• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hom-dimodules and FRT theorem of Hom type

    2014-09-06 10:49:44ChenXiuliLiFangChenJianlong
    關(guān)鍵詞:數(shù)學(xué)系東南大學(xué)浙江大學(xué)

    Chen Xiuli Li Fang Chen Jianlong

    (1Department of Mathematics, Southeast University, Nanjing 211189, China)(2Department of Mathematics, Zhejiang University, Hangzhou 310028, China)

    ?

    Hom-dimodules and FRT theorem of Hom type

    Chen Xiuli1Li Fang2Chen Jianlong1

    (1Department of Mathematics, Southeast University, Nanjing 211189, China)(2Department of Mathematics, Zhejiang University, Hangzhou 310028, China)

    In order to study the deformation of algebras, the notions of Hom-algebras are introduced. The Hom-algebra is a generalization of the classical associative algebra. First, the Hom-type generalization of dimodules, which is called the Hom-dimodule, is introduced, and its properties are discussed Moreover, the category of Hom-dimodules in connection with the Hom D-equationR12R23=R23R12forR∈Endk(M?M)and a Hom-moduleMis investigated. Some solutions of the Hom D-equation from Hom-dimodules over Hom-bialgebras are given, and the FRT-type theorem is constructed in the category of Hom-dimodules. The results generalize and improve the FRT-type theorem in the category of dimodules.

    Hom-bialgebra; Hom-dimodule; Hom D-equation

    Throughout this paper, all the modules are left modules without specification and all the spaces arek-spaces for a fixed fieldk.

    A (long) dimodule over a bialgebraHis a vector spaceMwith a leftH-actionρMand a rightH-coactionρMso that the following compatibility condition holds: (hm)(0)?(hm)(1)=∑hm(0)?m(1)for allh∈Handm∈M. We denote this category withHLH, which is also a special case of the Doi-Hopf module category. This categoryHLHwas first defined by Long[1]for a commutative and cocommutativeHand was studied in connection with the construction of the Brauer group of anH-dimodule algebra. It is interesting to note that for a commutative and cocommutativeH,HYDH(the category of Yetter-Drinfel’d modules) is preciselyHLH[2]. Naturally, for an arbitraryH,HYDHandHLHare fundamentally different.HYDHplays a determinant role in describing the solutions of the quantum Yang-Baxter equation. It is natural to ask which equation will play a key role inHLH. In Ref.[3], considering thatHYDHis deeply involved in solving the quantum Yang-Baxter equation, the author studiedHLHin connection with the D-equation which is described presently. Given a vector spaceM, andR∈Endk(M?M),Ris said to be a solution of the D-equation ifR12R23=R23R12in Endk(M?M?M) whereR12=R?id, andR23=id?R.

    The concept of a Hom-algebra was introduced by Larsson et al[4-5]. It is a special class in the deformation of algebras. Recently, the Hom-algebra has been studied by several authors. The further development of the Hom-algebra theory led Makhlouf et al.[6-8] consequently to Hom-associative algebra, Hom-coassociative coalgebra and Hom-bialgebra, and described many of the extending properties of classical associative algebras, coalgebras, bialgebras and Hopf algebra structures. In fact, the notion of Hom-associative algebras generalize associative algebras to a situation, where associativity law is twisted by a linear map. From Ref.[5], it is clear that the commutator bracket multiplication is defined using the multiplication in Hom-associative algebra and it leads naturally to Hom-Lie algebras. Following the patterns of Hom-Lie and Hom-associative algebras, one can define Hom-bialgebras as nonassociative and non-coassociative[9]. It is a generalization of the bialgebra in which the non(co)associativity is controlled by the twisted map. In this paper, we only investigate the case of Hom-associative algebras. Hom-versions of the Yang-Baxter equation was studied in Refs.[9-12]. Many classes of the solutions for the Hom-Yang-Baxter equation are constructed. Moreover, Hom-type generalizations of FRT quantum groups, including quantum matrices and related quantum groups, are obtained in Ref.[13]. The above motivates us to study the generalization of the D-equation.

    In this paper, we mainly study Hom-versions of (Long) dimodules and D-equations of the Hom type, and investigate the category of Hom-dimodules in connection with the Hom D-equation.

    1 Preliminaries

    In this section, we recall the definition of a Hom-bialgebra and (comodules)modules over an Hom-algebra(coalgebra).

    A Hom-module[14]is a pair (V,α) in whichVis a vector space andα:V→Vis a linear map. A morphism (V,α)→(V′,α′) of Hom-modules is a linear mapf:V→V′ such thatα′°f=f°α. The tensor product of the Hom-modules (V,αv)and (W,αw) consists of the vector spaceV?Wand the linear self-mapαV?αW.

    Definition 1 A Hom-associative algebra[5]is a triple(A,μ,α)in which (A,α)is a Hom-module andμ:A?A→Ais a bilinear map such that 1)α°μ=μ° (α?α)(multiplicativity); and 2)μ° (α?μ)=μ° (μ?α)(Hom-associativity). In the following, we also writeμ(a?b)asab.

    The Hom-associative algebra is said to be unital[7]if a homomorphism exists,η:k→Asatisfyingμ° (η?id)=idandμ° (id?η)=id.

    A Hom-coassociative coalgebra[6-7]is a triple(C,Δ,α)in which (C,α) is a Hom-module andΔ:C→C?Cis a linear map such that 1)α?2°Δ=Δ°α(comultiplicativity); and 2) (α?Δ)°Δ=(Δ?α)°Δ(Hom-coassociativity).

