• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influences of process parameters on solvent-free toluene oxidation over Au/γ-MnO2 catalyst

    2014-09-06 10:49:44JiangFengXiaoGuomin
    關(guān)鍵詞:無溶劑苯甲酸甲苯

    Jiang Feng Xiao Guomin

    (School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China)

    ?

    Influences of process parameters on solvent-free toluene oxidation over Au/γ-MnO2catalyst

    Jiang Feng Xiao Guomin

    (School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China)

    γ-MnO2nanorobs and Au/γ-MnO2catalysts were synthesized and characterized by theX-ray powder diffraction (XRD), the scanning electron microscope (SEM), and transmission electron microscope (TEM). The characterizations show that Au particles are well dispersed on the surface of γ-MnO2nanorobs with a particle size of about 10 nm. The catalytic performance is evaluated in solvent-free toluene oxidation with oxygen. The influences of several process parameters such as reaction time, reaction temperature, initial oxygen pressure and catalyst amounts on the catalytic performance are studied. Catalytic results reveal that Au/γ-MnO2catalyst has a unique selectivity to benzaldehyde and all these factors greatly influence the conversion of toluene and selectivity of bezaldehyde, benzoic acid and benzyl benzoate. However, these factors have slight influence on the selectivity of benzyl alcohol.

    nano-gold; manganese dioxide; toluene oxidation; solvent-free

    Toluene oxidation has received more and more attention, since all the oxidation products, such as benzyl alcohol, benzaldehyde, benzoic acid, and benzyl benzoate, are commercially significant versatile intermediates in the manufacture of pharmaceuticals, dyes, solvents, perfumes, plasticizers and preservatives[1]. Industrially, a homogeneous catalyst and a halogenic or acidic solvent are applied to toluene oxidation for high conversion, but the use of such solvents and homogeneous catalyst cause pollution and waste[2]. Thus, a solvent-free method for toluene oxidation catalyzed by a heterogeneous catalyst has attracted attention and been studied in recent years. Mn3O4, MnO2and Au-Pd/C catalysts have shown to be effective in the solvent-free oxidation of toluene to benzoic acid, benzaldehyde and benzyl benzoate reaction[3]. These findings suggest that noble metals and manganese oxides are good candidates for solvent-free toluene oxidation.

    Manganese oxides are well known as materials for clean energy storage due to their low material cost, acceptable environmental characteristics, and chemical stability. Many studies have focused on the modification of their crystal forms, morphology and particle size. In particular, three crystal forms, i.e., α (2×2 tunnel structure), γ (1×1 and 1×2 tunnel structure), and δ (layer structure), that are called manganese oxide octahedral molecular sieves (OMS)[4]. The basic unit of OMS is MnO6octahedra which can share their edges and vertices to generate a wide range of periodic structures.

    The Au nanoparticle has been widely used as catalyst in three kinds of reactions: CO oxidation, alkene epoxidation, and selective oxidation of alkanes. Many factors are known to affect Au activity, such as particle size and geometric structure, the type of support, methods of preparation, calcination, and the presence of trace compounds. Supported gold catalyst demonstrates excellent catalytic performance, and the supports reported include zirconia[5], cerium oxide[6], iron oxide[7], magnesium oxide[8], and titanium oxide[9]. Therefore, it is a good choice to synthesize a catalyst using nanosized Au particles as active centers and manganese (IV) oxide as support.

    In our previous study[10], we synthesized three kinds of MnO2nanostructures (α-, γ-, δ-MnO2) by the redox method. Among them, γ-MnO2has a suitable morphology and surface area for the use of support, which also shows high activity in toluene oxidation. To continue our study, in this work, Au/γ-MnO2catalyst is prepared by a technique of in situ reduction. Then, process parameters such as reaction time, temperature, initial oxygen pressure and catalyst amount are studied in solvent-free toluene oxidation over Au/γ-MnO2catalyst.

    1 Experimental

    The γ-MnO2nanostructure was prepared according to the procedure of our previous work by the redox reaction of Mn2+and Mn7+[10]. Au/γ-MnO2catalyst was prepared by an in situ reduction method. Chloroauric acid and ascorbic acid were used as precursors and reductants, respectively. At 80℃, the required amount of aqueous chloroauric acid was added to the PVP aqueous solution (0.7‰ g/mL, 300 mL) by dripping. After stirring, 0.9 g of dispersed MnO2powder was added into the solution. Six hours later, 30 mL aqueous ascorbic acid (0.01 mol/L) was dropped into the mixture and stirred for another 1 h. Finally, the product was obtained by filtration and washed several times with deionized water until the filtrate did not react with AgNO3solution. Then absolute alcohol was used to remove any residual reactants. Finally, the product was dried at 60℃ for 16 h. The mole percentage of Au loading was 1.0%.

    The XRD characterization of MnO2and Au/MnO2samples was carried out on a Bruker D8 FocusX-ray diffractometer using CuKαradiation and a nickel filter (λ=0.15406 nm) with a voltage and current of 40 kV and 40 mA, respectively.

