張雙斌,蘇現(xiàn)波,郭紅玉,林曉英
(1.河南理工大學(xué) 能源科學(xué)與工程學(xué)院,河南 焦作 454000;2.晉城職業(yè)技術(shù)學(xué)院 礦業(yè)工程系,山西 晉城 048026)
煤層氣井排采過(guò)程中壓裂裂縫導(dǎo)流能力的傷害與控制
張雙斌1,2,蘇現(xiàn)波1,郭紅玉1,林曉英1
(1.河南理工大學(xué) 能源科學(xué)與工程學(xué)院,河南 焦作 454000;2.晉城職業(yè)技術(shù)學(xué)院 礦業(yè)工程系,山西 晉城 048026)
煤層氣井排采過(guò)程中,壓裂裂縫導(dǎo)流能力大小變化,直接影響壓降漏斗擴(kuò)展范圍,進(jìn)而影響煤層氣井產(chǎn)氣量的高低。以晉煤集團(tuán)寺河礦3號(hào)煤制作煤片,以蘭州石英砂為支撐劑,運(yùn)用FCES-100裂縫長(zhǎng)期導(dǎo)流能力評(píng)價(jià)儀,在實(shí)驗(yàn)室物理模擬了排采過(guò)程中煤儲(chǔ)層壓裂裂縫的導(dǎo)流能力變化規(guī)律。實(shí)驗(yàn)結(jié)果認(rèn)為:煤層氣井排采過(guò)程中壓裂裂縫導(dǎo)流能力具有較強(qiáng)的應(yīng)力敏感性,如果控制排采降壓連續(xù)緩慢穩(wěn)定進(jìn)行,可以使壓降漏斗充分?jǐn)U展前應(yīng)力敏感對(duì)導(dǎo)流能力的傷害較?。辉谒毫咽┕ぶ锌梢酝ㄟ^(guò)增加砂比來(lái)減小支撐劑嵌入的影響,對(duì)于深井選用更高強(qiáng)度支撐劑可以克服支撐劑破碎引起的傷害;不穩(wěn)定和斷續(xù)排采可造成壓裂裂縫導(dǎo)流能力快速下降,只有堅(jiān)持排采降壓的“連續(xù)、緩慢、穩(wěn)定”進(jìn)行,才能避免應(yīng)力敏感和流速敏感帶來(lái)的儲(chǔ)層傷害,確保煤層氣井開(kāi)發(fā)取得好的效果。
導(dǎo)流能力;壓裂裂縫;煤層氣井;排采;閉合壓力
煤層氣井排采過(guò)程中煤儲(chǔ)層壓裂裂縫導(dǎo)流能力的變化,對(duì)排采的效果起重要作用,排采時(shí)裂縫的導(dǎo)流能力由始至終時(shí)刻都在變化。合理的排采制度能維持煤層氣在儲(chǔ)層解吸、運(yùn)移和產(chǎn)出的通道暢通,而不合理的排采制度卻易誘發(fā)應(yīng)力敏感或流速敏感,導(dǎo)致壓裂裂縫閉合或堵塞,造成產(chǎn)氣量低,開(kāi)發(fā)效果差[1-4]。通過(guò)實(shí)驗(yàn)定量研究排采過(guò)程中有效應(yīng)力、排采降液速率等對(duì)裂縫導(dǎo)流能力的影響,對(duì)確定合理排采制度有重要意義。目前相關(guān)的實(shí)驗(yàn)研究主要集中在兩個(gè)方面:一是以導(dǎo)流儀為試驗(yàn)平臺(tái),根據(jù)SY/T 6302—2009《壓裂支撐劑充填層短期導(dǎo)流能力評(píng)價(jià)推薦方法》,研究壓裂裂縫的短期或長(zhǎng)期導(dǎo)流能力及其影響因素,有利于水力壓裂中壓裂液和支撐劑的優(yōu)選和施工參數(shù)的優(yōu)化,進(jìn)而提高壓裂裂縫的導(dǎo)流能力[5-6];二是以巖芯滲透率測(cè)試儀為測(cè)試平臺(tái),根據(jù)SY/T 5358—2010《儲(chǔ)層敏感性流動(dòng)實(shí)驗(yàn)評(píng)價(jià)方法》研究流體流動(dòng)對(duì)巖芯滲透率的傷害[7-8]。然而,排采過(guò)程中煤儲(chǔ)層壓裂裂縫導(dǎo)流能力動(dòng)態(tài)變化規(guī)律及其控制因素的研究涉足者甚少。筆者旨在通過(guò)實(shí)驗(yàn)室物理模擬實(shí)驗(yàn)對(duì)煤儲(chǔ)層壓裂裂縫導(dǎo)流能力的變化規(guī)律進(jìn)行系統(tǒng)探討,以求對(duì)煤層氣井排采有所指導(dǎo)。
