• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design and characteristic research of double-acting aircraft deicing fluid pump*

    2014-09-06 10:53:32MiaoGONGZhiweiXINGLiwenWANG
    機床與液壓 2014年1期
    關鍵詞:中國民航鹽霧機箱

    Miao GONG, Zhi-wei XING, Li-wen WANG

    1Department of Aeronautical Automation, Civil Aviation University of China, Tianjin 300300, China;2Aviation Ground Special Equipment Research Base, CAAC, Tianjin 300300, China

    ?

    Design and characteristic research of double-acting aircraft deicing fluid pump*

    Miao GONG? 1,2, Zhi-wei XING1,2, Li-wen WANG1,2

    1Department of Aeronautical Automation, Civil Aviation University of China, Tianjin 300300, China;2Aviation Ground Special Equipment Research Base, CAAC, Tianjin 300300, China

    Abstract:Filling speed of deicing fluid is an important factor that affects the efficiency of airport deicing operation. In this paper, we design a double-acting large flow reciprocating pump for aircraft deicing equipment. We demonstrate the principle, the design drawing and the design calculation of key components. The pressure-flow characteristics of double-acting pump are analyzed through modeling and simulation methods; the optimal program of system damping and flow output are obtained by the simulation experiment of changing piston clearance. We implement a practical experimental analysis, which is based on the optimal parameters obtained from the simulation, to test the rationality of the simulation experiment. The result is shown that, according to the viscosity of the deicing fluid, the system damping, flow and pulsation are optimal relevance and the flow steady output when the piston clearance is 3mm. This verifies the rationality and feasibility of the design. Within the operating pressure range of the pump, the output flow and ripple suppression achieve the desired effect, and the performance is better than the existing similar deicing equipments. This design provides a reference for the related equipment design and industrial applications.

    Key words:Double-acting pump, AMESIM, Piston clearance, Pressure-flow characteristic, Deicer equipment

    1.Introduction

    In the process of aircraft deicing operation, filling speed of deicing fluid is the principal element, which directly affects the efficiency of deicing operations. Currently, several major north airports have built a kind of large deicing fluid filling system that consist of a stationary fluid filling and ratable matching station and mobile high flow fluid filling station[1]. In deicing fluid filling system, the efficiency of the whole system is directly affected by the speed of filling pumps. The system need several large flow pumps working together, and the physical characteristics of deicing fluid require that the pumps would not generate shear force to deicing fluid during the operation because it can cause some loss of fluid viscosity. Furthermore, using bottom filling hole for filling the large mobile deicing fluid station requires the pumps having definite pressure resistance. Moreover, the filling pump is expected to lower the pulsation of outputting flow to enhance the real time mixing ratio accuracy of deicing fluid and water. The lower output pulsation can also reduce the resonance between the mobile fluid filling station and the pipeline to keep stability of system[2].

    To achieve these requirements, we designed a large flow and high performance double-acting deicing fluid filling pump. Through modeling and simulation, we verified the feasibility of design and analyzed the performance parameter of the pump, and then we found out the optimal configuration among damping clearance and output ripple, which was tested by experiment. This paper can provide the basis for high-performance deicer equipment design and manufacturing.

    2.Design principles of double-acting aircraft’s deicing fluid pump

    2.1.Design goals

    The main component of the deicing fluid is propylene glycol or ethylene glycol, together with a small amount of anti-corrosion agents, antifoam agents, antioxidants, flame retardants, stabilizers and the like[3]. The fluid can be achieved with a different freezing point and refractive index by mixing different proportions of water. It’s required filling to deicing vehicles or mobile fluid stations rapidly. According to above requirements, the design goals are stated as follows:

    ① The pump should not produce shear stress on the fluid molecules in the filling process which affects the physical and chemical characteristics of deicing fluid;

    ② Pump cavity is made of stainless steel;

    ③ Maximum flow of pump>30 m3/h;

    ④ Maximum bear pressure>0.5 MPa.

    2.2.Design principles

    According to these requirements, we designed a double-acting piston-type deicing fluid pump. The cavity is made of 304 stainless steel. The structure principle diagram is shown as Figure 1.

    Figure 1.Double-acting deicing fluid pump structure principle diagram

    Two same built plunger pump cylinders(3) are linked by a crank connecting rod (1) via piston(2), the fluid inlet pipeline (4) connects with fluid inlet check valve(5) on each plunger pump cylinder, the fluid drain pipeline (6) connects with drain check valve(7) on each plunger pump cylinder. The plunger pump cylinder is divided into two zones (A and B). Each zone has two check valves. Considering the corrosion caused by the deicing fluid, the plunger pump cylinder (3), the fluid inlet pipeline (4) and the fluid drain pipeline (6) is made of stainless steel materials.

    The working process is introduced as follows. First, start the power source (after turning on the power), crank link mechanism drive two cylinder pistons reaching the limit position of the right side (dashed line) then move to the left, the piston moves to the left so that the deicing fluid in zone A is pushed, meanwhile, the inlet check valve of zone A is closed and the drain check value of zone A is opened, the pressure pushes the fluid out of the drain check. At the moment the cylinders in zone B become vacuum, the pressure of the inlet pipeline is greater than the cylinders inside, pushing the fluid through inlet check valve into zone B, meanwhile, the drain check valve in zone B is closed. When the pistons reaches the limit position of the left side (dashed line) then move to the right, the working principle is exactly the same. When the drain check valve of both zones is opened, the deicing fluid will be pushed out quickly at a certain pressure. Crank link mechanism drives the piston for reciprocating linear motion in this way. The processes of suction and drainage are continuous. The two cylinders at left and right sides suck up and drain deicing fluid twice respectively in a working cycle. This working form can effectively ensure the continuity and stability of filling.

