蔡 峰,劉澤功,LUO Yi
(1.安徽理工大學(xué) 能源與安全學(xué)院,安徽 淮南 232001;2.煤礦安全高效開(kāi)采省部共建教育部重點(diǎn)實(shí)驗(yàn)室,安徽 淮南 232001;3.煤與煤層氣共采安徽省重點(diǎn)實(shí)驗(yàn)室,安徽 淮南 232001;4.Department of Mining Engineering,West Virginia University,Morgantown,WV 26505,USA)
爆轟應(yīng)力波在高瓦斯煤層中的傳播和衰減特性
蔡 峰1,2,3,4,劉澤功1,2,LUO Yi4
(1.安徽理工大學(xué) 能源與安全學(xué)院,安徽 淮南 232001;2.煤礦安全高效開(kāi)采省部共建教育部重點(diǎn)實(shí)驗(yàn)室,安徽 淮南 232001;3.煤與煤層氣共采安徽省重點(diǎn)實(shí)驗(yàn)室,安徽 淮南 232001;4.Department of Mining Engineering,West Virginia University,Morgantown,WV 26505,USA)
深孔預(yù)裂爆破技術(shù)是高瓦斯低透氣性煤層強(qiáng)化增透瓦斯抽采的重要途徑之一。以連續(xù)介質(zhì)力學(xué)為基礎(chǔ),建立了煤體在爆轟荷載作用下動(dòng)態(tài)損傷本構(gòu)模型,并將此模型嵌入非線性有限元程序LS-DYNA中,對(duì)爆轟應(yīng)力波在不同彈性模量煤體中傳播和衰減特性進(jìn)行了數(shù)值模擬;通過(guò)對(duì)現(xiàn)場(chǎng)深孔預(yù)裂爆破專(zhuān)用藥柱爆炸引起的爆破振動(dòng)進(jìn)行監(jiān)測(cè),獲得了爆轟應(yīng)力波在高瓦斯煤層中的傳播和衰減特性,爆轟實(shí)驗(yàn)結(jié)果與模擬結(jié)果基本吻合,驗(yàn)證了所建立本構(gòu)模型的合理性與正確性。研究表明:在傳播距離小于4.8m時(shí),爆轟應(yīng)力波具有較高的峰值,并迅速衰減,在傳播距離大于約4.8m以后,爆轟應(yīng)力波峰值較低且衰減幅度逐漸趨于平緩。
爆轟應(yīng)力波;衰減特性;高瓦斯煤層;深孔預(yù)裂爆破
目前國(guó)有重點(diǎn)煤礦70%以上為高瓦斯甚至煤與瓦斯突出礦井[1-2],煤層低透氣性低(小于0.1m2/(MPa2·d))[3-4]。近年來(lái),針對(duì)低透氣性煤層瓦斯抽采,傳統(tǒng)的辦法是在煤層中打較多的鉆孔進(jìn)行抽采,鉆進(jìn)工程量大,施工周期長(zhǎng),很難滿足礦井安全高效生產(chǎn)的要求,且難以獲得預(yù)期的抽采效果[5-6],因而強(qiáng)化增透技術(shù)是提高低透氣性煤層抽采效果的必然途徑[7-8]。目前,在煤層強(qiáng)化增透方法主要分為兩大類(lèi):一是利用流體介質(zhì)和流體機(jī)械相配合對(duì)煤體進(jìn)行處理,如水力沖孔技術(shù)、水力割縫技術(shù)及水力壓裂技術(shù)等[9-10];二是利用炸藥爆炸等途徑增加煤體裂隙,提高煤層透氣性,如深孔預(yù)裂爆破技術(shù)和煤層射孔技術(shù)等[11-12]。深孔預(yù)裂爆破技術(shù)的目的在于利用爆轟能量強(qiáng)化增加煤層透氣性,從而降低煤層瓦斯抽采的難度[13]。研究深孔預(yù)裂爆破增透的關(guān)鍵在于爆炸荷載作用下裂紋的演化機(jī)理和增透范圍,而若想從本質(zhì)上了解裂紋分布及演化規(guī)律必須首先給出爆轟應(yīng)力波在高瓦斯煤層中傳播特性。筆者建立了爆轟損傷本構(gòu)方程,對(duì)高瓦斯煤在柱狀裝藥爆炸荷載作用下爆轟應(yīng)力波的傳播特性進(jìn)行了數(shù)值模擬和實(shí)驗(yàn)研究。