    Selective oxidation of toluene was performed in an autoclave (50 mL) with mechanical stirring. After the vessel was charged with 30 mL of toluene and the required amount of catalyst, it was filled with pure oxygen to a desired initial pressure. Then the reaction was time was measured as soon as the temperature reached the set value. When the reaction was finished, we analyzed the liquid phase by GC and the results were compared to known commercially pure standard samples. Finally, conversion and product selectivity were calculated based on the carbon balance with the calibration curves.

    2 Results and Discussion

    2.1 Characterization results

    The XRD patterns of the prepared samples are shown in Fig.1. Some broad peaks and some sharp peaks are observed, as well as shifting in the positions of the peaks. Broadening of diffraction peaks occurs when certain types of random intergrowth of pyrolusite (1×2 tunnel structure) and ramsdellite (1×2 tunnel structure) manganese dioxide are present according to the de Wolff model[11]. After comparison with the reference data for the IBA-11 XRD patterns[12], the sample was confirmed to be a crystal form of γ-MnO2. The other sample shows a similar XRD pattern with γ-MnO2except that it has the peaks at 2θof 38.5° (111), 44.8° (200) due to the Au particles (JCPDS Card No.1-1172). This indicates that the loading of Au particles do not change the crystal structure of MnO2and the size of Au particles is larger than 4 nm. In

    Fig.1 XRD patterns of prepared samples

    fact, TEM and SEM images show that Au particles are well dispersed on γ-MnO2nanorods and the size of which was about 10 nm, the same as in our previous research[10].

    2.2 Catalytic results

    The effect of initial oxygen pressure on toluene oxidation reaction is shown in Fig.2. Higher oxygen pressure obviously improves the conversion of toluene, and a drastic improvement appears between 2.5 and 3.0 MPa. Meanwhile, benzoic acid selectivity presents the same variation trend, even though there is no big change between the pressure of 1.5 and 2.0 MPa. By contrast, the selectivity of benzaldehyde reduces significantly. At the pressure of 3.0 MPa, the main products are benzaldehyde and benzoic acid, which share almost the same selectivity with each other. In this single-factor reaction, the selectivities of benzyl alcohol and benzyl benzoate have not changed much, and only show a slight decreasing trend between 0.5 and 3.0 MPa. In general, the increasing initial pressure of oxygen improves the conversion of toluene precisely. This may be caused by the increasing oxygen content in the unit volume, which enhances the reaction. As a result, benzyl alcohol and benzaldehyde are further oxidized to benzoic acid and benzyl benzoate. Therefore, even though benzaldehyde has the highest selectivity, it presents a decreasing trend, while the selectivity of benzoic acid increases. Moreover, because of the limited benzyl alcohol, benzyl benzoate selectivity is not changed significantly.

    Fig.2 Influence of initial oxygen pressure on catalytic performance over Au/γ-MnO2 catalyst with the reaction temperatures of 160℃, the reaction time of 8 h, the catalyst amount of 1 % in mass fraction, and the stirring rate of 600 r/min

    In Fig.3, toluene conversion increases with the increase of temperature. At the temperature of 140℃ or lower, the conversion of toluene remains below 5%. However, when the reaction temperature increases, the reaction becomes more severe. Toluene conversion is improved by a clear increase rate progressively, and at the temperature of 220℃, it reaches the value of 34.1%. Another improvement appears on the selectivity of benzyl benzoate. When the temperature is low, little benzyl benzoate can be obtained. However, a reaction at 220℃ provides the greatest production of benzyl benzoate and the value of selectivity changes to 47.1%. On the contrary, the other three products show decreasing trends in Fig.3. Benzyl benzoate selectivity shows a sharp increase between the temperature of 180 and 220℃, while the selectivity of benzaldehyde decreases by 37.4%. Meanwhile, benzoic acid and benzyl alcohol do not change much. This single-factor experiment shows a result that the increasing temperature provides more energy for greater reactions. Some toluene may be directly oxidized to benzyl benzoate. This is proved to be the most effective method to improve toluene conversion in this reaction system. This enhancement in catalytic activity may be caused by the increase in the intrinsic activity of the existing active sites and also by the creation of more active sites with the increase in reaction temperature[13].

    Fig.3 Influence of reaction temperature on catalytic performance over Au/γ-MnO2 catalyst with the initial pressure of 1 MPa, the catalyst amount of 1% in mass friction, the reaction time of 8 h, and the stirring rate of 600 r/min

    It is clear to see from Fig.4 that a long reaction time can clearly improve toluene conversion. However, in the first 12 h, oxidation reaction proceeds slowly. On the other hand, both benzyl alcohol and benzaldehyde decrease as time goes by. The change in benzyl alcohol selectivity is not obvious, while a sharp decrease appears

    Fig.4 Influence of reaction time on catalytic performance over Au/γ-MnO2 catalyst with the reaction temperature of 160℃, the initial pressure of 1 MPa, the catalyst amount of 1% in mass friction, and the stirring rate of 600 r/min

    in the first 20 h of benzaldehyde selectivity. On the contrary, benzyl benzoate production increases more over time and exceeds benzaldehyde after a reaction for 42 h. Unlike the three products, benzoic acid selectivity first increases to 31.4% at 20 h and then decreases to 20.6% at 60 h. This phenomenon is attributed to more benzaldehyde turning into benzyl acid with oxygen at the beginning of the reaction. As time passes, the benzyl acid and benzyl alcohol begin further reacting to form benzyl benzoate. This observation can also be confirmed by the increasing trend of benzyl benzoate selectivity. A similar result was also discovered by Fu et al[14]. In this way, we can obtain the most benzoic acid product by controlling reaction time.