    3.Design and calculations of key components

    3.1.Power conversion

    The maximum working pressure:

    p=0.5 MPa=0.5×106N/m2

    Volume flow (single cylinder flow):

    Q0=20 m3/h=20×0.000 277 m3/s

    Pressure unit dimension:L-1MT-2

    volume flow unit dimension:L3T-1

    Power unit dimension:L2MT-3

    Calculation according to the dimension as follows:

    (L-1MT-2)×(L3T-1)=L2MT-3

    The result of the calculation above is same as the power unit dimension, so the effective power output for unilateral pump is:

    P1=p·Q=2.777 kW

    The effective power output for bilateral pump is:

    P2=2P1=5.554 kW

    When the motor output power is 11 kW and the output flow remains the same, the instantaneous maximum output pressure can be up to 1MPa[4].

    3.2.Calculations of the transmission ratio

    We set piston diameter asD, the piston radius asR, the schedule of length asL, the pump flow asQ, the reciprocating frequency of the pump asf. Then we choose double-acting plunger pump piston diameterD=150 mm, the linear motion of the piston strokeL=120 mm, motor speedn=1 400 r/min. The calculation is as follows.

    The design volume flow (unilateral pump flow):

    Q0=20 m3/h which can be converted to 0.333 3 m3/min

    The flow of a double-acting plunger pump piston once reciprocating is:

    Q1=2πR·2L=0.075×0.075×3.1415×0.12×2=0.004 24 m3

    So the flow of a double-acting plunger pump piston once reciprocatingQ1is 0.004 24 m3.

    The pump reciprocating frequency of one minute is:

    f=Q0÷Q1=0.333 3÷0.004 24=78.6

    The transmission ratio between the motor and the pistons is:

    i=n/f=1 400÷78.6=17.81

    3.3.Design calculations of key parts

    The static bearing capacity under rated pressure and flow is known that the rated pressure is 0.5 MPa and unilateral pump design flow is 20 m3/h. We set the axial force in piston cylinder asF, the radius of the bolt asR1, the piston rod radius asR2, the tensile strength as t, the crank pin radius asR3.

    We choose bolt radiusR1=9 mm, the piston rod radiusR2=12 mm, crank pin radiusR3=15 mm.

    Maximum axial force of piston in cylinder is:

    F=0.075×0.075×3.141 5×0.5×1 000 000=8 835.729 N

    Maximum piston cylinder axial force is approximately equal to 883.572 9 kg.

    We choose the materials of the piston rod and bolts are both of 304stainless steel, which has 150 MPa tensile strength; the material of crank pin is 40Cr which has 800 MPa tensile strength and 500 MPa shearing strength. The axial tensile strengthFin piston cylinder is decided by cylinder head tightens bolts cross-sectional area and the piston rod minimal cross section. The verifying calculation is as follows:

    The maximum tension of a single bolt (total four) can withstand is:

    F0=R12×π×t

    So:F0=0.009×0.009×π×150×1 000 000=38 170 N

    The maximum tension of the bolt group is:

    F1= 4F0=152 680 N

    The maximum tension of the bolt rod is:

    F2=R22×π×t

    That is:F2=0.012×0.012×π×150×1 000 000=67 858 N

    The maximum shear-force of turn pin:

    F3=R32×π×t

    So:F3=0.015×0.015×π×500×1 000 000=353 429 N

    It is known thatF1,F2,F3are all greater than the maximum axial bearing capacity of the cylinderF. Therefore, axial tensile forceFin the piston cylinder which is 8 835.729 N is under safe limits, even if the axial force in the movement increases seven times.

    The power transmission is designed by a belt speed shift and a gear speed shift. Then it drives the eccentric sheave to rotate. The power transmits through crank pin of the eccentric sheave, then transfer to piston rod for reciprocating motion. The first stage belt speed shift is consisted of a large belt wheel on axle-1 and a small belt wheel on motor. Diameter of small wheel is designed to be 100 mm, and 410 mm for the diameter of large wheel. So the first transmission ratio is 4.1. The second gear shift stage is consisted of a small gear on axle-1 and a large gear on axle-2. Teeth number of small one is designed as 18, and 74 for big wheel, so the second transmission ratio is also 4.1.

    The two stage gear ratio is first stage ratio multiplied by the second ratio which is 16.81. Motor speed is 1 400 r/min, the transmission ratio is 16.81, the reciprocating piston frequencyf1=83.28,f1>f. Therefore, the output flow will be greater than the theoretical side 20 m3/h, the bilateral will be greater than 40 m3/h.

    3.4.General layout scheme of double-acting deicing fluid pump

    We demonstrate the general layout scheme of double-acting deicing fluid pump base on the above design and calculations, as shown in Figure 2.

    Figure 2.General layout scheme of double-acting deicing fluid pump

    4.Modeling and simulation

    4.1.Model construction

    The deicing operation requires that the double-acting deicing fluid pump can output huge flow in specific pressure range. At present, typeⅠaircraft deicing fluid is frequency-used which is mainly consistedofpropylene glycol. Its viscosity coefficient is higher so the output flow of reciprocating pump will produce larger pulsation. We adopted the software AMESIM[5] to simulate and model, so that we can validate the feasibility of the design and find out the best configuration of high performance case, then we can analyze the optimum parameters of damping clearance for reducing the flow ripple on the premise of guaranteeing rated flow. AMESIM is based on the concept of “basic element”, that is, extract the smallest unit of engineering system from all models which allows the user to describe the function of all systems and components in the model without writing any program codes, it allows users liberate from the tedious mathematical modeling to focus on the design of the physical system[6-7].