以連續(xù)介質(zhì)力學(xué)為基礎(chǔ),建立煤體在爆轟荷載作用下的損傷演化方程。
1.1 爆轟損傷函數(shù)
(1)
式中,D為煤體在爆炸荷載作用下?lián)p傷前后模量相對(duì)變化;c0和c分別為煤體爆轟損傷前后彈性縱波波速。
1.2 損傷演化方程
(1)拉伸波作用下的損傷演化方程。
損傷能量釋放率為
(2)卸載波作用下的剪切損傷演化方程。
卸載波作用下剪切損傷在基于RDA模型[14-15]的應(yīng)變率效應(yīng)耦合原則下可以表述為
(2)
1.3 動(dòng)態(tài)本構(gòu)關(guān)系
煤體在拉伸和塑性剪切損傷后,仍然服從增量型虎克定律(其損傷統(tǒng)一用D表示):
(3)
式中,Δeij為偏應(yīng)變?cè)隽?;G,K為剪切模量和體積模量;Δεkk為體應(yīng)變?cè)隽俊?/p>
式(1)~(3)構(gòu)成了煤體爆轟損傷模型封閉方程組。
1.4 損傷判據(jù)
當(dāng)煤體最大主應(yīng)力σ1大于斷裂應(yīng)力σf時(shí),根據(jù)體積拉應(yīng)力準(zhǔn)則和最大主應(yīng)力準(zhǔn)則,則將發(fā)生斷裂,此時(shí),壓縮強(qiáng)度Yc為零;否則,煤體屈服強(qiáng)度服從與拉伸損傷應(yīng)變率有關(guān)的Mohr-Coulomb準(zhǔn)則,即
1.5 爆破藥柱狀態(tài)方程
利用JWL狀態(tài)方程求得深孔預(yù)裂爆破專(zhuān)用藥柱起爆后藥柱單元體內(nèi)的壓力P。JWL方程描述了爆破藥柱爆炸時(shí)化學(xué)能的轉(zhuǎn)化情況,表示為
式中,V為相對(duì)體積;A,B,R1,R2,ω為JWL方程參數(shù)。
2.1 數(shù)值模型
采用LS-DYNA軟件進(jìn)行數(shù)值模擬。將本文定義的爆轟損傷本構(gòu)方程的子程序嵌入LS-DYNA中,爆破藥柱采用JWL狀態(tài)方程描述,爆破藥柱和煤體具體數(shù)值見(jiàn)表1。表1中的ρ1和ρ2分別為深孔預(yù)裂爆破專(zhuān)用藥柱和煤體密度;DH為爆速;PCJ為炸藥爆轟壓力;E0為爆轟初始內(nèi)能;G和K分別為煤體剪切模量和體積模量。
表1數(shù)值模擬參數(shù)
Table1Parametersofnumericalsimulation
ρ1/(g·cm-3)ρ2/(g·cm-3)PCJ/GPaDH/(m·s-1)A/GPaB/GPaR1R2ωE0/GPaG/MPaK/MPa1 211 2514 641003166 273 860 870 36 50 0080 01
在模擬過(guò)程中,通過(guò)改變煤體介質(zhì)的彈性模量,分析探討爆轟應(yīng)力波在不同彈性模量煤體中傳播與衰減規(guī)律,計(jì)算分析應(yīng)力波的衰減與質(zhì)點(diǎn)的受力的時(shí)間相關(guān)分析,分別取E=1.0,1.5,2.0和2.5GPa四種計(jì)算模型。
2.2 數(shù)值模擬結(jié)果及分析
圖1分析了距爆孔2.5m處煤體介質(zhì)彈性模量變化對(duì)爆轟應(yīng)力波傳播時(shí)間歷程的影響。由圖1可見(jiàn),隨著煤體介質(zhì)彈性模量增大,爆轟應(yīng)力波傳播過(guò)程中的延遲效應(yīng)減小,峰值隨之增大。如當(dāng)煤體介質(zhì)E=1.0GPa時(shí),爆轟應(yīng)力波的峰值為2.09MPa,而當(dāng)煤體介質(zhì)彈性模量E=2.5GPa時(shí),應(yīng)力波的峰值為4.74MPa,增加了2.63 MPa,增幅達(dá)到125.8%。通過(guò)數(shù)值模擬分析,應(yīng)力波峰值的大小與煤體介質(zhì)彈性模量的關(guān)系如圖2所示。
