uncertain sampled-date systems[J].Systems and Control Letters,2008,57:378-385.
[4]YANG S J,SHI B,LI M.Mean square stability of impulsive stochastic differential systems[J/OL].International JournalofDifferentialEquations.Doi:10.1155/2211/ 613695.2011.
[5]YANG J,ZHONG S M.Mean square stability analysis of impulsive stochastic differential equations with delay[J]. Journal of Computational and Applied mathematics,2008,216:474-483.
[6]LIU X,BALLINGER G.Uniform asymptotic stability of impulsive delay differential equations[J].Computers and Mathematics withApplications,2011,41:903-915.
[7]WANG Q,LIU X.Impulsive stabilization of delay differential systems via the Lyapunov-Razumikhin method[J]. Applied Mathematics Letters,2007,20:839-845.
[8]FU X L,LIU D.Razumikhin-type theorems on exponential stability of impulsive infinite delay differential sys-tems[J].Journal of Computational and Applied mathematics,2009,224:1-10.
[9]ZHU Q X,SONG B.Exponential stability of impulsive nonlinear stochastic differential equations with mixed delays[J].Nonlinear Analysis:Real World Applications,2011,12:2851-2860.
[10]XU L G,HE D H.Mean square exponential stability analysis of impulsive stochastic switched systems with mixed delays[J].Computers and Mathematics with Applications,2011,62:109-117.
[11]XU L G,HE D H,MA Q.Impulsive stabilization of stochastic differential equations with time delays[J].Mathematics and Computer Modelling,2013,57:997-1004.
[12]LIU J,LIU X Z,XIE W C.Impulsive stabilization of stochastic functional differential equations[J].Applied Mathematics Letters,2011,24:264-269.
[13]CHENG P,DENG F Q,YAO F Q.Exponential stability analysis of impulsive stochastic functional differential systems with delayed impulses[J].Communications in Nonlinear Science and Numerical Simulation,2014,19:2104-2114.
[14]WU X T,ZHANG W B,TANG Y.pth Moment stability of impulsive stochastic delay differential systems with Markovian switching[J].Communications in Nonlinear Science and Numerical Simulation,2013,18:870-1879.
[15]時(shí)寶,張德存,蓋明久.微分方程理論及其應(yīng)用[M].北京:國(guó)防工業(yè)出版社,2005:40-41. SHI BAO,ZHANG DECUN,GAI MINGJIU.Theory and applications of differential equations[M].Beijng:National Defense Industry Press,2005:40-41.(in Chinese)
Mean Square Exponential Stability Analysiss of Pulse Randomly Differential Systemss
CHEN Hana,YANG Shu-jieb,MU Zhao-xiac
(Naval Aeronautical ang Astronautical University a.Graduate Students’Brigade; b.Department of Basic Sciences;c.Department of Military Education and Training,Yantai Shandong 264001,China)
In this paper,the mean square exponential stability analysis of impulsive stochastic functional differential systems with delays was concerned.On the basis of the Lyapunov-Razumikhin method and stochastic analysis techniques, some general criteria were established for mean square exponential stability.
pulse randomly differential equation;mean square exponential stability;Lyapunov-Krasovskii function
O175.21
A
2014-03-17;
2014-04-10
陳涵(1991-),男,碩士生。
1673-1522(2014)03-0296-05
10.7682/j.issn.1673-1522.2014.03.020