    Figure 3 is AMESIM simulation model of double-acting deicing fluid pump. The speed after reducing is included in the motor simulation data; crank linkage corresponds to the actual eccentric wheel mechanism. The initial phase of two cylinders and the phase difference can be set in the parameter setting; block of hydraulic cylinder, ball valve and combination of weight modules correspond to the reciprocating pump cylinder; safety valve corresponds to the actual safety valve; throttle valve corresponds to the actual ball valve. During the simulation, 12 different size diameter of the ball valve were input as batch parameters; by changing the piston clearance to find the optimum damping solution.

    As shown in Figure 3,the two modules in upper left corner of the figure are used to set the physical parameters and the inertial parameters of the medium.

    Figure 3.AMESIM simulation model of double-acting deicing fluid pump

    4.2.Settings of model parameters

    The main parameters of the model are shown in Table 1 which is according to the design plan.

    Table 1.The main parameters of the system

    The ambient temperature of model is 20℃, the atmosphere is standard, typeⅠaircraft deicing fluid is the simulation fluid whose main component is propylene glycol. The main parameters of fluid are shown in Table 2.

    Table 2.Fluid physical parameters

    Throttle valve internal structure was simulated with SolidWorks. We calculate the area under different angles respectively, and calculate the equivalent diameter according to the cross-sectional area. The calculation process is shown in Figure 4, and the equivalent diameter of sectional area is shown in Table 3.

    Figure 4.Calculation process of valve opening area

    Opening/(°)Cross-sectionalarea/mm2Equivalentdiameter/mm07853.98100.0106695.1792.3205605.1984.5304417.2175.0403251.3764.3502157.9052.4551656.9646.0601196.2139.065785.2131.670434.8223.575161.3814.3802.751.9

    4.3.Simulation

    We start the simulation according to the parameters settings of the system model building and simulation running and the selection of sub models. After the simulation operation, we can calculate the average flow rate and average pressure value in front of ball valve by the post-processing function of AMESIM[8].Considering the pipe friction, we set pipeline model as compressible friction model. When the simulation medium is typeⅠdeicing fluid and the piston clearance is 0.5 mm, the system average flow curve and average pressure curve are shown respectively as Figure 5 and Figure 6.

    Figure 5.The average flow curve

    Figure 6.The average pressure curve

    According to the simulation results, we obtain the relation curve of the average flow and the average pressure, as shown in Figure 7.

    Figure 7.The average pressure-flow curve

    The results is shown that the output flow peak of the double-acting pump within the scope of 0.000 43 to 0.290 4 MPa is 44 m3/h after running stability, and it is greater than the maximum flow of design, inside leakage in the pump is smaller. When the pressure is between 0.290 4 to 0.679 9 MPa, the flow has a slow decrease trend. The flow is still 35 m3/h or more, when the pressure below 0.679 9 MPa, the pump shows good performance parameters. The output flow and continuity is superior to traditional single-acting reciprocating pump.

    In order to further optimize output flow pulsation of system, considering the larger viscosity properties of deicing fluid, we adjust the piston clearance from 0.5 mm to 1.0 mm, 1.5 mm, 2.0 mm, 2.5 mm and 3 mm respectively, then we do modeling and simulation respectively, analyze the damping effect of the piston clearance[9-10] changes on the system. Considering the maximum working pressure of mobile fluid station charging is about 0.041 5 MPa (this typical data comes from deicing Fluid Filling System of BCIA), the six condition of valve opening is most close to the actual operation. We intercept the flow simulation curve of pump from 45 to 50 seconds, at this time it has run into stable output, as shown in Figure 8.

    Figure 8.The flow curve under different piston clearance

    The curve indicates that with the gradual increase of piston clearance, the system average flow, average pressure and flow fluctuations are slow downward. Simulation measures that the system damping and flow parameters achieved in a relative optimal configuration when the piston clearance is 3 mm. By system calculations, the output flow pulsation is reduced to 0.198 6 m3/h, it’s better than the other 5 piston clearance conditions.

    We capture the average pressure-flow curve point at 3 mm piston clearance, as shown in Figure 9. Due to high viscosity of deicing fluid, the flow can still reach 31.42 m3/h when the pressure value is 0.532 MPa, the performance of pump still exceed the design requirements. Under this condition, although the output flow reduces some, it can still meet the design flow. The pulsation decreased and the output showed better continuity; the resonance between pipe system and mobile deicing fluid station can be reduced effectively, the decrease of pulsation may promote more accurate of real-time mixing ratio for deicing fluid and water.

    Figure 9.The average flow-pressure curve of 3 mm piston clearance condition

    5.Experiment

    According to the simulation results, the actual piston clearance is made for 3 mm to test, as shown in Figure 10. Pressure sensor is installed in the pipeline behind throttle valve and flow sensor is installed in export pipeline. The pressure and flow data of difference process in system is collected and transmitted into computer through AD board. We calculate the average value of each point after removing interference data. Then we obtain the pressure-flow curve as shown in Figure 11 and the output flow curve of typical work condition as shown in Figure 12.

    It is shown in the experiment that the pressure-flow curve tendency of experiment is coincident with the simulation. Contrasting with Figure 7 and Figure 9, owing to some inevitable internal leakage in actual working condition, the experiment flow is lower than the simulation. When the pressure ranges from 0.017 7 MPa to 0.023 4 MPa, the internal leakage is mainly caused by the retaining valves of suction. When the pressure is above 0.023 4 MPa, the mechanical seal of retaining valve is enhanced along with the accretion of pressure, it cause the flow curve rising, the flow is at peak of 36.1 m3/h when the pressure is 0.042 4 MPa, under this condition, system leakage is at the fewest point. Considering the normal working pressure of actual filling system is about 0.041 5 MPa (BCIA data), the flow of pump is desirable. According to the performance of pump, it can meet the expected value for actual working well.