圖1 不同彈性模量時(shí)距爆孔2.5m處煤體點(diǎn)壓力時(shí)間歷程Fig.1 Curves of point pressure 2.5m to explosive of medium with time in different modulus
圖2 爆轟應(yīng)力波峰值大小與彈性模量的關(guān)系Fig.2 Relationship between peak value of stress value and modulus
圖3顯示了不同彈性模量時(shí),爆轟應(yīng)力波峰值在傳播過(guò)程中的衰減特性。從圖3可以看出,爆轟應(yīng)力波在4.8m范圍內(nèi)傳播過(guò)程中迅速衰減,隨著煤體介質(zhì)彈性模量增加,爆轟應(yīng)力波隨傳播距離的衰減幅度越來(lái)越小,這說(shuō)明爆轟應(yīng)力波在較“軟”的介質(zhì)中傳播時(shí)衰減的幅度較大。
圖3 不同彈性模量時(shí)爆轟應(yīng)力波峰值與傳播距離的關(guān)系Fig.3 Relationship between peak value and propagation distance in different modulus
通過(guò)用數(shù)值模擬的方法,可發(fā)現(xiàn)爆轟應(yīng)力波在煤體介質(zhì)中的傳播和衰減規(guī)律:① 隨著煤體介質(zhì)彈性模量的增加,爆轟應(yīng)力波隨傳播距離的衰減幅度越來(lái)越?。虎?如圖3所示,在傳播距離小于4.8m時(shí),爆轟應(yīng)力波具有較高的峰值,并迅速衰減,在傳播距離大于4.8m以后,爆轟應(yīng)力波衰減幅度逐漸趨于平緩。
3.1 實(shí)驗(yàn)系統(tǒng)布置
實(shí)驗(yàn)在淮南礦業(yè)集團(tuán)潘三礦長(zhǎng)壁工作面回風(fēng)巷進(jìn)行。實(shí)驗(yàn)煤層埋藏深度為720m,瓦斯含量為8.9m3/t,該煤層彈性模量為1.5GPa。爆孔施工鉆頭直徑為75mm,鉆孔深度為2m,在離爆孔間距分別為2.5,5.0,7.5,10.0和12.5m處各挖一個(gè)直徑約0.3 m,深約1.5m的空洞,要求空洞底部平整,然后用石灰及少量水混合成漿狀,將監(jiān)測(cè)傳感器底部與空洞內(nèi)煤體膠結(jié)成一個(gè)整體,裝藥、傳感器安裝結(jié)構(gòu)和具體位置如圖4所示,傳感器選用TOPBOX508振動(dòng)信號(hào)自記儀。
圖4 裝藥結(jié)構(gòu)與傳感器布置示意Fig.4 The diagram of charge structure and layout sensor
爆破孔深為2m,裝藥1m,使用專(zhuān)用封孔裝置封孔1m。本次試驗(yàn)使用的深孔預(yù)裂爆破藥柱具體參數(shù)見(jiàn)表2。
3.2 實(shí)驗(yàn)結(jié)果與分析
藥管在煤層中爆破松動(dòng)爆破過(guò)程中各傳感器最大振動(dòng)速度測(cè)試結(jié)果見(jiàn)表3,各傳感器監(jiān)測(cè)結(jié)果如圖5所示。
表2試驗(yàn)用深孔預(yù)裂爆破藥柱具體參數(shù)
Table2Parametersofspecialtyexperimentalexplosive
序號(hào)項(xiàng)目性能指標(biāo)1外部直徑/mm622裝藥密度/(g·cm-3)1 213專(zhuān)用傳爆體爆速/(m·s-1)72004三級(jí)煤礦許用水膠炸藥爆速/(m·s-1)41005可燃?xì)獍踩?以半數(shù)引火量計(jì))/g≥4006煤塵安全度(以半數(shù)引火量計(jì))/g≥2507抗爆燃性合格8炸藥爆炸后有毒氣體含量/(L·kg-1)≤100