    The influence of catalyst amount in this system is described in Fig.5. Similar to the influence of the above discussed parameters of reaction temperatures and initial oxygen pressure, the toluene conversion increases dramatically with the increase in catalyst amount, which can be raised from the initial 8.6% to above 30%. However, the conversion maintains constant when the catalyst amount is above 7%. This phenomenon may be ascribed to two reasons. One is the limitation of the oxygen amount in the liquid phase of this reaction system. The other possible reason is the findings that metal complexes of transition metals, particularly in the media of low polarity such as neat hydrocarbons, often act as catalysts at low loadings but inhibitors at high loadings[15]. The selectivity of benzoic acid and benzyl benzoate first increases then decreases, while the selectivity of benzyl alcohol does not change too much. The increase of catalyst amount may drive the reaction into a further stage and results in the increase of selectivity of the more reactive oxidation products. However, due to the limitations of reaction conditions, this selectivity declines when the amount of catalyst reaches a certain value. Another product is benzaldehyde, the selectivity of which reaches a maxmum value when the amount is 7%. It is known that benzoic acid and benzyl benzoate are the further oxidation products

    Fig.5 Influence of catalyst amount on catalytic performance over Au/γ-MnO2 catalyst with the reaction temperature of 160℃, the initial pressure of 1 MPa, the reaction time of 8 h and the stirring rate of 600 r/min

    of benzaldehyde, so it is easy to understand that the behavior of benzaldehyde selectivity can be contrasted with that of benzoic acid and benzyl benzoate. Moreover, the selectivity of benzaldehyde is always the highest during the increase of catalyst amount from 1% to 10%, indicating that the Au/γ-MnO2catalyst has a unique selectivity to benzaldehyde in this reaction condition.

    3 Conclusion

    In this paper, the well dispersed Au/γ-MnO2catalyst is synthesized. The sample shows effective catalytic performance in solvent-free toluene oxidation. Several process parameters can enhance the conversion of toluene, which are reaction temperature, initial oxygen pressure, catalyst amount, and reaction time. All these factors influence the selectivity of benzaldehyde, benzoic acid and benzyl benzoate significantly, but affect that of benzyl alcohol only slightly. Under the conditions of a reaction time within 20 h, a reaction temperature below 200℃ and the initial oxygen pressure within 3 MPa, this Au/γ-MnO2catalyst has a unique selectivity to benzaldehyde.

    [1]Suresh A K, Sharma M M, Sridhar T. Engineering aspects of industrial liquid-phase air oxidation of hydrocarbons [J].Industrial&EngineeringChemistryResearch, 2000, 39(11): 3958-3997.

    [2]Kantam M L, Sreekanth P, Rao K K, et al. An improved process for selective liquid-phase air oxidation of toluene [J].CatalysisLetters, 2002, 81(3/4): 223-232.

    [3]Kesavan L, Tiruvalam R, Ab Rahim M H, et al. Solvent-free oxidation of primary carbon-hydrogen bonds in toluene using Au-Pd alloy nanoparticles [J].Science, 2011, 331(6014): 195-199.

    [4]Qiu G H, Huang H, Dharmarathna S, et al. Hydrothermal synthesis of manganese oxide nanomaterials and their catalytic and electrochemical properties [J].ChemistryofMaterials, 2011, 23(17): 3892-3901.

    [5]Zhang Y B, Shen Y N, Yang X Z, et al. Gold catalysts supported on the mesoporous nanoparticles composited of zirconia and silicate for oxidation of formaldehyde [J].JournalofMolecularCatalysisA:General, 2010, 316(1/2): 100-105.

    [6]Wang H, Zhu H Q, Qin Z F, et al. Deactivation of a Au/CeO2-Co3O4catalyst during CO preferential oxidation in H2-rich stream [J].JournalofCatalysis, 2009, 264(2): 154-162.

    [7]Li C Y, Shen Y N, Jia M L, et al. Catalytic combustion of formaldehyde on gold/iron-oxide catalysts [J].CatalysisCommunications, 2008, 9(3): 355-361.

    [8]Blick K, Mitrelias T D, Hargreaves J S J, et al. Methane oxidation using Au/MgO catalysts [J].CatalysisLetters, 1998, 50(3/4): 211-218.

    [9]Campbell C T. The active site in nanoparticle gold catalysis [J].Science, 2004, 306(5694): 234-235.