    A Hom-coassociative coalgebra is said to be counital[7]if there is a mapε:C→ksatisfying (ε?id)°Δ=idand (id?ε)°Δ=id.

    Example 1(classical structures) 1) If (A,μ) is an associative algebra andα:A→Ais an algebra morphism, thenAα=(A,μα,α) is a Hom-associative algebra with the twisted multiplicationμα=α°μ. Indeed, the Hom-associativity axiomμα° (α?μα)=μα° (μα?α) is equal toα2when applied to the associativity axiom ofμ. Likewise, both sides of the multiplicativity axiomα°μα=μα?(α?α)are equal toα2°μ.

    2) Dually, if (C,Δ) is a coassociative coalgebra andα:C→Cis a coalgebra morphism, thenCα=(C,Δα,α) is a Hom-coassociative coalgebra with the twisted comultiplicationΔα=Δ°α.

    3) A bialgebra is an exact Hom-bialgebra withα=id. More generally, combining the previous two cases, if (A,μ,Δ) is a bialgebra andα:A→Ais a bialgebra morphism, thenAα=(A,μα,Δα,α) is a Hom-bialgebra.

    Definition 2 1) Let (A,μA,αA) be a Hom-associative algebra, and (M,αM) be a Hom-module. A leftA-module structure onM[12]consists of a morphismρ:A?M→Mof Hom-modules such thatρ° (αA?ρ)=ρ° (μA?αM) andαM°ρM=ρM° (αH?αM) (*). We also writeρ(a?m) asamfora∈Aandm∈M. In this notation, (*) can be written asαA(a)(bm)=(ab)αM(M) andαM(ax)=αA(a)αM(x).

    2) Dually, let (C,Δ,αC) be a Hom-coassociative coalgebra,AleftC-comodule structure onM[14]consists of a Hom-module (M,αM) together with a linear mapρM:M→C?Msuch that (Δ?αM)°ρM=(αC?ρM)°ρMand (αC?αM)°ρM=ρM°αM. Similarly, we can define a rightC-comodule.

    IfMandNareA-modules, then a morphism ofA-modulesf:M→Nis a morphism of the Hom-modules such thatf°ρM=ρN° (idA?f). Similarly, morphisms ofC-comodule are defined in a clear way.

    2 Hom-Dimodules

    Definition 3 Let (H,μH,ΔH,αH) be a Hom-bialgebra, and (M,αM)be a Hom-module. A Hom-dimodule is a triple (M,ρM,ρM) such that 1) (M,ρM) is a leftH-module; 2) (M,ρM) is a rightH-comodule; 3)ρM°ρM=(ρM?αM)° (αH?ρM).

    We may also write 3) as (hm)(0)?(hm)(1)=∑αH(h)m(0)?αH(m(1)).

    The category of Hom-dimodules over a Hom-bialgebraHwithH-module morphisms andH-comodule morphisms are denoted byHHLH.

    IfHis a bialgebra, i.e.,αH=idHandαM=idM, then the above definition of the Hom-dimodule coincides with the usual definition of the dimodule. The following result proves that dimodules deform into Hom-dimodules by endomorphisms.

    Proposition 1 Let (H,μH,ΔH) be a bialgebra, and (M,ρM,ρM) be anH-dimodule. Assume thatαH:H→His a bialgebra morphism, andαM:M→Mis ak-linear map such that

    αM°ρM=ρM° (αH?αM)

    (1)

    ρM°αM=(αH?αM)°ρM

    (2)

    1) (H,μα,Δα,αH) is a Hom-bialgebra, whereμα=αH°μHandΔα=ΔH°αH;

    2) (M,ρα,M,ρα,M) is a Hom-dimodule over a Hom-bialgebraH, whereHis a Hom-bialgebra as 1).

    Proof 1) It follows from 1) of Example 1.

    2) First, by Definition 1 and Eq.(2), it is easy to prove thatρα,Mgives (M,αM) the structure of a leftH-module, i.e.,ρα,M° (αH?ρα,M)=ρα,M° (μH?αM).

    Similarly, by Definition 2, we can prove thatρα,Mgives (M,αM) the structure of a rightH-comodule if and only if (ρα,M?αH)°ρα,M=(αM?ΔH)°ρα,M.

    Finally, it is only needed to check thatρα,M°ρα,M=(ρα,M?αH)° (αH?ρα,M). In fact, we have

    ρα,M°ρα,M=(ρM°αM)° (αM°ρM)=

    (αM?αH)°ρM°ρM° (αH?αM)=

    (αM?αH)° (ρM?idH)° (idH?ρM)° (αH?αM)=

    (ρα,M?αH)° (αH?ρα,M)

    where the second equality holds by Eqs.(1) and (2). BecauseMis aH-dimodule, the third equality holds.