表3最大振動(dòng)速度測(cè)試結(jié)果
Table3Thegreatestvibrationspeedtestresults
傳感器編號(hào)離炮孔的垂直距離S1/m傳感器靈敏度/mV最大垂直振幅/V最大振動(dòng)速度/(cm·s-1)12 528 97 94274 7425 028 13 97141 2837 529 33 97135 49410 029 23 34114 38512 529 61 2843 24
圖5 各振動(dòng)儀記錄監(jiān)測(cè)結(jié)果Fig.5 The wave diagram of each self-recording instruments
通過(guò)對(duì)深孔預(yù)裂爆破專(zhuān)用藥柱爆炸引起的爆破振動(dòng)監(jiān)測(cè),并在測(cè)得的波形圖上找出最大振幅,根據(jù)最大振幅和傳感器靈敏度之間的關(guān)系計(jì)算出最大振動(dòng)速度,根據(jù)最大振動(dòng)速度可以反映出煤體是否被破壞、松動(dòng)及產(chǎn)生裂隙等。從實(shí)驗(yàn)結(jié)果來(lái)看,爆孔孔口直徑2.5m范圍的煤產(chǎn)生了較大幅度的松動(dòng)和破裂,在離爆孔孔口5m處最大振動(dòng)速度高達(dá)112.38cm/s,足以使煤體破裂,但在7.5m處,最大振動(dòng)速度僅為32.24cm/s,引起煤體的振動(dòng)速度較小,有可能使煤體產(chǎn)生裂隙,但是從現(xiàn)場(chǎng)煤體表觀現(xiàn)象看,煤體松動(dòng)小。從圖6可以看出,實(shí)驗(yàn)結(jié)果與數(shù)值模擬結(jié)果基本吻合。
圖6 爆轟應(yīng)力波傳播過(guò)程中峰值變化Fig.6 Change curves of peak values in the process of transmission of stress wave
(1)以連續(xù)介質(zhì)力學(xué)為基礎(chǔ),建立了爆轟損傷動(dòng)態(tài)本構(gòu)模型,并對(duì)爆轟應(yīng)力波在不同彈性模量煤體中傳播和衰減特性進(jìn)行了數(shù)值模擬,模擬結(jié)果與煤體爆轟實(shí)驗(yàn)結(jié)果基本吻合,證明爆轟損傷本構(gòu)模型可以有效的模擬煤體爆轟過(guò)程中的應(yīng)力波傳播和動(dòng)態(tài)損傷。
(2)隨著煤體介質(zhì)彈性模量的增加,爆轟應(yīng)力波隨傳播距離的衰減幅度越來(lái)越小。在傳播距離小于4.8m時(shí),爆轟應(yīng)力波具有較高的峰值,并迅速衰減,在傳播距離大于4.8m以后,爆轟應(yīng)力波峰值較低且衰減幅度逐漸趨于平緩,因而在利用深孔預(yù)裂爆破專(zhuān)用藥柱進(jìn)行強(qiáng)化增透時(shí),有效松動(dòng)半徑小于4.8m。
[1] 蔡 峰,劉澤功.高瓦斯低透氣性煤層深孔預(yù)裂爆破增透數(shù)值模擬分析[J].煤炭學(xué)報(bào),2007,32(5):499-503. Cai Feng,Liu Zegong.Numerical simulation of improving permeability by deep-hole presplitting explosion in loose-soft and low permeability coal seam[J].Journal of China Coal Society,2007,32(5):499-503.