1.1 實(shí)驗(yàn)材料及制樣
實(shí)驗(yàn)材料選用晉煤集團(tuán)寺河礦3號(hào)煤和該煤層的產(chǎn)出水。首先將煤樣加工成平板狀圓角矩形試件,尺寸為177 mm×38mm×10mm;支撐劑選用產(chǎn)自甘肅省蘭州皋蘭地區(qū)的20~40目(0.45~0.90mm)石英砂,鋪砂濃度為5~10kg/m2。
1.2 實(shí)驗(yàn)儀器
實(shí)驗(yàn)儀器采用FCES-100裂縫長(zhǎng)期導(dǎo)流能力評(píng)價(jià)儀,主要由導(dǎo)流室、平流泵、補(bǔ)償泵、壓力試驗(yàn)機(jī)、真空泵、回壓閥、預(yù)熱器、天平(計(jì)量流量)、壓力傳感器計(jì)、溫度傳感器、位移傳感器和計(jì)算機(jī)等組成(圖1)。該儀器可以模擬地層條件,對(duì)不同類型支撐劑進(jìn)行短期或長(zhǎng)期導(dǎo)流能力進(jìn)行評(píng)價(jià)。該儀器按照API標(biāo)準(zhǔn)設(shè)計(jì),最高實(shí)驗(yàn)溫度180℃,最大閉合壓力150MPa。
圖1 實(shí)驗(yàn)裝置Fig.1 Schematic plot of the experimental apparatus
1.3 實(shí)驗(yàn)過(guò)程
(1)實(shí)驗(yàn)準(zhǔn)備。先將制備的一塊煤片放入導(dǎo)流室,接著將稱好的支撐劑均勻平鋪在煤樣上,然后放入另一塊煤片。裝入煤片時(shí)必須保持支撐劑層位與導(dǎo)流室管線孔眼在同一水平,否則實(shí)驗(yàn)結(jié)果會(huì)偏小。煤片裝好后,將導(dǎo)流室安裝到壓力機(jī)試驗(yàn)臺(tái)上,手動(dòng)調(diào)整壓力機(jī)使閉合壓力達(dá)到0~1.0MPa。連接好管線后,按實(shí)驗(yàn)方案在計(jì)算機(jī)中輸入實(shí)驗(yàn)參數(shù)并由計(jì)算機(jī)控制實(shí)驗(yàn)進(jìn)行。
(2)導(dǎo)流能力測(cè)試。先由真空泵抽真空半小時(shí)左右,確保導(dǎo)流室中沒(méi)有空氣以保障流體壓差準(zhǔn)確穩(wěn)定。試驗(yàn)過(guò)程中,每一個(gè)閉合壓力點(diǎn)處應(yīng)穩(wěn)定半小時(shí)以上再測(cè)其導(dǎo)流能力,每分鐘采集1個(gè)值,當(dāng)連續(xù)3個(gè)測(cè)量值的流量誤差小于10%時(shí),確定為該閉合壓力和流量下的導(dǎo)流能力。
2.1 應(yīng)力敏感性實(shí)驗(yàn)
由于采用水作為實(shí)驗(yàn)流體,控制實(shí)驗(yàn)中導(dǎo)流室進(jìn)、出口流體壓力達(dá)到平穩(wěn)流動(dòng)比較困難,實(shí)驗(yàn)結(jié)果反而可靠性差。因此,在實(shí)驗(yàn)中,設(shè)定出口壓力為101.325kPa,導(dǎo)流室進(jìn)、出口的壓差不會(huì)超過(guò)5kPa,相對(duì)于加載的閉合壓力(最小為6.9MPa),可以忽略不計(jì),即閉合壓力約等于排采過(guò)程中裂縫壁面及支撐劑的有效應(yīng)力,故在下文中統(tǒng)一用有效應(yīng)力描述實(shí)驗(yàn)閉合壓力。
實(shí)驗(yàn)采用5和10kg/m2兩種鋪砂濃度,在流量分別為2.5,5.0和10.0mL/min條件下,模擬在6.9,10.0,13.8,18.0,23.0,27.6 MPa共6個(gè)有效應(yīng)力點(diǎn)處裂縫導(dǎo)流能力的大小變化,實(shí)驗(yàn)結(jié)果如圖2所示。
圖2 有效應(yīng)力與導(dǎo)流能力的關(guān)系曲線Fig.2 Relationships of effective stress and conductivity