    [10]Jiang F, Zhu X W, Fu B S, et al. Au/γ-MnO2catalyst for solvent-free toluene oxidation with oxygen [J].ChineseJournalofCatalysis, 2013, 34(9): 1683-1689.

    [11]de Wolff P M. Interpretation of some γ-MnO2diffraction patterns [J].ActaCryst, 1959, 12: 341-345.

    [12]Malpas D G, Tye F L.Handbookofmanganesedioxidesbatterygrade[M]. Brunswick: IBA Inc & JEC Press, 1989.

    [13]Kalevaru V N, Raju B D, Rao V V, et al. Preparation, characterisation and catalytic evaluation of MgF2supported V2O5catalysts for ammoxidation of 3-picoline [J].AppliedCatalysisA:General, 2009, 352(1/2): 223-233.

    [14]Fu B S, Zhu X W, Xiao G M. Solvent-free selective aerobic oxidation of toluene by ultra fine nano-palladium catalyst [J].AppliedCatalysisA:Gernal, 2012, 415-416: 47-52.

    [15]Sheldon R A.Metal-catalyzedoxidationoforganiccompounds[M]. New York:Academic Press, 1981.

    反應(yīng)條件對Au/γ-MnO2催化甲苯氧化反應(yīng)的影響

    姜 楓 肖國民

    (東南大學化學化工學院, 南京 211189)

    制備了γ-MnO2納米棒以及Au/γ-MnO2催化劑,并用X射線衍射(XRD)、掃描電鏡(SEM)和透射電鏡(TEM)等手段對其進行表征.結(jié)果表明:Au顆粒均勻分散在載體γ-MnO2的表面,顆粒大小約為10 nm.在無溶劑存在下甲苯和氧氣的氧化反應(yīng)中測試了樣品的催化活性.研究了反應(yīng)時間、反應(yīng)溫度、初始氧氣壓力及催化劑加入量對催化活性的影響.活性測試結(jié)果表明:Au/γ-MnO2催化劑對苯甲醛有特殊的選擇性;反應(yīng)時間、溫度、初始壓力及催化劑加入量等條件對甲苯轉(zhuǎn)化率及苯甲醛、苯甲酸、苯甲酸芐酯的選擇性都有很大影響,但對苯甲醇的選擇性影響不大.

    納米金;二氧化錳;甲苯氧化;無溶劑

    TQ139.2

    s:The National Natural Science Foundation of China (No.21276050), the Scientific Research Foundation of Graduate School of Southeast University (No.YBJJ1341).

    :Jiang Feng, Xiao Guomin.Influences of process parameters on solvent-free toluene oxidation over Au/γ-MnO2catalyst[J].Journal of Southeast University (English Edition),2014,30(3):387-390.

    10.3969/j.issn.1003-7985.2014.03.024

    10.3969/j.issn.1003-7985.2014.03.024

    Received 2014-01-20.

    Biographies:Jiang Feng (1987—), femal,graduate; Xiao guomin (corresponding author), male, doctor, professor, xiaogm@seu.edu.cn.