[2] 肖紅飛,何學(xué)秋,馮 濤,等.基于FLAC2D模擬的礦山巷道掘進(jìn)煤巖變形破裂力電耦合規(guī)律研究[J].巖石力學(xué)與工程學(xué)報(bào),2005,24(13):2304-2309. Xiao Hongfei,He Xueqiu,Feng Tao,et al.Research on coupling laws between eme and tress fields during deformation and fracture of mine tunnel excavation based on FLAC2D[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(13):2304-2309.
[3] 賈智偉,劉彥偉,景國(guó)勛.瓦斯爆炸沖擊波在管道拐彎情況下的傳播特性[J].煤炭學(xué)報(bào),2011,36(1):97-100. Jia Zhiwei,Liu Yanwei,Jing Guoxun.Propagation characteristic about shock wave of gas explosion at laneway corner[J].Journal of China Coal Society,2011,36(1):97-100.
[4] 余德運(yùn),楊 軍,趙明生.減震溝對(duì)臺(tái)階爆破地震波減震機(jī)理探討[J].煤炭學(xué)報(bào),2011,36(2):244-247. Yu Deyun,Yang Jun,Zhao Mingsheng.Study on the absorption mechanism of damping bitch to the vibration wave in bench blasting[J].Journal of China Coal Society,2011,36(2):244-247.
[5] 劉文韜.巖石含損傷本構(gòu)模型和地下爆炸效應(yīng)研究[J].巖石力學(xué)與工程學(xué)報(bào),2003,22(2):342-346. Liu Wentao.Study on the damage constitutive model for rock and the effects of underground explosion[J].Chinese Journal of Rock Mechanics and Engineering,2003,22(2):342-346.
[6] 岳中文,楊仁樹(shù),陳 崗,等.切縫藥包空氣間隔裝藥爆破的動(dòng)態(tài)測(cè)試[J].煤炭學(xué)報(bào),2011,36(3):398-402. Yue Zhongwen,Yang Renshu,Chen Gang,et al.Dynamic test on silt-charge blasting of air-deck charge[J].Journal of China Coal Society,2011,36(3):398-402.
[7] Thabet A,Haldane D.Three-dimensional numerical simulation of the behavior of standard concete test specimens when subjected to impact loading[J].Computers and Structures,2001,79(1):21-31.
[8] Zhang Y Q,Hao H,Lu Y.Anisotropic dynamic damage and fragmentation of rock materials under explosive loading[J].Int.J.Engng.Sci.,2003,41(9):917-929.
[9] 魏國(guó)營(yíng),張書(shū)軍,辛新平.突出煤層掘進(jìn)防突技術(shù)研究[J].中國(guó)安全科學(xué)學(xué)報(bào),2005,15(6):100-104. Wei Guoying,Zhang Shujun,Xin Xinping.Study on technology of preventing coal and gas outburst during excavating in outburst coal bed[J].China Safety Science Journal,2005,15(6):100-104.
[10] 蔣承林.突出危險(xiǎn)性的線性判別法及臨界值研究[J].中國(guó)礦業(yè)大學(xué)學(xué)報(bào),2000,29(1):63-66. Jiang Chenglin.Linear discriminatory analysis on coal-gas outburst danger and its critical value[J].Journal of China University of Mining & Technology,2000,29(1):63-66.
[11] 楊仁樹(shù),牛學(xué)超,商厚勝,等.爆炸應(yīng)力波作用下層理介質(zhì)斷裂的動(dòng)焦散實(shí)驗(yàn)分析[J].煤炭學(xué)報(bào),2005,30(1):36-39. Yang Renshu,Niu Xuechao,Shang Housheng,et al.Dynamic caustics analysis of crack in samdwich materials under blasting stress wave[J].Journal of China Coal Society,2005,30(1):36-39.