    Proposition 2 Let (H,μH,ΔH,αH)be a Hom-bialgebra, (M,αM) and (N,αN) be Hom-dimodules. ThenM?Nis a Hom-dimodule with the action and coaction, for allm∈M,n∈N,h∈H,

    ρM?N(h?m?n)=αH(h(1))·m?αH(h(2))·n

    ρM?N(m?n)=m(0)?n(0)?αH(m(1)n(1))

    Proof We check thatρM?NandρM?Nis well defined. For anyh,l∈H,m∈Mandn∈N,

    ρM?N° (αH?ρM?N)(h?l?m?n)=

    ρM?N(αH(h)?αH(l(1))·m?αH(l(2))·n)=

    αH((αH(h)(1))αH(l(1))·m)?αH(αH(h))(2))(αH(l(2))·n)=

    (αH(h(1))αH(l(1))·αM(m)?(αH(h(2))αH(l(2)))αN(n)=

    aH((hl)(1))αM(m)?αH((hl)(2))αN(n)=

    ρM?N(hl?αM(m)?αN(n))=

    pM?N° (μH?αM?N)(h?l?m?n)

    ρM?N°ρM?N(h?m?n)=ρM?N(αH(h(1))·m?αH(h(2))·n)=

    (αH(h(1))·m)(0)?(αH(h(2))·n)(0))?αH((αH(h(1))·m)(1)

    αH(αH(m(1))αH(n(1)))=(ρM?N?αH)(αH(h)?m(0)?

    n(0)?αH(m(1))αH(n(1)))=(ρM?N?αH)°

    (αH?ρM?N)(h?m?n)

    3 Solutions of Hom D-Equation

    First we introduce the definition of the Hom D-equation. Moreover, we construct many solutions to the Hom D-equation by Hom-dimodules over the Hom-bialgebra.

    The D-equation[3]is a special case of the Hom D-equation whenα=id.

    Proposition 3 LetBbe a solution of the Hom D-equation for the Hom-module (M,αM).

    1) Ifλ∈k, thenλBis also a solution of the Hom D-equation for (M,αM).

    Proof 1) First,λB° (αM?αM)=λ(B° (αM?αM))=λ((αM?αM)°B)=(αM?αM)°λB, andλB?α=λ(B?α),α?λB=λ(α?B), so we have (λB)12(λB)23=(λB)23(λB)12.

    Next, we will show that a Hom-bialgebra gives rise to many solutions of the Hom D-equation by its Hom-dimodules. The following shows thatHHLHplays a role in solving the Hom D-equation.

    Proposition 4 Let (H,μH,ΔH,αH) be a Hom-bialgebra, and (M,αM) be a Hom-module. Assume that (M,ρα,M,ρα,M) is Hom-dimodule andαMis anH-module morphism. Then the map

    B′:M?M→M?M,m?n|→αH(n(1))·m?αM(n(0))

    (3)

    is a solution of the Hom D-equation.

    Proof First, it is easy to check thatB′° (αM?αM)(m?n)=(αM?αM)°B′(m?n).

    Forl,m,n∈M, we have

    B′12B′23(l?m?n)=(B′?αM)(αM?B′)(l?m?n)=

    (B′?αM)(αM(l)?αH(n(1))·m?αM(n(0)))=

    αH((αH(n(1))·m)(1))·αM(l)?αM((αH(n(1))·m)(0))?

    B′23B′12(l?m?n)

    The fourth equality holds because (M,αM) is a Hom-dimodule. SinceαMisH-module morphism, the fifth equality is true. By 2) of Definition 2, we haveαM(m(0))?αH(m(1))=(αM(m))(0)?(αM(m))(1), so the sixth equality holds by (3). Therefore,B′12B′23=B′23B′12, i.e.,B′ is a solution of the Hom D-equation.

    Corollary 1 Let (H,μH,ΔH) be a bialgebra, andαH:H→Hbe a bialgebra morphism. Assume that (M,ρM,ρM) is a dimodule andαM:M→Mak-linear map such thatαM°ρM=ρM° (αH?αM), andρM°αM=(αM?αH)°ρM. IfαMisH-module morphism. Then the map (3) is a solution of the Hom D-equation.

    In Corollary 1, ifαH=id:H→H, then the conditionsαM°ρM=ρM° (id?αM) andρM°αM=(αM?idH)°ρMmean thatαMisH-module morphism andH-comodule a morphism. So we have the following corollary.

    Corollary 2 Let (H,μH,ΔH) be a bialgebra. Assume that (M,ρM,ρM) is a dimodule andαM:M→MisH-module morphism andH-comodule morphism. Then the map (3) is a solution of the Hom D-equation.

    4 FRT Theorem of Hom Type

    In Ref.[7], the authors give a FRT type theorem: ifMis finite dimensional, then any solutionRof the D-equation has the formR=R(M,ρM,ρM), where (M,ρM,ρM) is aD(R)-dimodule over a bialgebraD(R) andR(M,ρM,ρM)is the special mapR(M,ρM,ρM)(m?n):=∑n(1)m?n(0).

    Next, we recall the details of the FRT type construction from Theorem 3.6 in Ref.[3].

    (4)

    for allu,v=1,2,…,n.

    LetT(C)be an algebra generated by (Cij). Define the bialgebra

    (5)

    Lemma 1 LetD(R) be the bialgebra withR:M?M→M?Ma solution of theD-equation, and assume that (M,ρM,ρM) has the structure of the object inD(R)LD(R), whereR=R(M,ρM,ρM). Letλi∈kbe invertible scalars such that

    (6)

    In fact,

    The third equality is right by (6), the fourth equality follows from (5), and the fifth equality also follows from (6).

    Lemma 2 The linear mapαM:M→Mcan be defined asαM(mi)=λimifor alli. Then we have

    αM°ρM=ρM° (α?αM)

    (αM?α)°ρM=ρM°αM

    (αM?αM)°R=R° (αM?αM)

    whereρM:D(R)?M→Mis the leftD(R)-module structure map andρM:M→M?D(R) is the rightD(R)-comdule structure map.