    Figure 10.Photo of experiment

    Figure 11.The average flow-pressure curve of experiment

    Figure 12.The average flow curve under 0.424 MPa condition of experiment

    According to the simulation, we choose the pressure condition of 0.042 4 MPa to analyze the output flow pulsation of system. As shown in Figure 12, the average flow curve of experiment is under the condition of type Ⅰ deicing dynamic viscosity, 3 mm piston clearance. By calculations of computer, we obtain that the output flow pulsation is within 0.231 2 m3/h and the output flow has good continuity.The result testified the experimental validity of simulation and showed that the increase of piston clearance has a damping effect on output flow. According to the experiment, the maximum flow can reach 36.1 m3/h, which is 1.8 times than the same level reciprocating pump from market. It is shown that the double-acting pump has good performance parameter, can meet the demand of high flow and stable filling for large mobile deicing fluid station.

    6.Conclusion

    1) In order to enhance the efficiency of aircraft deicing operation, we designed a double-acting large flow reciprocating pump which is aimed at aircraft deicing fluid viscosity characteristics and requirements of deicing operations. We demonstrated the detailed design calculation and the overall design drawing.

    2) By AMESIM modeling and simulation, we analyzed the pressure-flow characteristics of the pump, it is shown that the pump performance parameters can meet the design expectation and commendably satisfy the requirements of deicing operation. The simulation results testified the reasonability of design.

    3) By the simulation experiment of changing the clearance of the piston, it is shown that on the premise of guaranteeing output flow, the increase of piston clearance can eliminate flow pulsation to some extent. We implemented the practical experiment based on the optimum parameters of the piston clearance from the simulation experiment. The result is shown that according to typeⅠdeicing fluid, when the piston clearance is 3 mm, the system damping, flow and pulsation are optimal relevance, flow steady output. It verified the rationality and feasibility of the design.

    References

    [1]Qin Zhanggao, Xing Zhiwei, Gao Qinji. Research of civil aircraft deicing technology[R].2005-2006.Beijing,airport department of CAAC.2005.

    [2]Chen Bin, Xing Zhiwei, Wang Liwen. Research of Pipeline Pressure Control Method for Aircraft Deicing Vehicle[J].Machine tool and hydraulics, 2009,08:129-131.

    [3]MH6001-2000,Deicing/anti-icing fluid for aircraft(ISO Type I )[S].Beijing:Civil Aviation Administration of China,2000.

    [4]Practical handbook of physics[M].FuJian: the practical handbook of physics workingteam,1991:970-989.

    [5]Chen Bo. Modeling and simulation research of hydraulic impactor based on AMESIM[D].Shanghai: Shanghai University of Engineering Science,2012.

    [6]Wang Xiaoyu. Modeling and simulation of impactor of hydraulic roofbolter based on AMESim[C].2013 International Conference on Renewable Energy and Environmental Technology,2013, 448-453: 3426-3429.

    [7]Quan Long,Yang Yang, Hou Xuwei. Simulation and experimental research on the axial piston pump with series three-windows in valve plate[J].IEEE,2011:71-76.

    [8]Ou Subei, Wang Lianguo. Numerical analysis of seepage flow characteristic of collapse column under the influence of mining[J] International Journal of Mining Science and Technology, 2013(23):237-244.

    [9]Bowers, Walter J,Olson, et al. A capacitive probe for measuring the clearance between the piston and the cylinder of a gas piston gauge[J] .Review of Scientific Instruments, 2010, 81( 3 ): 102-110.

    [10]Kajikawa H, Ide K, Kobata T.Precise determination of the pressure distortion coefficient of new controlled-clearance piston-cylinders based on the Heydemann-Welch model[J]. 2009,80:101- 111.

    (Continued on 31 page)

    鹽霧試驗對電子設備機箱涂層的影響

    鞠成玉?,王曉慧, 朱潤, 任曉明

    北京航空航天大學 可靠性與系統(tǒng)工程學院,北京100191

    雙作用式飛機除冰液泵設計及特性研究*

    龔淼? 1,2,邢志偉1,2,王立文1,2

    1中國民航大學 自動化學院,天津300300;2中國民航航空地面特種設備研究基地,天津300300

    摘要:除冰液的加注速度是影響機場除冰作業(yè)效率的重要因素。設計了一種面向飛機除冰裝備領域的雙作用式大流量往復泵,給出了設計原理、主要部件設計計算書及總體設計圖。通過建模仿真分析雙作用泵的壓力流量特性;通過改變活塞間隙的仿真實驗得到系統(tǒng)阻尼和流量輸出的折中優(yōu)化方案,并依據(jù)仿真得到的最佳參數(shù)進行實驗,驗證仿真分析的合理性。結果表明:根據(jù)除冰液的粘度,活塞間隙在3 mm條件下,系統(tǒng)阻尼、流量、脈動到達最優(yōu)關聯(lián),流量輸出平穩(wěn),驗證了設計方案的合理性和可行性。泵在工況壓力范圍內(nèi),輸出流量和脈動抑制均達到預期效果,性能超越現(xiàn)有同類除冰加液設備性能,為行業(yè)應用和相關設備的設計提供參考。 飛機服役于沿海環(huán)境中,各部位極易受到鹽霧等腐蝕性氣氛的影響。通過鹽霧試驗對機載電子設備機箱涂層進行耐蝕性檢測,利用掃面電鏡、電化學工作站,紅外光譜等方法對涂層進行分析,研究其在鹽霧條件下的失效機理及退化規(guī)律。結果表明:涂層在鹽霧環(huán)境下的失效主要是由于物理過程,而非化學老化導致,且涂層失效過程主要包含3個進程,用交流阻抗譜對其整個腐蝕過程可以精確地表征。