[12] 王仲琦,張 奇,白春華.孔深影響爆炸應(yīng)力波特性的數(shù)值分析[J].巖石力學(xué)與工程學(xué)報(bào),2002,21(4):550-553. Wang Zhongqi,Zhang Qi,Bai Chunhua.Numerical simulation on influence of hole depth on explosion effect[J].Chinese Journal of Rock Mechanics and Engineering,2002,21(4):550-553.
[13] 徐 穎,宗 琦.地下工程爆破理論及應(yīng)用[M].徐州:中國(guó)礦業(yè)大學(xué)出版社,2001:67-69. Xu Ying,Zong Qi.Theory and application of underground engineering explosive[M].Xuzhou:China University of Mining and Technology Press,2001:67-69.
[14] Fang Z,Harrison J P.Application of a local degradation model to the analysis of brittle fracture of laboratory scale rock specimens under triaxial conditions[J].International Journal of Rock Mechanics & Mining Sciences,2002,39:459-476.
[15] Tsukasa O,Hiromitsu T.Effect of explosion energy and depth on the nature of explosion clouda field experimental study[J].Journal of Volcanology and Geothermal Research,2002,65(1):33-42.
Propagationandattenuationcharacteristicsofstresswavesgeneratedbyexplosioninhigh-gascoal-beds
CAI Feng1,2,3,4,LIU Ze-gong1,2,LUO Yi4
(1.SchoolofResourceandSafety,AnhuiUniversityofScienceandTechnology,Huainan232001,China;2.KeyLaboratoryofIntegratedCoalExploitationandGasExtractionofAnhuiProvince,Huainan232001,China;3.KeyLabofMiningCoalSafelyandEfficientlyMiningConstructedbyAnhuiProvinceandMinistryofEducation,Huainan232001,China;4.DepartmentofMiningEngineering,WestVirginiaUniversity,Morgantown,WV 26505,USA)
Deep-hole pre-splitting explosion is an important way to intensified improve permeability of high-gas and low permeability coal-beds.Based on continuum mechanics,explosion dynamic damage constitutive model of coal under the impact of explosion was established and embedded into nonlinear finite element program LS-DYNA,and propagation and attenuation characteristics of stress waves generated by explosion in coal of different modulus was numerical simulated.Through the monitor of on-site blasting vibration of specialty explosive,propagation and attenuation characteristics of stress waves generated by explosion in high-gas coal-beds was acquired.Simulation results is basically coordinate with results of explosion experiments,and the reasonableness and correctness is verified.The researching results show that: when propagating distance is less than 4.8m,the explosion stress waves have high peak values and sharply attenuate;when propagating distance is larger than 4.8m,the explosion stress waves have low peak values and attenuation rate gradually going flatten.
stress waves generated by explosion;attenuation characteristics;high-gas coal-bed;deep-hole pre-splitting explosion
10.13225/j.cnki.jccs.2013.0218
國(guó)家自然科學(xué)基金資助項(xiàng)目(51304006);安徽省教育廳重點(diǎn)資助項(xiàng)目(KJ2011A075);安徽理工大學(xué)青年骨干培養(yǎng)基金資助項(xiàng)目(20120012)
蔡 峰(1980—),男,江蘇銅山人,副教授,碩士生導(dǎo)師,博士。Tel:0554-6668753,E-mail:fcai@aust.edu.cn
TD713
A
0253-9993(2014)01-0110-05
蔡 峰,劉澤功,Luo Yi.爆轟應(yīng)力波在高瓦斯煤層中的傳播和衰減特性[J].煤炭學(xué)報(bào),2014,39(1):110-114.
Cai Feng,Liu Zegong,Luo Yi.Propagation and attenuation characteristics of stress waves generated by explosion in high-gas coal-beds[J].Journal of China Coal Society,2014,39(1):110-114.doi:10.13225/j.cnki.jccs.2013.0218