由圖2可以看出,在不同的鋪砂濃度和流量條件下,裂縫導(dǎo)流能力總是隨著有效應(yīng)力的增大而減小。有效應(yīng)力從6.9MPa增大到13.8MPa,導(dǎo)流能力下降57.9%~75.3%;有效應(yīng)力從13.8MPa增大到27.6 MPa,導(dǎo)流能力下降8.2%~19.9%。
實(shí)驗(yàn)結(jié)果表明,在煤層氣井排采過(guò)程中,由于快速排水降壓引起的有效應(yīng)力增加,對(duì)煤儲(chǔ)層裂縫導(dǎo)流能力存在較大傷害,尤其在排采初期的傷害更大,這一實(shí)驗(yàn)結(jié)果印證了一些煤層氣井的排采特征和排采效果的分析認(rèn)識(shí)[9-10]。
實(shí)驗(yàn)結(jié)果表明,排采過(guò)程中要克服應(yīng)力敏感性可以采取3個(gè)措施:
(1)井底流壓要緩慢下降。圖2說(shuō)明應(yīng)力敏感對(duì)導(dǎo)流能力的影響是不可避免的。排采應(yīng)盡量推遲應(yīng)力敏感對(duì)導(dǎo)流能力的傷害時(shí)間,使其發(fā)生的時(shí)間越晚越有利。即在壓降漏斗充分形成、氣水兩相流形成后,再將液面降低到煤層附近,并保持一定的套壓,盡量避免裂縫內(nèi)流體壓力過(guò)低。
(2)提高鋪砂濃度。對(duì)比圖2(a)和(b)可以看出,有效應(yīng)力小于20MPa時(shí),鋪砂濃度由5kg/m2變?yōu)?0kg/m2,導(dǎo)流能力提高了0.5~1.0倍。經(jīng)測(cè)試3號(hào)煤的抗壓強(qiáng)度為5.12~9.24MPa,當(dāng)有效應(yīng)力大于10MPa后,開(kāi)始發(fā)生支撐劑嵌入(圖3),造成導(dǎo)流能力下降。提高鋪砂濃度,能夠避免因嵌入產(chǎn)生的支撐縫寬減小[11],因此在壓裂施工作業(yè)時(shí),提高加砂量可以減小排采階段的應(yīng)力敏感性,即壓裂支撐裂縫要寬且長(zhǎng)。
圖3 煤片被支撐劑嵌入實(shí)驗(yàn)現(xiàn)狀Fig.3 Experimental plot of coal sample by proppant embedment
(3)深井要采用高強(qiáng)度支撐劑。石英砂抗壓強(qiáng)度低,在有效應(yīng)力大于20MPa后,就開(kāi)始大量破碎而呈粉末狀,致使裂縫閉合與堵塞,導(dǎo)致實(shí)驗(yàn)后期導(dǎo)流能力進(jìn)一步下降。通過(guò)對(duì)實(shí)驗(yàn)后的石英砂收集篩分后,計(jì)算出閉合壓力為27.6 MPa時(shí),石英砂破碎率為16.3%~19.81%。其中粒徑為0.8~0.9mm,破碎率為31.56%;粒徑為0.45~0.80mm,破碎率為13.49%。支撐劑破碎不僅影響裂縫的有效支撐,而且破碎后的粉細(xì)粒支撐劑可堵塞裂縫流動(dòng)通道。采用高強(qiáng)度支撐劑(如陶粒),可在一定程度上緩解這種影響[12]。地應(yīng)力研究結(jié)果表明:深度為2500~2700m時(shí),鉛直應(yīng)力大致相當(dāng)于平均容重為27 kN/m3計(jì)算出來(lái)的重力,并且水平應(yīng)力多數(shù)大于鉛直應(yīng)力[13];深度為800m時(shí),鉛直應(yīng)力估算值為21.6 MPa,最小水平主應(yīng)力為13.5~20.0MPa[14-16],在此閉合壓力下,石英砂做支撐劑開(kāi)始破碎導(dǎo)致裂縫導(dǎo)流能力下降。因此,對(duì)于埋深大于800m的煤層氣井,應(yīng)選用更高強(qiáng)度支撐劑并增加砂比。
2.2 流速敏感性實(shí)驗(yàn)
實(shí)驗(yàn)采用5和10kg/m2兩種鋪砂濃度,有效應(yīng)力為6.9,13.8,27.6 MPa,分別用定流量和變流量來(lái)模擬煤層氣井排采過(guò)程中連續(xù)穩(wěn)定排采和不連續(xù)斷續(xù)排采時(shí),壓裂裂縫導(dǎo)流能力的變化特征。實(shí)驗(yàn)結(jié)果如圖4,5所示。