    Proof First, sinceΔis an algebra morphism, we have

    This shows thatαis a bialgebra morphism. Next,

    αM°ρM(Cju?mv)=αM(Cju·mv)=

    and

    ρM° (α?αM)(Cju?mv)=α(Cju)·αM(mv)=

    soαM°ρM=ρM° (α?αM).

    Since

    (αM?α)°ρM=ρM°αMholds.

    Finally,

    So (αM?αM)°R=R° (αM?αM) is true.

    Proof It follows with Proposition 1, Lemma 1 and Lemma 2.

    Therefore, by Theorem 1, we obtain the Hom-bialgebraD(R)α=(D(R),μα=α°μ,Δα=Δ°α) such that (M,ρα,M=αM°ρM,ρα,M=αM°ρM) is a HomD(R)-dimodule.

    Remark 2 Example 2 also gives an example of Hom-dimodules.

    [1]Long F W. The Brauer group of dimodule algebras [J].JournalofAlgebra, 1974, 31(1/2/3): 559-601.

    [2]Caenepeel C, Militaru G, Zhu S L. Crossed modules and Doi-Hopf modules [J].IsraelJournalofMathematics, 1997, 100(4): 221-247.

    [3]Militaru G. The long dimodules category and nonlinear equations [J].AlgebrasandRepresentationTheory, 1999, 2(2): 177-200.

    [4]Larsson D, Silvestrov S D. Quasi-Hom-Lie algebras, central extensions and 2-cocycle-like identities [J].JournalofAlgebra, 2005, 288(2): 321-344.

    [5]Makhlouf A, Silvestrov S. Hom-algebra structures [J].JournalofGeneralizedLieTheoryandApplications, 2008, 2(2): 51-64.

    [6]Makhlouf A, Silvestrov S. Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras [M]//GeneralizedLietheoryinmathematics,physicsandbeyond. Berlin: Springer, 2009:189-206.

    [7]Makhlouf A, Silvestrov S. Hom-algebras and Hom-coalgebras [J].JournalofAlgebraandItsApplications, 2010, 9(4): 1-37.

    [8]Yau D. Hom-bialgebras and comodule Hom-algebras [J].InternationalElectronicJournalofAlgebra, 2010, 8: 45-64.

    [9]Yau D. The classical Hom-Yang-Baxter equation and Hom-Lie bialgebras [EB/OL]. (2009-05-12)[2013-02-27]. http://arxiv.org/abs/0905.1890.

    [10]Yau D. The Hom-Yang-Baxter equation, Hom-Lie algebras, and quasi-triangular bialgebras [J].JournalofPhysicsA, 2009, 42(16):165202-1-165202-12.

    [11]Yau D. The Hom-Yang-Baxter equation and Hom-Lie algebras [J].JournalofMathematicalPhysics, 2011, 52(5): 053502-1-053502-19.

    [12]Yau D. Hom-quantum groups Ⅰ: quasi-triangular Hom-bialgebras [J].JournalofPhysicsA, 2012, 45(6): 065203-1-065203-23.

    [13]Yau D. Hom-quantum groups Ⅱ: cobraided Hom-bialgebras and Hom-quantum geometry [EB/OL]. (2009-07-10)[2013-02-27]. http://arxiv.org/abs/0907.1880.

    [14]Yau D. Enveloping algebras of Hom-Lie algebras [J].JournalofGeneralizedLieTheoryandApplications, 2008, 2(2): 95-108.

    Hom-dimodules與Hom型的FRT定理

    陳秀麗1李 方2陳建龍1

    (1東南大學(xué)數(shù)學(xué)系, 南京 211189)(2浙江大學(xué)數(shù)學(xué)系, 杭州 310028)

    為了研究代數(shù)形變理論,引入了Hom-代數(shù)的概念.事實(shí)上Hom-代數(shù)是經(jīng)典結(jié)合代數(shù)的推廣.首先介紹了dimodule的Hom型推廣,即Hom-dimodule,并對(duì)其相關(guān)性質(zhì)進(jìn)行討論.進(jìn)一步研究了Hom-dimodule范疇與Hom D-方程R12R23=R23R12的關(guān)系,其中R∈Endk(M?M)且M為Hom模.針對(duì)Hom雙代數(shù)上的Hom-dimodule給出了Hom D-方程的一些解,并在Hom-dimodules范疇中構(gòu)造FRT-型定理.這些結(jié)果推廣并改進(jìn)了dimodule范疇中的FRT-型定理.

    Hom雙代數(shù); Hom-dimodule; Hom D-方程

    O153

    s:The National Natural Science Foundation of China (No.11371089), the Specialized Research Fund for the Doctoral Program of Higher Education (No.20120092110020), the Postdoctoral Innovation Funds of Southeast University (No.3207013601).

    :Chen Xiuli, Li Fang, Chen Jianlong.Hom-dimodules and FRT theorem of Hom type[J].Journal of Southeast University (English Edition),2014,30(3):391-395.

    10.3969/j.issn.1003-7985.2014.03.025

    10.3969/j.issn.1003-7985.2014.03.025

    Received 2013-03-28.

    Biographies:Chen Xiuli (1980—), female, doctor; Chen Jianlong (corresponding author), male, doctor, professor, jlchen@seu.edu.cn.