    猜你喜歡
    無溶劑苯甲酸甲苯
    高效液相色譜法測定降糖藥甲苯磺丁脲片中甲苯磺丁脲的含量
    離子交換樹脂催化合成苯甲酸甲酯
    云南化工(2020年11期)2021-01-14 00:50:52
    1-(對甲苯基)-2-(三對甲苯基-5-亞磷酰基)乙醛的汞(Ⅱ)配合物的X射線晶體學、光譜表征和理論計算研究
    含有苯甲酸的紅棗不能吃?
    百科知識(2016年22期)2016-12-24 21:07:25
    SO42-/TiO2-SnO2固體超強酸無溶劑催化合成季戊四醇硬脂酸酯
    3,5-二氨基對氯苯甲酸異丁酯的合成研究
    淡水艙無溶劑環(huán)氧施工工藝研究
    2015中國國際合成革展覽會刮起“無溶劑合成革”風暴
    西部皮革(2015年15期)2015-02-28 18:14:36
    甲苯-4-磺酸催化高效合成尼泊金正丁酯防腐劑
    萃取精餾分離甲苯-正庚烷混合物的模擬研究
    村上凉子中文字幕在线| 麻豆av噜噜一区二区三区| 高清在线国产一区| 欧美激情久久久久久爽电影| 国产午夜精品久久久久久一区二区三区 | 婷婷六月久久综合丁香| 99久久无色码亚洲精品果冻| 亚洲av电影不卡..在线观看| 欧美不卡视频在线免费观看| 欧美bdsm另类| 男女之事视频高清在线观看| 亚洲欧美激情综合另类| 男女那种视频在线观看| 永久网站在线| 国产国拍精品亚洲av在线观看| 中亚洲国语对白在线视频| 夜夜夜夜夜久久久久| 成人一区二区视频在线观看| 精品国产亚洲在线| 床上黄色一级片| 老鸭窝网址在线观看| x7x7x7水蜜桃| 一本综合久久免费| 欧美精品国产亚洲| 成人无遮挡网站| 成人亚洲精品av一区二区| 国产伦一二天堂av在线观看| 97人妻精品一区二区三区麻豆| 亚洲狠狠婷婷综合久久图片| 在线免费观看不下载黄p国产 | 成年女人看的毛片在线观看| 久久人人爽人人爽人人片va | 少妇高潮的动态图| 精品一区二区免费观看| 日本一二三区视频观看| 精品国内亚洲2022精品成人| 大型黄色视频在线免费观看| 一个人免费在线观看的高清视频| 少妇人妻精品综合一区二区 | 亚洲精品色激情综合| 精品久久久久久久末码| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 综合色av麻豆| 欧美3d第一页| 伦理电影大哥的女人| www日本黄色视频网| 全区人妻精品视频| 国产主播在线观看一区二区| 一区二区三区免费毛片| 国产aⅴ精品一区二区三区波| 亚洲av二区三区四区| 在线观看一区二区三区| 97热精品久久久久久| 亚洲国产精品久久男人天堂| 久久久久亚洲av毛片大全| 欧美黑人欧美精品刺激| 久久久久九九精品影院| av黄色大香蕉| 国产一级毛片七仙女欲春2| 精品乱码久久久久久99久播| 好男人在线观看高清免费视频| 又爽又黄a免费视频| 亚洲av五月六月丁香网| 五月伊人婷婷丁香| 日本 欧美在线| 成人亚洲精品av一区二区| 成人国产综合亚洲| 久久精品国产清高在天天线| 久久久色成人| 中文字幕高清在线视频| av在线观看视频网站免费| 美女xxoo啪啪120秒动态图 | 免费电影在线观看免费观看| 国产成人影院久久av| 在线播放国产精品三级| 国产精品一区二区性色av| 深夜精品福利| 非洲黑人性xxxx精品又粗又长| 波多野结衣巨乳人妻| 日韩精品青青久久久久久| a级毛片免费高清观看在线播放| bbb黄色大片| 人人妻人人看人人澡| 人人妻,人人澡人人爽秒播| 亚洲狠狠婷婷综合久久图片| 亚洲av电影不卡..在线观看| 亚洲电影在线观看av| 欧美黄色片欧美黄色片| 狂野欧美白嫩少妇大欣赏| 色综合婷婷激情| 国产av在哪里看| 午夜亚洲福利在线播放| 黄色丝袜av网址大全| 麻豆成人av在线观看| 久久久久久久久大av| 禁无遮挡网站| 亚洲午夜理论影院| 3wmmmm亚洲av在线观看| 高清毛片免费观看视频网站| 久久久久久久亚洲中文字幕 | 国产单亲对白刺激| 日本熟妇午夜| 久久久久久久久久黄片| 精品无人区乱码1区二区| 搡老熟女国产l中国老女人| 国产午夜精品久久久久久一区二区三区 | .