圖4 定流量條件下導(dǎo)流能力變化曲線Fig.4 The curves of conductivity under the constant flow
圖5 變流量條件下導(dǎo)流能力變化曲線Fig.5 The curves of conductivity under the variable flow
圖4中,鋪砂濃度為10kg/m2,在5和10mL/min定流量條件下,同一有效應(yīng)力點(diǎn)處導(dǎo)流能力變化均小于10%。而圖5中,在有效應(yīng)力為6.9MPa時(shí),兩種鋪砂濃度下,裂縫導(dǎo)流能力都隨流速的增大而快速下降,平均降幅達(dá)25%以上;當(dāng)有效應(yīng)力為13.8MPa時(shí),鋪砂濃度為5kg/m2的裂縫導(dǎo)流能力不再隨流速增大而變小,而鋪砂濃度為10kg/m2的裂縫導(dǎo)流能力仍隨流速的增大而減小50%;當(dāng)有效應(yīng)力為27.6 MPa時(shí),兩種鋪砂濃度下,裂縫導(dǎo)流能力均不再隨流量的增大而變小。由此可見(jiàn),對(duì)于有效應(yīng)力較低、埋深較淺的煤儲(chǔ)層,流量的波動(dòng)對(duì)導(dǎo)流能力影響嚴(yán)重,即速敏對(duì)導(dǎo)流能力傷害大;而有效應(yīng)力大、埋深大的煤儲(chǔ)層裂縫的導(dǎo)流能力則主要取決于應(yīng)力敏感。
變流量實(shí)驗(yàn)中裂縫導(dǎo)流能力快速下降的主要原因是由于流速的增大促使支撐劑的破碎微粒運(yùn)移堵塞了支撐縫隙。而在煤層氣井生產(chǎn)實(shí)踐中,排水降壓速率過(guò)大變化,不僅會(huì)引起支撐劑顆粒的運(yùn)移,而且會(huì)引起煤粉運(yùn)移[17-19],堵塞孔隙裂縫。由圖6可知,當(dāng)排采連續(xù)進(jìn)行時(shí),如果降液速率合適,則不會(huì)發(fā)生支撐劑與煤粉的運(yùn)移;如果降液速率較大,支撐劑與煤粉顆粒會(huì)部分運(yùn)移到井筒,沉淀在口袋中。而當(dāng)排采關(guān)井時(shí),支撐劑與煤粉將沉降聚集堵塞裂縫[20]。如果多次關(guān)井,裂縫堵塞情況逐漸加重,并最終導(dǎo)致徹底堵塞,特別是在近井應(yīng)力集中帶形成一個(gè)致密的環(huán)狀堵塞帶,使得導(dǎo)流能力無(wú)效。
圖6 不連續(xù)排采造成煤粉堵塞裂縫示意Fig.6 The sketch of coal power blocking fracture
克服速敏現(xiàn)象可以通過(guò)合理的排采制度實(shí)現(xiàn)“連續(xù)、緩慢、穩(wěn)定”降壓,即最大限度克服支撐劑與煤粉不運(yùn)移、不沉淀。
(1)煤層氣井排采過(guò)程中,應(yīng)力敏感對(duì)裂縫導(dǎo)流能力影響不可避免,但可以控制排采降液速率,實(shí)現(xiàn)緩慢、連續(xù)、平穩(wěn)降壓,使壓降漏斗充分?jǐn)U展前確保應(yīng)力敏感對(duì)導(dǎo)流能力的傷害最小。
(2)當(dāng)有效應(yīng)力大于10MPa后,會(huì)發(fā)生不同程度的支撐劑嵌入煤片,而高鋪砂濃度下嵌入對(duì)導(dǎo)流能力的影響較小。因此,在壓裂施工過(guò)程中可以通過(guò)提高砂比來(lái)改善排采時(shí)支撐劑嵌入煤層造成的影響。當(dāng)有效應(yīng)力大于20MPa后,石英砂支撐劑開(kāi)始破碎。因此對(duì)于埋深大于800m的煤層氣井,應(yīng)考慮選取更高強(qiáng)度支撐劑。
(3)定流量時(shí)導(dǎo)流能力只發(fā)生較小變化,而變流量時(shí)導(dǎo)流能力則大幅度下降,說(shuō)明了快速、斷續(xù)排采能夠造成煤粉堵塞裂縫,使煤層氣井開(kāi)發(fā)效果變差,因此煤層氣井的排采降液速率必須堅(jiān)持“連續(xù)、緩慢、平穩(wěn)”六字方針。