    猜你喜歡
    數(shù)學(xué)系東南大學(xué)浙江大學(xué)
    一個(gè)人就是一個(gè)數(shù)學(xué)系
    ——丘成桐
    《東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》稿約
    《東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》稿約
    《東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》稿約
    《東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》稿約
    北京師范大學(xué)數(shù)學(xué)系教授葛建全
    浙江大學(xué)農(nóng)業(yè)試驗(yàn)站簡介
    浙江大學(xué)作物科學(xué)研究所簡介
    歡迎訂閱《浙江大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版)》
    La jeunesse chinoise d'aujourd'hui
    美女xxoo啪啪120秒动态图| 国产精品免费一区二区三区在线| 国产三级在线视频| 人人妻,人人澡人人爽秒播| 97人妻精品一区二区三区麻豆| 中文字幕av成人在线电影| 黄片wwwwww| 欧美一区二区国产精品久久精品| 成人午夜高清在线视频| 最近中文字幕高清免费大全6| 嫩草影院新地址| 欧美xxxx黑人xx丫x性爽| 欧美激情在线99| 色播亚洲综合网| 天美传媒精品一区二区| 99热这里只有是精品在线观看| 美女xxoo啪啪120秒动态图| 99在线人妻在线中文字幕| 国产精品爽爽va在线观看网站| 日韩强制内射视频| 欧美性感艳星| 18禁在线播放成人免费| 99九九线精品视频在线观看视频| 校园人妻丝袜中文字幕| 99久久无色码亚洲精品果冻| 俺也久久电影网| 美女内射精品一级片tv| 给我免费播放毛片高清在线观看| 男人和女人高潮做爰伦理| 91在线观看av| 久久久a久久爽久久v久久| 国产综合懂色| 美女被艹到高潮喷水动态| 中文字幕av在线有码专区| 中文资源天堂在线| 熟妇人妻久久中文字幕3abv| 久久精品国产亚洲av涩爱 | 久久九九热精品免费| 精品一区二区三区视频在线| 可以在线观看的亚洲视频| 麻豆av噜噜一区二区三区| 老司机福利观看| 国产精品久久电影中文字幕| 又爽又黄a免费视频| 亚洲av成人精品一区久久| 午夜久久久久精精品| 淫妇啪啪啪对白视频| 联通29元200g的流量卡| 国产激情偷乱视频一区二区| 欧美日韩国产亚洲二区| 不卡视频在线观看欧美| 波野结衣二区三区在线| 精品一区二区三区视频在线观看免费| 两个人的视频大全免费| 麻豆久久精品国产亚洲av| 久久热精品热| 午夜福利18| 国产精品无大码| 免费av毛片视频| 亚洲精品粉嫩美女一区| 最近视频中文字幕2019在线8| 综合色丁香网| 少妇猛男粗大的猛烈进出视频 | 日产精品乱码卡一卡2卡三| 欧美日韩在线观看h| 精品久久久久久久久亚洲| 免费电影在线观看免费观看| 欧美一区二区国产精品久久精品| 亚洲最大成人av| 一级毛片久久久久久久久女| 久久6这里有精品| 中国美女看黄片| 最近在线观看免费完整版| 最近2019中文字幕mv第一页| 少妇熟女欧美另类| 国产69精品久久久久777片| 久久精品国产鲁丝片午夜精品| 亚洲人成网站高清观看| 日韩一区二区视频免费看| 国产伦精品一区二区三区四那| 日韩精品中文字幕看吧| 国产精品亚洲一级av第二区| 精品人妻偷拍中文字幕| av国产免费在线观看| 国内揄拍国产精品人妻在线| 亚洲国产欧洲综合997久久,| 亚洲最大成人av| 欧美在线一区亚洲| 成人av在线播放网站| 51国产日韩欧美| 亚洲人成网站在线播| 亚洲av成人精品一区久久| 免费av观看视频| 波多野结衣巨乳人妻| 看片在线看免费视频| 亚洲欧美成人精品一区二区| 久久鲁丝午夜福利片| 日本黄色视频三级网站网址| 蜜臀久久99精品久久宅男| 久久精品夜夜夜夜夜久久蜜豆| 亚洲自偷自拍三级| 亚洲av第一区精品v没综合| 成人无遮挡网站| 狂野欧美白嫩少妇大欣赏| 国产精品久久久久久久久免| 真实男女啪啪啪动态图| 亚洲国产日韩欧美精品在线观看| h日本视频在线播放| 日本-黄色视频高清免费观看| 亚洲真实伦在线观看| 国产高清激情床上av| 精品乱码久久久久久99久播| 成人特级av手机在线观看| 亚洲av熟女| av女优亚洲男人天堂| 欧美中文日本在线观看视频| 尤物成人国产欧美一区二区三区| 