    關鍵詞:雙作用泵;AMESIM;活塞間隙;流量壓力特性;除冰設備 復合涂層; 鹽霧試驗; 交流阻抗

    中圖分類號:TH112 TH86

    DOI:10.3969/j.issn.1001-3881.2014.06.010

    Received: 2013-10-06

    *Project supported by the Joint Funds of the Natural Science Foundation of China and Civil Aviation Administration of China (Grant No.60939001) and National Key Technology Research and Development Program of China (Grant No.2012BAG04B02)

    ? Miao GONG. E-mail:mgong@cauc.edu.cn

    猜你喜歡
    中國民航鹽霧機箱
    中性鹽霧試驗標準研究進展
    大氣鹽霧含量監(jiān)測與影響因素研究
    不同含硫密封劑的耐SO2 鹽霧性能研究
    鹽霧腐蝕試驗的國際國內(nèi)標準及在汽車行業(yè)里的應用
    通告
    抗戰(zhàn)中國民航秘聞之中航“桂林”號客機被截擊
    航空世界(2018年12期)2018-07-16 08:34:48
    中國民航大學學報2016年分類索引
    依舊出色 航嘉MVP機箱圖解
    電腦迷(2015年2期)2015-04-29 00:44:03
    中國民航飛行學院 加強行政管理 提升辦學層次
    NI發(fā)布兩款NI CompactRIO擴展機箱
    電子測試(2012年10期)2012-03-31 12:14:20
    美女大奶头视频| 在线视频色国产色| 久热爱精品视频在线9| 校园春色视频在线观看| 91国产中文字幕| 1024视频免费在线观看| 国产有黄有色有爽视频| 中文欧美无线码| 久久久国产成人免费| 色综合欧美亚洲国产小说| 国产单亲对白刺激| 久久天躁狠狠躁夜夜2o2o| 亚洲一卡2卡3卡4卡5卡精品中文| 精品久久蜜臀av无| 最近最新中文字幕大全电影3 | 亚洲av成人一区二区三| 亚洲精品一卡2卡三卡4卡5卡| 亚洲成人久久性| 啦啦啦免费观看视频1| 国产精品久久久av美女十八| 十八禁网站免费在线| 99精国产麻豆久久婷婷| 国产成人精品久久二区二区91| 亚洲欧美一区二区三区黑人| 欧美在线一区亚洲| 久久午夜亚洲精品久久| 在线观看午夜福利视频| 亚洲 欧美 日韩 在线 免费| 999久久久精品免费观看国产| 久久人人97超碰香蕉20202| 亚洲成人免费av在线播放| 亚洲国产精品sss在线观看 | 国产一区二区三区在线臀色熟女 | 女人爽到高潮嗷嗷叫在线视频| 一级a爱视频在线免费观看| 免费在线观看影片大全网站| 久久久国产欧美日韩av| 亚洲,欧美精品.| 久久久国产精品麻豆| 亚洲精华国产精华精| 国产欧美日韩综合在线一区二区| 久久久国产成人精品二区 | 1024香蕉在线观看| 免费高清在线观看日韩| 亚洲五月天丁香| 一进一出抽搐动态| 久久精品国产99精品国产亚洲性色 | 亚洲成人国产一区在线观看| 亚洲精品粉嫩美女一区| av在线天堂中文字幕 | 国产在线精品亚洲第一网站| 色综合婷婷激情| 一级a爱视频在线免费观看| 亚洲伊人色综图| 久久精品国产清高在天天线| 国产一区二区三区在线臀色熟女 | 欧美日韩黄片免| 久久国产精品男人的天堂亚洲| 黄色视频不卡| 久久亚洲真实| 18禁黄网站禁片午夜丰满| 夫妻午夜视频| 亚洲精品久久午夜乱码| 亚洲欧美一区二区三区久久| 一级a爱视频在线免费观看| 99久久人妻综合| 精品国产美女av久久久久小说| 黄色视频不卡| 亚洲精品中文字幕一二三四区| 欧美日韩一级在线毛片| 法律面前人人平等表现在哪些方面| 在线观看免费高清a一片| 亚洲精品一卡2卡三卡4卡5卡| www.自偷自拍.com| 婷婷六月久久综合丁香| 欧美日本中文国产一区发布| 免费女性裸体啪啪无遮挡网站| 午夜精品在线福利| 中出人妻视频一区二区| 亚洲情色 制服丝袜| 久久精品亚洲精品国产色婷小说| 黑人巨大精品欧美一区二区mp4| 午夜影院日韩av| 天堂动漫精品| 亚洲一码二码三码区别大吗| 黄色片一级片一级黄色片| 中文字幕最新亚洲高清| 美国免费a级毛片| 日韩免费av在线播放| 国产精品国产av在线观看| 亚洲九九香蕉| 中文欧美无线码| 国产精品久久电影中文字幕| 精品卡一卡二卡四卡免费| 妹子高潮喷水视频| 午夜福利欧美成人| 精品久久久久久久毛片微露脸| 超色免费av| 熟女少妇亚洲综合色aaa.