国产精品久久| 91麻豆精品激情在线观看国产| 午夜免费激情av| 欧美一级a爱片免费观看看| 日韩欧美 国产精品| 国产精品日韩av在线免费观看| 午夜激情福利司机影院| 欧美激情久久久久久爽电影| 日韩欧美一区二区三区在线观看| 欧美日韩福利视频一区二区| 9191精品国产免费久久| 免费av不卡在线播放| 91字幕亚洲| 噜噜噜噜噜久久久久久91| 欧美黄色淫秽网站| 两人在一起打扑克的视频| 日本一本二区三区精品| 婷婷精品国产亚洲av在线| 51午夜福利影视在线观看| 精品99又大又爽又粗少妇毛片 | 国内揄拍国产精品人妻在线| 淫秽高清视频在线观看| 欧美+日韩+精品| 首页视频小说图片口味搜索| 一本精品99久久精品77| 黄色丝袜av网址大全| 国产又黄又爽又无遮挡在线| 一卡2卡三卡四卡精品乱码亚洲| 91麻豆av在线| 国产探花在线观看一区二区| 白带黄色成豆腐渣| 国产三级中文精品| 久久久久久久久大av| 一夜夜www| 99在线视频只有这里精品首页| 五月玫瑰六月丁香| 日韩av在线大香蕉| 狂野欧美白嫩少妇大欣赏| 亚洲在线观看片| 看片在线看免费视频| 大型黄色视频在线免费观看| 99久久无色码亚洲精品果冻| 美女被艹到高潮喷水动态| 午夜免费成人在线视频| 在线观看午夜福利视频| 好看av亚洲va欧美ⅴa在| 欧美bdsm另类| 国产精品美女特级片免费视频播放器| 亚洲国产精品合色在线| 国产av不卡久久| 老司机午夜十八禁免费视频| av欧美777| 一夜夜www| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲自偷自拍三级| 免费看日本二区| 日韩精品中文字幕看吧| 久久久久久久午夜电影| 日本在线视频免费播放| 国产精品综合久久久久久久免费| 久久久久久国产a免费观看| 国产亚洲欧美98| 欧美最新免费一区二区三区 | 欧美日韩亚洲国产一区二区在线观看| 两个人的视频大全免费| 亚洲黑人精品在线| 午夜视频国产福利| 亚洲片人在线观看| 久久久色成人| 国产乱人伦免费视频| 国产精品一区二区三区四区久久| 桃色一区二区三区在线观看| 亚洲 欧美 日韩 在线 免费| 日日干狠狠操夜夜爽| 乱码一卡2卡4卡精品| 午夜福利高清视频| 欧美成人a在线观看| 精品久久久久久久久久免费视频| 丁香欧美五月| 日韩有码中文字幕| 免费av观看视频| 永久网站在线| 少妇的逼好多水| 18美女黄网站色大片免费观看| 夜夜夜夜夜久久久久| 免费一级毛片在线播放高清视频| 午夜两性在线视频| 黄片小视频在线播放| 两个人视频免费观看高清| 日韩亚洲欧美综合| 欧美最新免费一区二区三区 | 亚洲第一欧美日韩一区二区三区| 中出人妻视频一区二区| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美日韩高清在线视频| 色综合婷婷激情| 日本熟妇午夜| 亚洲精品一卡2卡三卡4卡5卡| 女同久久另类99精品国产91| 国产一区二区三区视频了| 国产av在哪里看| 免费av毛片视频| 国产黄a三级三级三级人| 亚洲精品色激情综合| 国产一区二区在线av高清观看| 亚洲性夜色夜夜综合| 99精品久久久久人妻精品| 一本精品99久久精品77| 在线观看66精品国产| 草草在线视频免费看| 国产精品自产拍在线观看55亚洲| 国产日本99.免费观看| 午夜视频国产福利| 国产乱人视频| 九九热线精品视视频播放| 精品熟女少妇八av免费久了| 亚洲在线自拍视频| 我的老师免费观看完整版| 精品午夜福利在线看| 午夜精品在线福利| 高潮久久久久久久久久久不卡| 身体一侧抽搐| 少妇的逼好多水| 无人区码免费观看不卡| 9191精品国产免费久久| 亚洲综合色惰| 99久国产av精品| 国产免费一级a男人的天堂| 精品免费久久久久久久清纯| 亚洲av中文字字幕乱码综合| 一进一出好大好爽视频| 欧美丝袜亚洲另类 | www日本黄色视频网| 久9热在线精品视频| 国产探花极品一区二区| 成年女人永久免费观看视频| 亚洲人成网站高清观看| 深夜a级毛片| 在现免费观看毛片| 婷婷精品国产亚洲av| 国产精品爽爽va在线观看网站| av黄色大香蕉| 日韩欧美精品v在线| 欧美在线一区亚洲| 无人区码免费观看不卡| 亚洲无线在线观看| 最后的刺客免费高清国语| 校园春色视频在线观看| 久久久精品大字幕| 国产爱豆传媒在线观看| 亚洲国产欧美人成| 热99re8久久精品国产| 啦啦啦韩国在线观看视频| 国产av在哪里看| 岛国在线免费视频观看| 毛片女人毛片| 免费在线观看日本一区| 亚洲精品在线观看二区| 久久久久久大精品| 亚洲精品在线观看二区| 美女免费视频网站| 亚洲精品色激情综合| 日韩av在线大香蕉| 中文在线观看免费www的网站| 国产精品影院久久| 欧美xxxx黑人xx丫x性爽| 国产色婷婷99| 亚洲成人久久性| 亚洲七黄色美女视频| 欧美高清性xxxxhd video| 757午夜福利合集在线观看| 亚洲精品成人久久久久久| 在线观看美女被高潮喷水网站 | av黄色大香蕉| 搡老熟女国产l中国老女人| 国产精品国产高清国产av| 女同久久另类99精品国产91| 日本成人三级电影网站| 久久精品国产亚洲av香蕉五月| 久久99热这里只有精品18| 精品久久久久久久久av| 制服丝袜大香蕉在线| 