中文字幕av在线有码专区| 亚洲av五月六月丁香网| 麻豆久久精品国产亚洲av| 久久精品国产自在天天线| 国产精品人妻久久久影院| 在线观看美女被高潮喷水网站| 亚洲五月天丁香| 在线免费观看不下载黄p国产| 精品久久久久久久久久久久久| 91在线观看av| 亚洲电影在线观看av| 欧美日韩在线观看h| 97在线视频观看| 99久国产av精品国产电影| 午夜精品国产一区二区电影 | 午夜福利成人在线免费观看| 麻豆一二三区av精品| 成人特级黄色片久久久久久久| 亚洲乱码一区二区免费版| 黑人高潮一二区| av视频在线观看入口| 国产精品一区www在线观看| 欧洲精品卡2卡3卡4卡5卡区| 在线国产一区二区在线| 高清午夜精品一区二区三区 | 久久久久久久久久黄片| 日本爱情动作片www.在线观看 | 日本黄大片高清| 欧美bdsm另类| 亚洲最大成人av| 麻豆国产av国片精品| 色尼玛亚洲综合影院| 欧美绝顶高潮抽搐喷水| 国产爱豆传媒在线观看| 久久久久久伊人网av| 欧美日韩乱码在线| 人妻少妇偷人精品九色| 国产av一区在线观看免费| 免费av观看视频| 人妻夜夜爽99麻豆av| 菩萨蛮人人尽说江南好唐韦庄 | 可以在线观看毛片的网站| 女同久久另类99精品国产91| 日本色播在线视频| 九九热线精品视视频播放| 男人的好看免费观看在线视频| 亚洲人成网站在线播| 国产午夜精品论理片| 成人毛片a级毛片在线播放| 丰满的人妻完整版| 91在线精品国自产拍蜜月| 99热6这里只有精品| 精品久久久噜噜| 亚洲av二区三区四区| 国产午夜精品久久久久久一区二区三区 | 国产白丝娇喘喷水9色精品| 国产av在哪里看| 丰满乱子伦码专区| 精品欧美国产一区二区三| 又爽又黄a免费视频| 国产精品国产高清国产av| 日日啪夜夜撸| 长腿黑丝高跟| 在线观看午夜福利视频| 中出人妻视频一区二区| 国产午夜精品论理片| 久久精品人妻少妇| 精品久久国产蜜桃| 国产亚洲av嫩草精品影院| 国产综合懂色| 成人亚洲欧美一区二区av| 日韩中字成人| 久久综合国产亚洲精品| 秋霞在线观看毛片| 99精品在免费线老司机午夜| 国产精品亚洲一级av第二区| 久久99热这里只有精品18| 国产成人a∨麻豆精品| 一卡2卡三卡四卡精品乱码亚洲| 国产成人一区二区在线| 日韩一本色道免费dvd| 精品午夜福利在线看| 97热精品久久久久久| 精品久久久久久成人av| 亚洲国产精品合色在线| 欧美又色又爽又黄视频| a级毛片a级免费在线| 97在线视频观看| 国模一区二区三区四区视频| 精品久久久久久成人av| 不卡视频在线观看欧美| 亚洲成人精品中文字幕电影| 久久久精品欧美日韩精品| 久久精品夜色国产| 老师上课跳d突然被开到最大视频| 国产探花极品一区二区| 欧美日韩在线观看h| 18禁在线播放成人免费| 国产日本99.免费观看| 成人一区二区视频在线观看| 免费av不卡在线播放| 久久精品夜夜夜夜夜久久蜜豆| 国产黄色小视频在线观看| 国产亚洲欧美98| 亚洲国产日韩欧美精品在线观看| 22中文网久久字幕| 日本精品一区二区三区蜜桃| 一级毛片我不卡| 国内久久婷婷六月综合欲色啪| 一个人看的www免费观看视频| 黄片wwwwww| av在线播放精品| 如何舔出高潮| 午夜日韩欧美国产| 日本免费一区二区三区高清不卡| 国产成年人精品一区二区| 久久久久国内视频| 高清毛片免费看| 欧美不卡视频在线免费观看| 久久精品国产自在天天线| 91久久精品国产一区二区成人| 如何舔出高潮| 99久久九九国产精品国产免费| 婷婷色综合大香蕉| 69av精品久久久久久| 精品午夜福利视频在线观看一区| 两性午夜刺激爽爽歪歪视频在线观看| 97人妻精品一区二区三区麻豆| 69人妻影院| 亚洲av不卡在线观看| 成年版毛片免费区| 美女免费视频网站| 搡老岳熟女国产| 亚洲性夜色夜夜综合| 少妇熟女欧美另类| 亚洲性久久影院| 国产精品无大码| 成人午夜高清在线视频| 蜜桃久久精品国产亚洲av| 一个人看的www免费观看视频| 国产精品av视频在线免费观看| 精品久久久久久久末码| 国产高清三级在线| 国产高潮美女av| 国产精品爽爽va在线观看网站| 99热6这里只有精品| 久久久久久久久久成人| 少妇丰满av| 亚洲aⅴ乱码一区二区在线播放| 免费黄网站久久成人精品| 亚洲欧美日韩东京热| 热99在线观看视频| 嫩草影院入口| 天堂影院成人在线观看| 国产高清不卡午夜福利| 国产精品免费一区二区三区在线| 亚洲va在线va天堂va国产| 精品久久久噜噜| 老熟妇仑乱视频hdxx| 淫秽高清视频在线观看| 日本黄色片子视频| 国内精品一区二区在线观看| 成人国产麻豆网| 亚洲精品影视一区二区三区av| 中文在线观看免费www的网站| 