[1] 郭春華,周 文,孫晗森,等.考慮應(yīng)力敏感性的煤層氣井排采特征[J].煤田地質(zhì)與勘探,2011,39(5):27-30. Guo Chunhua,Zhou Wen,Sun Hansen,et al.The relationship between stress sensitivity and production of coal bed methane wells[J].Coal Geology & Exploration,2011,39(5):27-30.
[2] 趙 群,王紅巖,李景明,等.快速排采對(duì)低滲透煤層氣井產(chǎn)能傷害的機(jī)理研究[J].山東科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2008,27(3):27-31. Zhao Qun,Wang Hongyan,Li Jingming,et al.Study on mechanism of harm to CBM well capability in low permeability seam with quick drainage method[J].Journal of Shandong University of Science and Technology(Natural Science),2008,27(3):27-31.
[3] 李金海,蘇現(xiàn)波,林曉英,等.煤層氣井排采速率與產(chǎn)能的關(guān)系[J].煤炭學(xué)報(bào),2009,34(3):376-380. Li Jinhai,Su Xianbo,Lin Xiaoying,et al.Relationship between discharge rate and productivity of coalbed methane wells[J].Journal of China Coal Society,2009,34(3):376-380.
[4] 倪小明,蘇現(xiàn)波,魏慶喜,等.煤儲(chǔ)層滲透率與煤層氣垂直井排采曲線關(guān)系[J].煤炭學(xué)報(bào),2009,34(9):1194-1198. Ni Xiaoming,Su Xianbo,Wei Qingxi,et al.The relationship between the permeability of coal bed and production curve about coalbed methane vertical wells[J].Journal of China Coal Society,2009,34(9):1194-1198.
[5] 時(shí) 偉,桑樹(shù)勛,周效志,等.沁水盆地南部高階煤儲(chǔ)層垂直壓裂縫導(dǎo)流能力分析[J].煤田地質(zhì)與勘探,2011,39(3):19-23,28. Shi Wei,Sang Shuxun,Zhou Xiaozhi,et al.Analysis of the fracturing slit’s delivery capacity in Qinshui Basin[J].Coal Geology & Exploration,2011,39(3):19-23,28.
[6] 張士誠(chéng),牟善波,張 勁,等.煤巖對(duì)壓裂裂縫長(zhǎng)期導(dǎo)流能力影響的實(shí)驗(yàn)研究[J].地質(zhì)學(xué)報(bào),2008,82(10):1444-1449. Zhang Shicheng,Mou Shanbo,Zhang Jin,et al.Experimental evaluation of long-term conductivity of fracturing in coal bed[J].Acta Geologica Sinica,2008,82(10):1444-1449.
