薛冬梅,姜舶洋,王秀玉
(1.吉林化工學院 理學院,吉林 吉林 132022; 2.北京工業(yè)大學 電子信息與控制工程學院,北京 100022;3.長春工業(yè)大學 基礎科學學院,長春 130012)
P混合線性互補問題的同倫方法
薛冬梅1,姜舶洋2,王秀玉3
(1.吉林化工學院 理學院,吉林 吉林 132022; 2.北京工業(yè)大學 電子信息與控制工程學院,北京 100022;
3.長春工業(yè)大學 基礎科學學院,長春 130012)
對P混合線性互補問題建立一個同倫方程,證明了同倫路徑的存在性、 有界性和收斂性,得到了P混合線性互補問題的可解性,從而建立了P混合線性互補問題的內(nèi)點算法.
混合線性互補問題; 同倫方法;P矩陣
定義1[8]若對任意的非零向量x∈n,有則矩陣M稱為P矩陣.
引理1[8]若矩陣M為P矩陣,則矩陣M的所有主子式均大于零.
證明: 用H′(ω,ω(0),μ)表示H的Jacobian矩陣,則有
證明: 若{(x(k),y(k),z(k))}?Γω(0),由同倫方程(1)的第二個式子易知對i=1,2,…,n,有
由式(2),z(0)>0,y(0)>0及μ∈(0,1],對i=1,2,…,n,得
下面分兩種情形進行討論.
式(5)兩邊取極限得
又由式(2)得
情形2)μ*=1.也分兩種情形討論:
式(8)兩邊取極限得
由式(2)得
又由式(2)得
1)μ*∈[0,1],(x(*),y(*),z(*))無界;
證明: 反證法.假設混合線性互補問題至少存在兩組解,記為
(x(1),y(1))≠(x(2),y(2)).
(15)
由式(13),(14)得
(16)
改寫式(16)為
再由式(13),(14)得
[1]Schutter B,de,Moor B,de.The Extended Linear Complementarity Problem [J].Mathematical Programming,1995,71(3): 289-325.
[2]YU Qian,HUANG Chongchao,WANG Xianjia.A Combined Homotopy Interior Point Method for the Linear Complementarity Problem [J].Applied Mathematics and Computation,2006,179(2): 696-701.
[3]DING Jundi,YIN Hongyou.A New Homotopy Method for Nonlinear Complementarity Problems [J].Numerical Mathematics A Journal of Chinese Universities: English Series,2007,16(2): 155-163.
[4]XU Qing,DANG Chuangyin.A New Homotopy Method for Solving Non-linear Complementarity Problems [J].Optimization,2008,57(5): 681-689.
[5]ZHOU Zhengyong,YU Bo.A Smoothing Homotopy Method Based on Robinson’s Normal Equation for Mixed Complementarity Problems [J].Journal of Industrial and Management Optimization,2011,7(4): 977-989.
[6]徐俊彥,苗壯,劉慶懷.解廣義水平線性互補問題的組合同倫方法 [J].吉林大學學報: 理學版,2012,50(4): 647-653.(XU Junyan,MIAO Zhuang,LIU Qinghuai.Combined Homotopy Method for Solving Extended Horizontal Linear Complementarity Problem [J].Journal of Jilin University: Science Edition,2012,50(4): 647-653.)
[7]姜興武,王秀玉.P0線性互補問題的新同倫方法 [J].吉林大學學報: 理學版,2013,51(5): 807-810.(JIANG Xingwu,WANG Xiuyu.New Homotopy Method for theP0Linear Complementarity Problem [J].Journal of Jilin University: Science Edition,2013,51(5): 807-810.)
[8]韓繼業(yè),修乃華,戚厚鐸.非線性互補理論與算法 [M].上海: 上??茖W技術(shù)出版社,2006.(HAN Jiye,XIU Naihua,QI Houduo.The Theory and Algorithm of Nonlinear Complementarity Problem [M].Shanghai: Shanghai Scientific and Technical Publishers,2006.)
(責任編輯: 趙立芹)
HomotopyMethodforP-MixedLinearComplementarityProblem
XUE Dongmei1,JIANG Boyang2,WANG Xiuyu3
(1.CollegeofSciences,JilinInstituteofChemicalTechnology,Jilin132022,JilinProvince,China;
2.CollegeofElectronicInformationandControlEngineering,BeijingUniversityofTechnology,Beijing100022,China; 3.SchoolofBasicScience,ChangchunUniversityofTechnology,Changchun130012,China)
A homotopy equation was constructed for theP-mixed linear complementarity problem,the existence,boundedness and convergence of the homotopy path were proved,the solvability ofP-mixed linear complementarity problem was obtained.Thus an interior-point method ofP-mixed linear complementarity problem has been established.
mixed linear complementarity problem; homotopy method;P-matrix
2013-10-21.
薛冬梅(1980—),女,漢族,碩士,講師,從事應用數(shù)學的研究,E-mail: boots119@163.com.
國家自然科學基金(批準號: 10771020)和吉林省自然科學基金(批準號: 201215128; 20101597).
O221.2
A
1671-5489(2014)05-0933-04