張愛(ài)紅,徐義紅,涂相求
(南昌大學(xué) 數(shù)學(xué)系,南昌 330031)
(,)∈graph F(,,,)=(epi F,(,),(,)).(7)
(F(Q1∩U1)-)∩(-intcone(Θ+V0))≠?.
(F(Q1∩U1)-)∩(intcone(V0-Θ))≠?.
二階漸近切上圖導(dǎo)數(shù)及應(yīng)用
張愛(ài)紅,徐義紅,涂相求
(南昌大學(xué) 數(shù)學(xué)系,南昌 330031)
在實(shí)賦范線性空間中利用新定義的二階漸近切上圖導(dǎo)數(shù)研究集值優(yōu)化問(wèn)題的嚴(yán)有效性.通過(guò)二階漸近切錐引進(jìn)一種新的二階漸近切上圖導(dǎo)數(shù),給出一個(gè)例子說(shuō)明它的存在條件比二階漸近切導(dǎo)數(shù)存在條件更弱,并利用此導(dǎo)數(shù)及擴(kuò)張錐的性質(zhì)給出了集值優(yōu)化問(wèn)題取得局部嚴(yán)有效元的必要條件.
二階漸近切錐; 二階漸近切上圖導(dǎo)數(shù); 局部嚴(yán)有效元
在集值優(yōu)化理論研究中,有效性理論一直是人們關(guān)注的課題[1-3].由于(弱)有效解范圍較大,因此收縮解的范圍成為向量?jī)?yōu)化研究的主要內(nèi)容.傅萬(wàn)濤等[4-6]提出了嚴(yán)有效點(diǎn)的概念,每個(gè)嚴(yán)有效點(diǎn)都能用嚴(yán)格正泛函標(biāo)量化,因而嚴(yán)有效點(diǎn)引起了人們的廣泛關(guān)注[7-8].
目前,借助切錐定義的切導(dǎo)數(shù)廣泛用于研究集值優(yōu)化問(wèn)題的最優(yōu)性條件[9-12].Li等[9]借助高階切導(dǎo)數(shù)研究了當(dāng)目標(biāo)函數(shù)和約束函數(shù)均為錐凹時(shí),集值優(yōu)化問(wèn)題取得弱最大有效解的充分和必要條件; Khan等[10]利用二階漸近切錐定義了二階漸近導(dǎo)數(shù)并給出了集值優(yōu)化問(wèn)題取得弱有效解的最優(yōu)化條件.本文引進(jìn)一種新的二階切上圖導(dǎo)數(shù),并給出其應(yīng)用.
設(shè)X,Y,Z為實(shí)賦范線性空間,0X,0Y,0Z分別表示X,Y,Z中的零元.設(shè)S是Y中的非空子集,分別用intS和clS表示集合S的內(nèi)部和閉包.集合S的生成錐定義為coneS={λs:λ≥0,s∈S}.設(shè)C和D分別為Y和Z中的閉凸點(diǎn)錐,若0Y?clΘ且C=coneΘ, 稱(chēng)凸集Θ為錐C的一個(gè)基.
設(shè)P∶={t∈|t>0|},為正整數(shù)集.
設(shè)F:X→2Y表示從X到Y(jié)的集值映射.F的有效域、 圖及上圖分別定義為
F的剖面映射(profile map)F+:X→2Y定義為
F+(x)∶=F(x)+C, ?x∈domF.
F關(guān)于S的弱逆像(weak-inverse image)F[S]-定義為
F[S]-∶={x∈X|F(x)∩S≠?|}.
下面引進(jìn)一種新的二階切導(dǎo)數(shù).
例1設(shè)X=Y=,(0,1).
直接計(jì)算得:
(1)
設(shè)F:X→2Y,G:X→2Z,考慮集值優(yōu)化問(wèn)題
F(x1)∩V?F(x2)+L‖x1-x2‖BY
證明: 反證法.假設(shè)
{(sn,tn)}?P×P, (sn,tn)→(0+,0+),sn/tn→0,
使得
由
得
設(shè)
由式(7)得
于是
令
由式(9)得
由式(8),(11),(12)得
于是存在bn∈BY,使得
從而
由式(14)知,存在wn∈F(un),使得
于是
由C?cone(Θ+V0)得
又由cone(Θ+V0)是凸錐得
cone(Θ+V0)+intcone(Θ+V0)?intcone(Θ+V0),
再由式(17)得
C+intcone(Θ+V0)?intcone(Θ+V0).
由式(16)得
于是
由式(4),(5)得
由式(10)得
由式(19)~(21)得
于是
又由V0=-V0得
下證0?intcone(V0-Θ).
由式(22),(23)得
另一方面,
由式(24)及λ2+λ3>0得
再由式(25)得0∈V0-Θ,與式(2)矛盾,故0?intcone(V0-Θ).
取
與式(2)矛盾.故式(3)成立.證畢.
[1]李仲飛.集值映射向量?jī)?yōu)化的Benson真有效性 [J].應(yīng)用數(shù)學(xué)學(xué)報(bào),1998,21(1): 123-134.(LI Zhongfei.Benson Proper Efficiency in Vector Optimization with Set-Valued Maps [J].Acta Mathematicae Applicatae Sinica,1998,21(1): 123-134.)
[2]徐義紅,熊衛(wèi)芝,段五朵.集值映射的Set-Benson次梯度及其應(yīng)用 [J].南昌大學(xué)學(xué)報(bào): 工科版,2012,34(2): 193-196.(XU Yihong,XIONG Weizhi,DUAN Wuduo.Set-Benson-Subgradient for Set-Valued Map and Its Applications [J].Journal of Nanchang University: Engineering & Technology,2012,34(2): 193-196.)