[7] 朱衛(wèi)平,郭大立,曾曉慧,等.煤層應(yīng)力敏感性對(duì)煤層氣產(chǎn)量預(yù)測(cè)的影響[J].中國(guó)煤炭地質(zhì),2010(4):28-30,64. Zhu Weiping,Guo Dali,Zeng Xiaohui,et al.Impact of coal-bed stress sensibility on CBM output prediction[J].Coal Geology of China,2010(4):28-30,64.
[8] 林 鑫,張士誠(chéng),張 勁,等.柳林煤層氣儲(chǔ)層敏感性評(píng)價(jià)實(shí)驗(yàn)[J].煤田地質(zhì)與勘探,2011,39(6):28-35. Lin Xin,Zhang Shicheng,Zhang Jin,et al.Sensitivity evaluation experiment of Liulin CBM reservoir[J].Coal Geology & Exploration,2011,39(6):28-35.
[9] 白建梅,秦 義,石惠寧,等.沁水盆地煤儲(chǔ)層應(yīng)力敏感分析及工藝對(duì)策[J].石油鉆采工藝,2009,31(4):94-96. Bai Jianmei,Qin Yi,Shi Huining,et al.Analysis on stress sensitivity of coalbed methane reservoir in Qinshui Basin and strategies[J].Oil Drilling & Production Technology,2009,31(4):94-96.
[10] 段品佳,王芝銀,翟雨陽(yáng),等.煤層氣排采初期階段合理降壓速率的研究[J].煤炭學(xué)報(bào),2011,36(10):1689-1692. Duan Pinjia,Wang Zhiyin,Zhai Yuyang,et al.Research on reasonable depressurization rate in initial stage of exploitation to coal bed methane[J].Journal of China Coal Society,2011,36(10):1689-1692.
[11] 盧 聰,郭建春,王文耀,等.支撐劑嵌入及對(duì)裂縫導(dǎo)流能力損害的實(shí)驗(yàn)[J].天然氣工業(yè),2008,28(2):99-101. Lu Cong,Guo Jianchun,Wang Wenyao,et al.Experimental research on proppant embedment and its damage to fractures conductivity[J].Natural Gas Industry,2008,28(2):99-101.
[12] 鄒雨時(shí),馬新仿,王 雷,等.中、高煤階煤巖壓裂裂縫導(dǎo)流能力實(shí)驗(yàn)研究[J].煤炭學(xué)報(bào),2011,36(3):473-476. Zou Yushi,Ma Xinfang,Wang Lei,et al.Experimental evaluation of conductivity of fracturing in medium and high-rank coal beds[J].Journal of China Coal Society,2011,36(3):473-476.
[13] 錢鳴高,石平五,許家林.礦山壓力與巖層控制[M].徐州:中國(guó)礦業(yè)大學(xué)出版社,2010:44.
[14] 孟召平,田永東,李國(guó)富.沁水盆地南部地應(yīng)力場(chǎng)特征及其研究意義[J].煤炭學(xué)報(bào),2010,35(6):975-981. Meng Zhaoping,Tian Yongdong,Li Guofu.Characteristics of in-situ stress field in southern Qinshui Basin and its research significance[J].Journal of China Coal Society,2010,35(6):975-981.
[15] 孟召平,藍(lán) 強(qiáng),劉翠麗,等.鄂爾多斯盆地東南緣地應(yīng)力、儲(chǔ)層壓力及其耦合關(guān)系[J].煤炭學(xué)報(bào),2013,38(1):122-128. Meng Zhaoping,Lan Qiang,Liu Cuili,et al,In-situ stress and coal reservoir pressure in Southeast margin of Ordos Basin and their coupling relations[J],Journal of China Coal Society,2013,38(1):122-128.
[16] Meng Zhaoping,Zhang Jincai,Wang Rui.In-situ stress,pore pressure,and stress-dependent permeability in the Southern Qinshui Basin[J].International Journal of Rock Mechanics & Mining Sciences,2011,48:122-131.