亚洲精华国产精华精| 简卡轻食公司| 成人美女网站在线观看视频| 国内精品一区二区在线观看| 亚洲中文字幕一区二区三区有码在线看| 在线观看一区二区三区| 久久久久久国产a免费观看| 免费搜索国产男女视频| 国产视频内射| 午夜精品一区二区三区免费看| 亚洲精品一卡2卡三卡4卡5卡| 大型黄色视频在线免费观看| 男女之事视频高清在线观看| 十八禁国产超污无遮挡网站| 在线观看av片永久免费下载| 欧美日韩乱码在线| 内地一区二区视频在线| 亚洲经典国产精华液单 | 亚洲五月婷婷丁香| 国产精品99久久久久久久久| 日韩免费av在线播放| 精品久久久久久久末码| 91九色精品人成在线观看| 草草在线视频免费看| 午夜福利在线观看吧| 国产大屁股一区二区在线视频| 人妻夜夜爽99麻豆av| 久久久久久大精品| 首页视频小说图片口味搜索| 99视频精品全部免费 在线| 免费高清视频大片| 色视频www国产| 亚洲人成网站在线播放欧美日韩| 免费电影在线观看免费观看| 久久久国产成人免费| av在线老鸭窝| 亚洲 国产 在线| 亚洲国产欧洲综合997久久,| 美女 人体艺术 gogo| 91狼人影院| 免费av毛片视频| 最新在线观看一区二区三区| 欧美激情久久久久久爽电影| 亚洲av.av天堂| 免费在线观看亚洲国产| 人人妻人人看人人澡| 日本免费一区二区三区高清不卡| 欧美性猛交黑人性爽| 国产亚洲精品久久久com| 国产精品亚洲av一区麻豆| 日本一本二区三区精品| 日韩欧美精品v在线| 最后的刺客免费高清国语| 久久精品国产亚洲av天美| 亚洲精品一卡2卡三卡4卡5卡| 国产不卡一卡二| 搡老妇女老女人老熟妇| 久久精品国产99精品国产亚洲性色| 亚洲经典国产精华液单 | 欧洲精品卡2卡3卡4卡5卡区| 99视频精品全部免费 在线| 免费高清视频大片| 欧美3d第一页| 国产精品98久久久久久宅男小说| 日韩欧美三级三区| av女优亚洲男人天堂| 好看av亚洲va欧美ⅴa在| 精品人妻视频免费看| 最近最新免费中文字幕在线| 欧美最黄视频在线播放免费| 精华霜和精华液先用哪个| 别揉我奶头~嗯~啊~动态视频| 免费无遮挡裸体视频| 有码 亚洲区| 国产精品一区二区免费欧美| 国产精品av视频在线免费观看| 首页视频小说图片口味搜索| 亚洲精品成人久久久久久| 又爽又黄无遮挡网站| 欧美日本亚洲视频在线播放| 国产亚洲欧美98| 久久人人精品亚洲av| 国产69精品久久久久777片| av在线观看视频网站免费| xxxwww97欧美| 18禁黄网站禁片免费观看直播| 国产单亲对白刺激| 一a级毛片在线观看| 两人在一起打扑克的视频| av天堂在线播放| 久久99热6这里只有精品| 人人妻人人澡欧美一区二区| 国产精品伦人一区二区| 欧美日本视频| 国产av不卡久久| 日日夜夜操网爽| 久久精品影院6| 脱女人内裤的视频| 天堂√8在线中文| 窝窝影院91人妻| 琪琪午夜伦伦电影理论片6080| 午夜视频国产福利| 淫秽高清视频在线观看| 在线国产一区二区在线| a级毛片a级免费在线| 赤兔流量卡办理| 90打野战视频偷拍视频| 小蜜桃在线观看免费完整版高清| 最近视频中文字幕2019在线8| 18+在线观看网站| av在线天堂中文字幕| 色5月婷婷丁香| 性色av乱码一区二区三区2| 少妇熟女aⅴ在线视频| 国产精品女同一区二区软件 | 亚洲国产精品999在线| 尤物成人国产欧美一区二区三区| 日韩国内少妇激情av| 国产精品亚洲美女久久久| 免费无遮挡裸体视频| 中文字幕熟女人妻在线| 国产av麻豆久久久久久久| 一a级毛片在线观看| 中出人妻视频一区二区| 国产野战对白在线观看| 久99久视频精品免费| 午夜福利在线观看免费完整高清在 | 在线免费观看的www视频| 一级av片app| 悠悠久久av| 午夜精品在线福利| 久久香蕉精品热| 亚洲黑人精品在线| 亚洲成av人片在线播放无| 90打野战视频偷拍视频| 99热精品在线国产| 精品午夜福利在线看| 精品99又大又爽又粗少妇毛片 | 欧美日本亚洲视频在线播放| 日韩 亚洲 欧美在线| 两个人的视频大全免费| 男女视频在线观看网站免费| 亚洲va日本ⅴa欧美va伊人久久| 色哟哟·www| 丰满人妻熟妇乱又伦精品不卡| 精品人妻1区二区| 丝袜美腿在线中文| 国产激情偷乱视频一区二区| 国产蜜桃级精品一区二区三区| 欧美成狂野欧美在线观看| 欧美日本视频| 麻豆国产97在线/欧美| 国产大屁股一区二区在线视频| 男人舔女人下体高潮全视频| 国产精品亚洲av一区麻豆| 日本免费一区二区三区高清不卡| 日本一二三区视频观看| 首页视频小说图片口味搜索| 午夜福利高清视频| 久久精品国产99精品国产亚洲性色| 国产主播在线观看一区二区| 天堂网av新在线| 一个人免费在线观看的高清视频| 