[3]徐義紅,肖明麗,涂相求.群體多目標(biāo)決策聯(lián)合超有效解的廣義梯度型最優(yōu)性條件 [J].南昌大學(xué)學(xué)報(bào): 工科版,2013,35(2): 176-179.(XU Yihong,XIAO Mingli,TU Xiangqiu.Optimality Conditions for Joint Superly Efficient Solutions of Group Multiobjective Decision Making in the Sense of Generalized Gradient [J].Journal of Nanchang University: Engineering & Technology,2013,35(2): 176-179.)
[4]傅萬(wàn)濤,陳曉清.逼近錐族和嚴(yán)有效點(diǎn) [J].數(shù)學(xué)學(xué)報(bào),1997,40(6): 933-938.(FU Wantao,CHEN Xiaoqing.On Approximation Families of Cones and Strictly Efficient Points [J].Acta Mathematica Sinica,1997,40(6): 933-938.)
[5]FU Wantao,CHENG Yonghong.On the Strict Efficiency in a Locally Convex Space [J].Systems Science and Mathematical Sciences,1999,12(1): 40-44.
[6]傅萬(wàn)濤.賦范線性空間集合的嚴(yán)有效點(diǎn) [J].系統(tǒng)科學(xué)與數(shù)學(xué),1997,17(4): 324-329.(FU Wantao.On Strictly Efficient Points of a Set in a Normed Linear Space [J].J Sys Sci & Math Scis,1997,17(4): 324-329.)
[7]余國(guó)林,劉三陽(yáng).集值優(yōu)化的嚴(yán)有效性和標(biāo)量集值Lagrange映射 [J].吉林大學(xué)學(xué)報(bào): 理學(xué)版,2006,44(6): 888-892.(YU Guolin,LIU Sanyang.Strict Efficiency of Set-Valued Optimization and Scalar Set-Valued Lagrange Mapping [J].Journal of Jilin University: Science Edition,2006,44(6): 888-892.)
[8]徐義紅,劉三陽(yáng).近似錐-次類(lèi)凸集值優(yōu)化的嚴(yán)有效性 [J].系統(tǒng)科學(xué)與數(shù)學(xué),2004,24(3): 311-317.(XU Yihong,LIU Sanyang.On Strict Efficiency in Set-Valued Optimization with Nearly Cone-Subconvexlikeness [J].J Sys Sci & Math Scis,2004,24(3): 311-317.)
[9]LI Shengjie,Teo K L,Yang X Q.Higher-Order Optimality Conditions for Set-Valued Optimization [J].Journal of Optimization Theory and Applications,2008,137(3): 533-553.
[10]Khan A A,Tammer C.Second-Order Optimality Conditions in Set-Valued Optimization via Asymptotic Derivatives [J].Optimization,2013,62(6): 743-758.
[11]徐義紅,謝燕霞,汪濤.(h,φ)-伴隨切錐及其性質(zhì) [J].南昌大學(xué)學(xué)報(bào): 工科版,2011,33(1): 90-92.(XU Yihong,XIE Yanxia,WANG Tao.(h,φ)-Contingent Cone and Its Properties [J].Journal of Nanchang University: Engineering & Technology,2011,33(1): 90-92.)
[12]徐義紅,宋效帥.弧連通錐凸向量?jī)?yōu)化問(wèn)題強(qiáng)有效解的最優(yōu)性條件 [J].南昌大學(xué)學(xué)報(bào): 工科版,2010,32(1): 28-31.(XU Yihong,SONG Xiaoshuai.Optimality Conditions of Strongly Efficient Solutions for Vector-Valued Optimization Problem of Arcwise Connected Cone-Convexity [J].Journal of Nanchang University: Engineering & Technology,2010,32(1): 28-31.)
[13]Aubin Jean-Pierre,Frankowska Hélène.Set-Valued Analysis [M].Boston: Birkh?user,1990.
[14]Rockafellar R T,Roger J B Wets.Variational Analysis [M].Berlin: Springer,1997.
(責(zé)任編輯: 趙立芹)
Second-OrderAsymptoticEpiderivativeandApplication
ZHANG Aihong,XU Yihong,TU Xiangqiu
(DepartmentofMathematics,NanchangUniversity,Nanchang330031,China)
The strict efficiency of set-valued optimization was considered in real normed linear space by a new second-order asymptotic epiderivative.With the help of second-order asymptotic tangent cone,a new second-order asymptotic epiderivative was introduced.At the same time,an example was given to show that its existence condition is weaker than that of second-order asymptotic tangent derivative.By applying the derivative and properties of a dilating cone,an optimality necessary condition of locally strictly efficient element for set-valued optimization was established.
second-order asymptotic tangent cone; second-order asymptotic epiderivative; locally strictly efficient element
2013-12-20.
張愛(ài)紅(1988—),女,漢族,碩士研究生,從事多目標(biāo)規(guī)劃的研究,E-mail: 498863904@qq.com.通信作者: 徐義紅(1969—),男,漢族,博士,教授,從事多目標(biāo)規(guī)劃的研究,E-mail: xuyihong@ncu.edu.cn.
國(guó)家自然科學(xué)基金(批準(zhǔn)號(hào): 61175127)、 江西省自然科學(xué)基金(批準(zhǔn)號(hào): 20122BAB201003)和江西省教育廳科技項(xiàng)目(批準(zhǔn)號(hào): GJJ12010).
O221.6
A
1671-5489(2014)05-0943-06