[17] 王旱祥,蘭文劍.煤層氣井煤粉產(chǎn)生機(jī)理探討[J].中國(guó)煤炭,2012,38(2):95-97. Wang Hanxiang,Lan WenJian.Discussion on formation mechanism of coal powder in coalbed methane well[J].China Coal,2012,38(2):95-97.
[18] 張芬娜,綦耀光,莫日和,等.單相流煤層氣井裂隙煤粉受力分析及啟動(dòng)條件[J].煤礦開(kāi)采,2011,16(6):11-13,73. Zhang Fenna,Qi Yaoguang,Mo Rihe,et al.Force analysis of uniflow coal-dust in cracks of mine for CBM and starting condition[J].Coal Mining Technology,2011,16(6):11-13,73.
[19] 陳振宏,王一兵,孫 平.煤粉產(chǎn)出對(duì)高煤階煤層氣井產(chǎn)能的影響及其控制[J].煤炭學(xué)報(bào),2009,34(2):229-232. Chen Zhenhong,Wang Yibing,Sun Ping.Destructive influences and effectively treatments of coal powder to high rank coalbed methane production[J].Journal of China Coal Society,2009,34(2):229-232.
[20] 李仰民,王立龍,劉國(guó)偉,等.煤層氣井排采過(guò)程中的儲(chǔ)層傷害機(jī)理研究[J].中國(guó)煤層氣,2010,7(6):39-43,47. Li Yangmin,Wang Lilong,Liu Guowei,et al.Study on coal reservoir damage mechanism in dewatering and extraction process of CBM wells[J].China Coalbed Methane,2010,7(6):39-43,47.
Controllingthedamageofconductivityofhydraulicfacturesduringtheprocessofdrainageincoalbedmethanewell
ZHANG Shuang-bin1,2,SU Xian-bo1,GUO Hong-yu1,LIN Xiao-ying1
(1.SchoolofEnergyScienceandEngineering,HenanPolytechnicUniversity,Jiaozuo454000,China;2.DepartmentofMiningEngineering,JinchengInstituteofTechnology,Jincheng048026,China)
During the process of drainage to coalbed methane(CBM)well,the change of conductivity of hydraulic fractures directly affects the extending range of pressure drop funnel,which can further influence the gas production level.The change regular pattern of fractures conductivity in coal reservoir during the process of drainage was simulated physically in the laboratory by means of the FCES-100fracture long-term flow conductometer,and by using coal samples made by No.3 coal of Sihe Mine in Jincheng Anthracite Mining Group and Lanzhou sand as the proppant.According to the analysis of the experiment,the conductivity of hydraulic fractures has a fairly strong stress sensitivity during the process of drainage,which controls the reservoir pressure dropping slowly and ensures that before the pressure drop funnel is fully extended,the stress sensitivity does less damage to the conductivity.Increasing sand ratio is considered to decrease the effect of proppant embedment and selecting higher-strength proppant aims to overcome the damage of its break in deep well.Instability and intermittent drainage is another important reason for the rapid decreasing of fracture conductivity,and only by adhering to draining continuously,slowly and stably can the damage of stress sensitivity and drainage velocity sensitivity be avoided and ensure coalbed methane wells development with good results achieved.
conductivity;hydraulic factures;coalbed methane well;drainage;closure pressure
10.13225/j.cnki.jccs.2013.0123
國(guó)家自然科學(xué)基金資助項(xiàng)目(40972109,41002047)
張雙斌(1977—),男,山西夏縣人,博士研究生。Tel:0391-3987981,E-mail:kygcxjs@163.com
P618.11
A
0253-9993(2014)01-0124-05
張雙斌,蘇現(xiàn)波,郭紅玉,等.煤層氣井排采過(guò)程中壓裂裂縫導(dǎo)流能力的傷害與控制[J].煤炭學(xué)報(bào),2014,39(1):124-128.
Zhang Shuangbin,Su Xianbo,Guo Hongyu,et al.Controlling the damage of conductivity of hydraulic factures during the process of drainage in coalbed methane well[J].Journal of China Coal Society,2014,39(1):124-128.doi:10.13225/j.cnki.jccs.2013.0123