国产成人精品久久久久久| 国产欧美日韩精品亚洲av| 国产麻豆成人av免费视频| 18+在线观看网站| av中文乱码字幕在线| 男女之事视频高清在线观看| 亚洲精品456在线播放app| 99久久九九国产精品国产免费| 久久精品国产亚洲av香蕉五月| 久久国内精品自在自线图片| 青春草视频在线免费观看| 欧美+亚洲+日韩+国产| 一级毛片久久久久久久久女| 老司机福利观看| 熟女电影av网| 亚洲国产欧洲综合997久久,| 亚洲欧美日韩高清专用| 国产伦在线观看视频一区| 欧美bdsm另类| 性色avwww在线观看| 亚洲在线观看片| 国产乱人视频| 亚洲av一区综合| 在线播放国产精品三级| 日本黄色视频三级网站网址| 亚洲熟妇熟女久久| 最新在线观看一区二区三区| 亚洲经典国产精华液单| 免费高清视频大片| 亚洲成a人片在线一区二区| 黄色配什么色好看| av免费在线看不卡| 亚洲国产色片| 97超碰精品成人国产| 男人舔女人下体高潮全视频| 中国美女看黄片| 中文字幕久久专区| 村上凉子中文字幕在线| 国产成人a∨麻豆精品| 国产精品一区二区免费欧美| 日韩av不卡免费在线播放| 国产黄色小视频在线观看| 九九爱精品视频在线观看| 国产精品亚洲一级av第二区| 国国产精品蜜臀av免费| 日本黄色片子视频| 日本成人三级电影网站| 欧美精品国产亚洲| 狂野欧美白嫩少妇大欣赏| 精品少妇黑人巨大在线播放 | 午夜久久久久精精品| 99久久久亚洲精品蜜臀av| or卡值多少钱| 中出人妻视频一区二区| 小说图片视频综合网站| АⅤ资源中文在线天堂| 性欧美人与动物交配| 全区人妻精品视频| 91麻豆精品激情在线观看国产| 精品欧美国产一区二区三| 内射极品少妇av片p| 久久婷婷人人爽人人干人人爱| 毛片女人毛片| 成人永久免费在线观看视频| 久久99热这里只有精品18| 国产精品一区www在线观看| 国产精品不卡视频一区二区| 99久久精品热视频| 亚洲成人久久爱视频| 久久久久国产网址| 黑人高潮一二区| 午夜激情欧美在线| 少妇高潮的动态图| 九色成人免费人妻av| 亚洲欧美清纯卡通| 欧美人与善性xxx| 久久久久久久久大av| 久久精品夜色国产| 欧美不卡视频在线免费观看| 国产av不卡久久| 国产精品一二三区在线看| 国产视频一区二区在线看| 日韩强制内射视频| 级片在线观看| 欧美又色又爽又黄视频| 毛片一级片免费看久久久久| 日韩大尺度精品在线看网址| 亚洲国产精品sss在线观看| 禁无遮挡网站| 日韩在线高清观看一区二区三区| 国产精品久久久久久精品电影| 热99re8久久精品国产| 亚洲专区国产一区二区| 少妇的逼好多水| 亚洲欧美精品综合久久99| av在线蜜桃| 日本爱情动作片www.在线观看 | 久久亚洲精品不卡| 国产淫片久久久久久久久| 欧美日韩国产亚洲二区| 久久99热这里只有精品18| 国产美女午夜福利| 又黄又爽又免费观看的视频| 变态另类丝袜制服| 国产69精品久久久久777片| 成年女人看的毛片在线观看| 超碰av人人做人人爽久久| 久久久a久久爽久久v久久| 国产男靠女视频免费网站| 高清毛片免费观看视频网站| 国产伦一二天堂av在线观看| 天堂√8在线中文| 亚洲成av人片在线播放无| 高清日韩中文字幕在线| aaaaa片日本免费| 欧美最新免费一区二区三区| a级毛片免费高清观看在线播放| 欧洲精品卡2卡3卡4卡5卡区| av天堂在线播放| 一级毛片我不卡| 两性午夜刺激爽爽歪歪视频在线观看| 日韩三级伦理在线观看| 亚洲精品456在线播放app| 国产一级毛片七仙女欲春2| 观看美女的网站| 免费人成在线观看视频色| 久久这里只有精品中国| 国产成人aa在线观看| 国产亚洲精品久久久久久毛片| 我要搜黄色片| 欧美最黄视频在线播放免费| 国产一区二区在线观看日韩| 亚洲国产色片| 大香蕉久久网| 舔av片在线| 又黄又爽又刺激的免费视频.| 色在线成人网| 久久久色成人| 大香蕉久久网| 久久久精品欧美日韩精品| 联通29元200g的流量卡| 亚洲美女视频黄频| aaaaa片日本免费| 国产女主播在线喷水免费视频网站 | 成人永久免费在线观看视频| 国产aⅴ精品一区二区三区波| 日韩国内少妇激情av| 色5月婷婷丁香| 波多野结衣巨乳人妻| 国产成人a区在线观看| 日本成人三级电影网站| 日韩欧美三级三区| 熟女人妻精品中文字幕| 久久精品国产亚洲av涩爱 | 欧美日韩综合久久久久久| 日韩制服骚丝袜av| 综合色丁香网| 日本熟妇午夜| 神马国产精品三级电影在线观看| 99热只有精品国产| 禁无遮挡网站| 在线播放无遮挡| 国产女主播在线喷水免费视频网站 | 国产成人a区在线观看| 日本-黄色视频高清免费观看| 国产男人的电影天堂91| 久久99热6这里只有精品| 