| videosex国产| 日本 av在线| 大陆偷拍与自拍| 黄片大片在线免费观看| 女人被狂操c到高潮| 免费在线观看日本一区| 国产精品99久久99久久久不卡| 亚洲av成人不卡在线观看播放网| 精品国产美女av久久久久小说| 性色av乱码一区二区三区2| av福利片在线| 国产高清国产精品国产三级| 亚洲自偷自拍图片 自拍| 国产精品综合久久久久久久免费 | 99国产极品粉嫩在线观看| 黄片小视频在线播放| 久久久久久久精品吃奶| 亚洲欧美激情综合另类| 黑人欧美特级aaaaaa片| 美女国产高潮福利片在线看| 伊人久久大香线蕉亚洲五| 日韩欧美一区二区三区在线观看| 久久中文字幕一级| 黄色片一级片一级黄色片| 黄色怎么调成土黄色| 国产精品一区二区精品视频观看| 人人妻,人人澡人人爽秒播| 日本精品一区二区三区蜜桃| 露出奶头的视频| 免费看十八禁软件| 少妇的丰满在线观看| 麻豆一二三区av精品| 午夜两性在线视频| 精品国产一区二区三区四区第35| 亚洲av电影在线进入| 一级作爱视频免费观看| 伦理电影免费视频| 欧美精品啪啪一区二区三区| 波多野结衣高清无吗| 国产黄a三级三级三级人| 嫁个100分男人电影在线观看| av网站在线播放免费| 国产伦一二天堂av在线观看| 18禁观看日本| 午夜福利,免费看| 日韩高清综合在线| 亚洲avbb在线观看| 欧美性长视频在线观看| 日韩精品青青久久久久久| 十八禁网站免费在线| 超色免费av| 在线播放国产精品三级| 又黄又爽又免费观看的视频| 久久久国产欧美日韩av| 亚洲人成77777在线视频| 国产欧美日韩综合在线一区二区| 9色porny在线观看| 久久国产精品影院| 国产xxxxx性猛交| 叶爱在线成人免费视频播放| 三级毛片av免费| 脱女人内裤的视频| 亚洲精品在线美女| 国产一卡二卡三卡精品| 久久亚洲真实| 成人三级做爰电影| 午夜福利影视在线免费观看| 伊人久久大香线蕉亚洲五| 亚洲中文av在线| 欧美色视频一区免费| 50天的宝宝边吃奶边哭怎么回事| 中文亚洲av片在线观看爽| 日韩欧美一区二区三区在线观看| 夜夜爽天天搞| 成熟少妇高潮喷水视频| 国产成+人综合+亚洲专区| 91字幕亚洲| 日本黄色日本黄色录像| 久久午夜亚洲精品久久| 9色porny在线观看| 亚洲精品在线美女| 精品乱码久久久久久99久播| 久久精品成人免费网站| 丰满人妻熟妇乱又伦精品不卡| 欧美日韩av久久| 一区福利在线观看| 国产精品久久久久久人妻精品电影| 校园春色视频在线观看| 亚洲午夜精品一区,二区,三区| 99re在线观看精品视频| 免费女性裸体啪啪无遮挡网站| 十分钟在线观看高清视频www| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品一区av在线观看| 午夜福利免费观看在线| av福利片在线| 丁香六月欧美| 国产欧美日韩一区二区三区在线| 久久久水蜜桃国产精品网| 久9热在线精品视频| 看免费av毛片| 麻豆久久精品国产亚洲av | 国产精品电影一区二区三区| 天堂俺去俺来也www色官网| 黄片小视频在线播放| 91国产中文字幕| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品在线美女| 亚洲久久久国产精品| 久久性视频一级片| 黄色怎么调成土黄色| 一进一出抽搐gif免费好疼 | 精品高清国产在线一区| 日韩欧美国产一区二区入口| 午夜福利免费观看在线| 日本撒尿小便嘘嘘汇集6| av电影中文网址| 天天影视国产精品| 亚洲av熟女| 免费久久久久久久精品成人欧美视频| 久久狼人影院| 精品福利永久在线观看| 日本三级黄在线观看| 亚洲精品一卡2卡三卡4卡5卡| 婷婷六月久久综合丁香| 亚洲一区二区三区欧美精品| 国产高清国产精品国产三级| 一区二区三区激情视频| 欧美黑人欧美精品刺激| 成人手机av| 天堂影院成人在线观看| 亚洲欧美激情在线| 亚洲视频免费观看视频| a在线观看视频网站| 50天的宝宝边吃奶边哭怎么回事| 国产高清视频在线播放一区| videosex国产| 亚洲人成伊人成综合网2020| 免费一级毛片在线播放高清视频 | 午夜免费成人在线视频| 丝袜美腿诱惑在线| 老司机福利观看| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精品久久成人aⅴ小说| 免费搜索国产男女视频| 级片在线观看| 久久婷婷成人综合色麻豆| videosex国产| 性欧美人与动物交配| 9热在线视频观看99| 国产一卡二卡三卡精品| 波多野结衣一区麻豆| 一区二区三区国产精品乱码| 久久久久久人人人人人| 国产成人精品久久二区二区91| 中文字幕另类日韩欧美亚洲嫩草| 老司机午夜十八禁免费视频| 女人爽到高潮嗷嗷叫在线视频| 在线观看一区二区三区激情| 亚洲欧美一区二区三区黑人| www.