成人国产综合亚洲| 久久久色成人| 亚洲美女黄片视频| 国产av一区在线观看免费| 免费高清视频大片| 国产精品亚洲美女久久久| 欧美黑人巨大hd| 精品一区二区三区人妻视频| 色视频www国产| 精品国产三级普通话版| 亚洲人成网站高清观看| 乱人视频在线观看| h日本视频在线播放| 国产成人影院久久av| 精品人妻偷拍中文字幕| 精品午夜福利视频在线观看一区| 高清日韩中文字幕在线| 久久久久久久久中文| 欧美性猛交╳xxx乱大交人| 又黄又爽又免费观看的视频| 高清毛片免费观看视频网站| 男人舔奶头视频| 蜜桃亚洲精品一区二区三区| 日韩欧美三级三区| 欧美日本视频| 久久久久国内视频| 久久久久久九九精品二区国产| 国产69精品久久久久777片| 婷婷六月久久综合丁香| 国产欧美日韩精品一区二区| 午夜亚洲福利在线播放| 夜夜看夜夜爽夜夜摸| 美女 人体艺术 gogo| 国产一区二区在线观看日韩| 男女那种视频在线观看| 变态另类丝袜制服| 久久久精品大字幕| 久久久久久久久大av| 高清在线国产一区| 国产精品久久久久久精品电影| 成人美女网站在线观看视频| 免费看美女性在线毛片视频| 国产亚洲精品久久久久久毛片| 精品欧美国产一区二区三| 亚洲乱码一区二区免费版| 亚洲美女搞黄在线观看 | 亚洲精品在线观看二区| 直男gayav资源| 国产国拍精品亚洲av在线观看| 欧美激情国产日韩精品一区| 男插女下体视频免费在线播放| 国产精品影院久久| 亚洲精品乱码久久久v下载方式| 国产国拍精品亚洲av在线观看| 欧美乱色亚洲激情| 久久性视频一级片| 欧美日本亚洲视频在线播放| 国产aⅴ精品一区二区三区波| or卡值多少钱| 小说图片视频综合网站| 一进一出抽搐动态| 在线观看一区二区三区| 久久久精品大字幕| 99国产综合亚洲精品| 黄色配什么色好看| 欧美乱妇无乱码| 日本与韩国留学比较| 久久久久精品国产欧美久久久| 亚洲av日韩精品久久久久久密| 成年版毛片免费区| 可以在线观看的亚洲视频| 少妇丰满av| 国产欧美日韩精品一区二区| 欧美成人性av电影在线观看| 亚洲第一区二区三区不卡| 欧美丝袜亚洲另类 | 亚洲五月天丁香| av在线蜜桃| 国产精品伦人一区二区| 亚洲国产欧洲综合997久久,| 国产成+人综合+亚洲专区| 久久午夜福利片| 91久久精品电影网| 欧美高清性xxxxhd video| 成年女人永久免费观看视频| h日本视频在线播放| 狂野欧美白嫩少妇大欣赏| 婷婷六月久久综合丁香| 免费av观看视频| 日韩欧美精品免费久久 | 蜜桃亚洲精品一区二区三区| 丰满人妻一区二区三区视频av| 国产亚洲精品综合一区在线观看| 日韩高清综合在线| 人人妻人人澡欧美一区二区| 男女那种视频在线观看| 嫩草影院新地址| 亚洲中文字幕一区二区三区有码在线看| 久久久国产成人精品二区| 深夜精品福利| 成人高潮视频无遮挡免费网站| 国产欧美日韩一区二区精品| 最新中文字幕久久久久| 成人精品一区二区免费| 午夜老司机福利剧场| 国产精品影院久久| 最近最新中文字幕大全电影3| 亚洲av一区综合| 精品一区二区三区人妻视频| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产欧美人成| 小说图片视频综合网站| 成人鲁丝片一二三区免费| 亚洲国产欧洲综合997久久,| 少妇高潮的动态图| 国产中年淑女户外野战色| 中文字幕人成人乱码亚洲影| 欧美潮喷喷水| 久久午夜福利片| 国产三级在线视频| 99热这里只有是精品50| 最近中文字幕高清免费大全6 | 丁香欧美五月| 免费人成在线观看视频色| 欧美成人a在线观看| 国产av在哪里看| 天堂网av新在线| 国产精品久久久久久人妻精品电影| 国产精品综合久久久久久久免费| 色尼玛亚洲综合影院| 18禁在线播放成人免费| 人妻夜夜爽99麻豆av| 日韩欧美在线二视频| 亚洲狠狠婷婷综合久久图片| 日韩中文字幕欧美一区二区| 91麻豆av在线| 女生性感内裤真人,穿戴方法视频| av福利片在线观看| 性欧美人与动物交配| 国产成人福利小说| 又紧又爽又黄一区二区| 国产精品伦人一区二区| 亚洲国产欧美人成| 小说图片视频综合网站| 亚洲第一欧美日韩一区二区三区| 久久久久久国产a免费观看| 亚洲人成网站在线播放欧美日韩| 蜜桃亚洲精品一区二区三区| 黄色视频,在线免费观看| 一区二区三区激情视频| 欧美另类亚洲清纯唯美| 色综合站精品国产| 精品不卡国产一区二区三区| 久久久国产成人精品二区| 国产三级黄色录像| 女同久久另类99精品国产91| 国产精品久久久久久久久免 | 男女那种视频在线观看| 久久久久久久精品吃奶| 亚洲精品在线观看二区| 国产色婷婷99| 国模一区二区三区四区视频| 深夜a级毛片| 少妇的逼水好多|