亚洲av五月六月丁香网| 简卡轻食公司| 国产久久久一区二区三区| 免费av不卡在线播放| 亚洲成人久久性| 久久欧美精品欧美久久欧美| 国产高清激情床上av| 亚洲18禁久久av| 我要看日韩黄色一级片| 久久6这里有精品| 成人国产麻豆网| 免费搜索国产男女视频| 男女那种视频在线观看| 亚洲一区二区三区色噜噜| 日本精品一区二区三区蜜桃| 午夜精品在线福利| 国产成人freesex在线 | 欧美成人a在线观看| 日日摸夜夜添夜夜添小说| 97人妻精品一区二区三区麻豆| 亚洲精品影视一区二区三区av| 最近最新中文字幕大全电影3| 99视频精品全部免费 在线| 丰满的人妻完整版| 美女内射精品一级片tv| 可以在线观看毛片的网站| 中国美女看黄片| 日韩欧美国产在线观看| 欧美不卡视频在线免费观看| 免费看a级黄色片| 色哟哟·www| 一个人观看的视频www高清免费观看| 中文字幕精品亚洲无线码一区| 精品久久久久久久久久免费视频| 国产精品亚洲一级av第二区| 国产精品av视频在线免费观看| 97热精品久久久久久| 99久国产av精品| 成人欧美大片| 美女免费视频网站| 俺也久久电影网| 中国美白少妇内射xxxbb| 日韩三级伦理在线观看| aaaaa片日本免费| 亚洲专区国产一区二区| 国产一区亚洲一区在线观看| 国产日本99.免费观看| 色综合色国产| av免费在线看不卡| 可以在线观看的亚洲视频| 免费看光身美女| 精品久久久久久久久av| 久久久久久久久久久丰满| 日韩精品中文字幕看吧| 日韩精品有码人妻一区| 男女视频在线观看网站免费| 赤兔流量卡办理| 少妇被粗大猛烈的视频| 国产精华一区二区三区| 欧美日韩国产亚洲二区| 国产极品精品免费视频能看的| 国产成人福利小说| 日本撒尿小便嘘嘘汇集6| 色综合色国产| 国产高清视频在线观看网站| 特大巨黑吊av在线直播| 精品一区二区三区人妻视频| 久久久久久久午夜电影| 少妇熟女欧美另类| 99视频精品全部免费 在线| 免费看美女性在线毛片视频| 99久国产av精品| 国产午夜福利久久久久久| 国产精品精品国产色婷婷| 精品日产1卡2卡| 永久网站在线| 国产高清有码在线观看视频| 最近最新中文字幕大全电影3| 亚洲精品一区av在线观看| 男人的好看免费观看在线视频| 黄色欧美视频在线观看| 亚洲专区国产一区二区| 免费电影在线观看免费观看| 久久6这里有精品| 欧美3d第一页| 国产伦一二天堂av在线观看| 91午夜精品亚洲一区二区三区| 天堂√8在线中文| 国产美女午夜福利| 午夜精品一区二区三区免费看| 欧美最新免费一区二区三区| 色在线成人网| 欧美一区二区国产精品久久精品| 成人av在线播放网站| 国产精品一区二区免费欧美| 婷婷精品国产亚洲av| 欧美日韩精品成人综合77777| 偷拍熟女少妇极品色| 欧美色欧美亚洲另类二区| 午夜免费男女啪啪视频观看 | 亚洲国产欧洲综合997久久,| 午夜免费激情av| 老女人水多毛片| 亚洲色图av天堂| 高清日韩中文字幕在线| 日韩高清综合在线| 精品99又大又爽又粗少妇毛片| 深夜a级毛片| 欧美极品一区二区三区四区| 18禁黄网站禁片免费观看直播| 国产v大片淫在线免费观看| 日韩精品中文字幕看吧| 国产一区二区在线观看日韩| 亚洲七黄色美女视频| 又黄又爽又刺激的免费视频.| 最新中文字幕久久久久| 久久久国产成人免费| 国产精品综合久久久久久久免费| 亚洲国产色片| 寂寞人妻少妇视频99o| 麻豆成人午夜福利视频| 亚洲国产高清在线一区二区三| 欧美zozozo另类| 成人美女网站在线观看视频| 精品国产三级普通话版| 麻豆乱淫一区二区| 国产高清视频在线播放一区| 亚洲精品久久国产高清桃花| 亚洲国产高清在线一区二区三| 给我免费播放毛片高清在线观看| 老熟妇乱子伦视频在线观看| 久久久精品94久久精品| 大又大粗又爽又黄少妇毛片口| 欧美日本视频| 日韩三级伦理在线观看| 久久久久久久久久黄片| 可以在线观看的亚洲视频| 成人特级黄色片久久久久久久| 我要搜黄色片| 波多野结衣巨乳人妻| 久久久久久大精品| 久久人妻av系列| av中文乱码字幕在线| 精品一区二区三区视频在线| 国产精品乱码一区二三区的特点| 少妇裸体淫交视频免费看高清| 亚洲成av人片在线播放无| 日本精品一区二区三区蜜桃| 亚洲国产精品国产精品| 身体一侧抽搐| 欧美色视频一区免费| 国产毛片a区久久久久| 成人特级av手机在线观看| 九九爱精品视频在线观看| 亚洲真实伦在线观看| 国产亚洲欧美98| 国产精品av视频在线免费观看| 又爽又黄a免费视频| 国产成人a区在线观看| 黄片wwwwww| 色av中文字幕| 免费看a级黄色片| 国产中年淑女户外野战色| 亚洲中文日韩欧美视频| 久久久久久大精品| 欧美+日韩+精品|