精华液| 丰满饥渴人妻一区二区三| 欧美日本中文国产一区发布| 亚洲欧美激情综合另类| 欧美精品啪啪一区二区三区| 亚洲国产看品久久| 一级片免费观看大全| 精品日产1卡2卡| 亚洲精品一卡2卡三卡4卡5卡| 日韩欧美三级三区| 精品熟女少妇八av免费久了| 亚洲欧美一区二区三区久久| 国产一区在线观看成人免费| 一级,二级,三级黄色视频| 人人妻人人添人人爽欧美一区卜| 一进一出抽搐gif免费好疼 | 可以在线观看毛片的网站| 国产av在哪里看| cao死你这个sao货| 国产日韩一区二区三区精品不卡| 日本免费一区二区三区高清不卡 | 国产色视频综合| 中文字幕av电影在线播放| 久久久国产欧美日韩av| 一个人观看的视频www高清免费观看 | 久久国产精品男人的天堂亚洲| 免费看十八禁软件| 怎么达到女性高潮| 新久久久久国产一级毛片| 日本a在线网址| 男女高潮啪啪啪动态图| 亚洲成人久久性| 日韩欧美免费精品| 日本三级黄在线观看| 老司机靠b影院| 亚洲九九香蕉| 大码成人一级视频| 国产亚洲av高清不卡| 国产成年人精品一区二区 | 日本免费一区二区三区高清不卡 | 亚洲精华国产精华精| 啦啦啦在线免费观看视频4| 99久久人妻综合| 国产av精品麻豆| 首页视频小说图片口味搜索| 97人妻天天添夜夜摸| 欧美日本中文国产一区发布| 99久久精品国产亚洲精品| 亚洲自偷自拍图片 自拍| 中文字幕人妻丝袜一区二区| 中文字幕色久视频| 在线观看66精品国产| 国产野战对白在线观看| 免费女性裸体啪啪无遮挡网站| 国产97色在线日韩免费| 91精品国产国语对白视频| 久久人人精品亚洲av| 午夜福利在线观看吧| 日日摸夜夜添夜夜添小说| 欧美日韩亚洲高清精品| 在线永久观看黄色视频| 一级片免费观看大全| 色综合欧美亚洲国产小说| 久久精品国产综合久久久| 伊人久久大香线蕉亚洲五| 日韩欧美三级三区| 一级,二级,三级黄色视频| 国产精品久久电影中文字幕| 咕卡用的链子| 老熟妇仑乱视频hdxx| 日韩 欧美 亚洲 中文字幕| 久久亚洲真实| 国产激情欧美一区二区| 欧美在线黄色| tocl精华| 久久精品国产综合久久久| 免费av毛片视频| 国产成人av教育| 久久香蕉精品热| 久久久精品欧美日韩精品| 黑人猛操日本美女一级片| 婷婷精品国产亚洲av在线| 这个男人来自地球电影免费观看| 一区在线观看完整版| 国产欧美日韩综合在线一区二区| 欧美中文日本在线观看视频| 在线十欧美十亚洲十日本专区| 精品人妻在线不人妻| 亚洲五月婷婷丁香| 亚洲自偷自拍图片 自拍| 亚洲av成人av| 日本三级黄在线观看| 人人妻,人人澡人人爽秒播| 日韩高清综合在线| 免费在线观看视频国产中文字幕亚洲| 日韩欧美一区二区三区在线观看| 极品人妻少妇av视频| 在线观看66精品国产| videosex国产| 精品久久久久久成人av| 热re99久久精品国产66热6| 国产精品自产拍在线观看55亚洲| 黑人猛操日本美女一级片| 黑人巨大精品欧美一区二区蜜桃| 一个人观看的视频www高清免费观看 | 超碰97精品在线观看| 一个人观看的视频www高清免费观看 | 80岁老熟妇乱子伦牲交| 人人妻人人澡人人看| 精品国产亚洲在线| 男女之事视频高清在线观看| 亚洲男人的天堂狠狠| 黑人巨大精品欧美一区二区蜜桃| 啪啪无遮挡十八禁网站| 午夜免费鲁丝| 国产又爽黄色视频| 成人黄色视频免费在线看| 在线观看66精品国产| 黄色视频,在线免费观看| 精品久久久久久成人av| 变态另类成人亚洲欧美熟女 | 国产黄a三级三级三级人| 欧美中文日本在线观看视频| 丰满饥渴人妻一区二区三| 久久人妻熟女aⅴ| 亚洲欧美日韩高清在线视频| 久久久久久久久中文| 久久久久久免费高清国产稀缺| 国产精品二区激情视频| 成人国语在线视频| 一二三四在线观看免费中文在| 国产一区二区三区综合在线观看| 亚洲欧美激情综合另类| 色婷婷久久久亚洲欧美| 19禁男女啪啪无遮挡网站| av在线天堂中文字幕 | 高清在线国产一区| 99久久久亚洲精品蜜臀av| 69av精品久久久久久| 91大片在线观看| 乱人伦中国视频| 高清毛片免费观看视频网站 | 日本wwww免费看| 色播在线永久视频| 日韩成人在线观看一区二区三区| 日韩大码丰满熟妇| 人人澡人人妻人| 自线自在国产av| av欧美777| 夜夜爽天天搞| 亚洲在线自拍视频| 无遮挡黄片免费观看| 久久精品91无色码中文字幕| 看黄色毛片网站| 一进一出好大好爽视频| bbb黄色大片| 久久久精品欧美日韩精品| 国产成人av教育| 女同久久另类99精品国产91| 美女高潮喷水抽搐中文字幕| 欧美黄色淫秽网站| 丰满饥渴人妻一区二区三| 嫩草影院精品99| 国内久久婷婷六月综合欲色啪| 一本综合久久免费| 搡老岳熟女国产| 久久性视频一级片| a级毛片黄视频| 久久久久久大精品| 欧洲精品卡2卡3卡4卡5卡区| 欧美亚洲日本最大视频资源| 天堂√8在线中文| 日本三级黄在线观看| 国产精品影院久久| 日韩大码丰满熟妇| 亚洲专区字幕在线| 日本精品一区二区三区蜜桃| 一级片'在线观看视频| 精品人妻1区二区| 亚洲中文av在线| 大香蕉久久成人网| 手机成人av网站| 国产精品av久久久久免费| 欧美久久黑人一区二区| 日本欧美视频一区| 夜夜爽天天搞| 亚洲五月天丁香| 成人亚洲精品av一区二区 | 狠狠狠狠99中文字幕| 很黄的视频免费| 中文字幕精品免费在线观看视频| 丰满的人妻完整版| 日韩大码丰满熟妇| 成人18禁高潮啪啪吃奶动态图| 国产99白浆流出| 免费人成视频x8x8入口观看| 亚洲国产欧美网| www.999成人在线观看| 中文字幕人妻熟女乱码| 99国产精品免费福利视频| 国产精品偷伦视频观看了| 亚洲午夜精品一区,二区,三区| 国产亚洲欧美在线一区二区| svipshipincom国产片| 国产在线观看jvid| 欧美日韩视频精品一区| 女同久久另类99精品国产91| 国产三级黄色录像| 黑人猛操日本美女一级片| 无遮挡黄片免费观看| 99香蕉大伊视频| 国产精品99久久99久久久不卡| 一个人免费在线观看的高清视频| 黄色怎么调成土黄色| 免费在线观看影片大全网站| 午夜亚洲福利在线播放| 国产成人免费无遮挡视频| 欧美在线黄色| 色婷婷av一区二区三区视频| 亚洲精品成人av观看孕妇| 亚洲精品中文字幕一二三四区| 午夜91福利影院| 成年人免费黄色播放视频| 国产激情久久老熟女| 欧美av亚洲av综合av国产av| 久久久精品国产亚洲av高清涩受| 12—13女人毛片做爰片一| 久久久久久久久久久久大奶| 在线国产一区二区在线| 成年人免费黄色播放视频| 久久久国产成人免费| 午夜福利影视在线免费观看| 岛国视频午夜一区免费看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产精品sss在线观看 | 亚洲情色 制服丝袜| 久久亚洲精品不卡| 成年人黄色毛片网站| 亚洲专区国产一区二区| 亚洲黑人精品在线| 又黄又粗又硬又大视频| 露出奶头的视频| 可以在线观看毛片的网站| 黄片小视频在线播放| 久久久精品国产亚洲av高清涩受| 身体一侧抽搐| 久久亚洲精品不卡| 国产精品成人在线| 日日夜夜操网爽| 亚洲激情在线av| av网站在线播放免费| 国产欧美日韩一区二区三区在线| 少妇裸体淫交视频免费看高清 | 亚洲成国产人片在线观看| 男人舔女人的私密视频| 后天国语完整版免费观看| 好看av亚洲va欧美ⅴa在| 黄色 视频免费看| 最近最新免费中文字幕在线| 亚洲av成人一区二区三| 国产精品一区二区三区四区久久 | 国产精品98久久久久久宅男小说| 岛国视频午夜一区免费看| 国产精品 欧美亚洲| 国产av一区二区精品久久| 最新在线观看一区二区三区| 午夜影院日韩av| 中文字幕人妻熟女乱码| 久久国产精品影院| 最近最新中文字幕大全免费视频| 国产97色在线日韩免费| 亚洲 国产 在线| 久久香蕉激情| 国产视频一区二区在线看| 日韩高清综合在线| 一级a爱视频在线免费观看| 满18在线观看网站| 亚洲一区二区三区不卡视频| 国产午夜精品久久久久久| 精品国产一区二区久久| 夜夜看夜夜爽夜夜摸 | tocl精华| 国产亚洲精品久久久久久毛片| 亚洲一码二码三码区别大吗| 色婷婷久久久亚洲欧美| 国产精品爽爽va在线观看网站 | 欧美另类亚洲清纯唯美| 国产男靠女视频免费网站| 国产麻豆69| 国产精品综合久久久久久久免费 | 人人澡人人妻人| 成人国产一区最新在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 一区二区三区激情视频| 嫁个100分男人电影在线观看| 久热爱精品视频在线9| 国产成人精品无人区| 国产精品国产高清国产av| 男女之事视频高清在线观看| 免费日韩欧美在线观看| а√天堂www在线а√下载| 色综合婷婷激情| a级片在线免费高清观看视频| 国产激情久久老熟女| 久久狼人影院| 伦理电影免费视频| 一区福利在线观看| 丰满人妻熟妇乱又伦精品不卡| 一区二区日韩欧美中文字幕| 久久久久精品国产欧美久久久| 两个人免费观看高清视频| 99香蕉大伊视频| 老汉色∧v一级毛片| 中文字幕人妻丝袜一区二区| 成人18禁高潮啪啪吃奶动态图| 精品电影一区二区在线| 99香蕉大伊视频| 国产成人欧美| 高清毛片免费观看视频网站 | 在线观看免费视频网站a站| 久久伊人香网站| 国产成年人精品一区二区 | 久久精品aⅴ一区二区三区四区| 大码成人一级视频| av在线播放免费不卡| 亚洲人成伊人成综合网2020| 波多野结衣高清无吗| 久久精品国产99精品国产亚洲性色 | 欧美中文日本在线观看视频| 亚洲成人精品中文字幕电影 | 我的亚洲天堂| 国产一区二区激情短视频| 久久久久久久久中文| 一夜夜www| 欧美日韩av久久| 亚洲一区二区三区欧美精品| 在线观看www视频免费| 一区在线观看完整版| 韩国精品一区二区三区| 久久这里只有精品19| 巨乳人妻的诱惑在线观看| 国产精品久久电影中文字幕| 成人三级黄色视频| 欧美中文综合在线视频| 国产精品久久久人人做人人爽| 国产成人av激情在线播放| 欧美日韩中文字幕国产精品一区二区三区 | 国产有黄有色有爽视频| 曰老女人黄片| 欧美精品一区二区免费开放| 夜夜看夜夜爽夜夜摸 | 最近最新中文字幕大全电影3 | 又黄又粗又硬又大视频| 国产成人精品久久二区二区91| 午夜激情av网站| 欧美精品一区二区免费开放|