黃開銀, 田 華, 楊雙羚
(1.吉林大學(xué) 數(shù)學(xué)學(xué)院, 長春 130012; 2.東北師范大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院, 長春 130024)
研究快報(bào)
KdV-Burgers方程的重正化群方法
黃開銀1, 田 華1, 楊雙羚2
(1.吉林大學(xué) 數(shù)學(xué)學(xué)院, 長春 130012; 2.東北師范大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院, 長春 130024)
利用重正化群方法研究一類KdV-Burgers方程的奇異攝動(dòng)問題, 得到了該方程的一致有效漸近展開式.
重正化群方法; 奇異攝動(dòng); KdV-Burgers方程
考慮如下KdV-Burgers方程:
它是一類較普遍的具有物理特性的非線性演化方程, 應(yīng)用廣泛, 目前已取得了許多研究結(jié)果, 如Cavalcanti等[1]研究了帶有不定阻尼項(xiàng)KdV-Burgers方程Cauchy問題的指數(shù)穩(wěn)定性; Yang等[2]研究了耦合KdV-Burgers方程的精確解; Molabahrami等[3]求得了一類KdV-Burgers方程的數(shù)值解; Jun等[4]運(yùn)用改進(jìn)三角函數(shù)法求得了組合KdV-Burgers方程的顯式精確解.本文主要利用重正化群方法[5-11]研究KdV-Burgers方程的奇異攝動(dòng)問題.
(2)
為討論方便, 本文考慮方程(2)在2π周期邊值條件下的解, 對于更一般周期條件的討論完全一致.
令Ω=(0,2π), 并記
H(Ω)={u(x)|u(x)∈C3(),u(x+2π)=u(x),x∈},
是方程(2)滿足初邊值條件
證明: 為方便, 記算子L=-?xx+?xxx,F(u)=uux, 則初邊值問題(2)-(4)可改寫為
假設(shè)初邊值問題(5)的解u(x,t)有如下漸近展開式:
將式(6)代入式(5), 并對比等式兩端ε的同次冪系數(shù)得
將式(9)代入式(8)得
(12)
式(12)稱為重正化群方程, 解得
Uk(t)=φkeiεkφ0t.
(13)
因此, 問題(2)-(4)的一致有效漸近展開式為
其中Uk(t)由式(13)給出.證畢.
[1]Cavalcanti M M, Domingos Cavalcanti V N, Komornik V, et al.Global Well-Posedness and Exponential Decay Rates for a KdV-Burgers Equation with Indefinite Damping [J].Ann Inst H Poincaré Anal Non Linéaire, 2014, 31(5): 1079-1100.
[2]YANG Shaojie, HUA Cuncai.Lie Symmetry Reductions and Exact Solutions of a Coupled KdV-Burgers Equation [J].Appl Math Comput, 2014, 234: 579-583.
[3]Molabahrami A, Khani F, Hamedi-Nezhad S.Soliton Solutions of the Two-Dimensional KdV-Burgers Equation by Homotopy Perturbation Method [J].Physics Letters A, 2007, 370(5/6): 433-436.
[4]JUN Yu, KE Yunquan, ZHANG Weijun.New Traveling Wave Solutions to Compound KdV-Burgers Equation [J].Communi Theor Phys, 2004, 41(4): 493-496.
[5]Kunihiro T.The Renormalization-Group Method Applied to Asymptotic Analysis of Vertor Fields [J].Progr Theor Phys, 1997, 97(2): 179-200.
[6]Chiba H.Simplified Renormalization Group Method for Ordinary Differential Equations [J].J Differ Equ, 2009, 246(5): 1991-2019.
[7]Ziane M.On a Certain Renormalization Group Method [J].J Math Phys, 2000, 41(5): 3290-3299.
[8]吳克義, 付苗苗, 呂顯瑞.重正化群方法在一類奇異攝動(dòng)邊值問題中的應(yīng)用 [J].吉林大學(xué)學(xué)報(bào): 理學(xué)版, 2005, 43(5): 599-602.(WU Keyi, FU Miaomiao, Lü Xianrui.Renormalization Group Method Applied in a Class of Singular Perturbation Boundary Value Problems [J].Journal of Jilin University: Science Edition, 2005, 43(5): 599-602.)
[9]Moise I, Ziane M.Renormalization Group Method.Application to Partial Differential Equations [J].J Dynam Differ Equ, 2001, 13(2): 275-321.
[10]CHEN Linyuan, Goldenfeld N, Oono Y.Renormalization Group and Singular Perturbations: Multiple Scales, Boundary Layers, and Reductive Perturbation Theory [J].Phys Rev E, 1996, 54(1): 376-394.
[11]Kunihiro T.A Geometrical Formulation of the Renormalization Group Method for Global Analysis [J].Progr Theor Phys, 1995, 94(4): 503-514.
RenormalizationGroupMethodfortheKdV-BurgersEquation
HUANG Kaiyin1, TIAN Hua1, YANG Shuangling2
(1.CollegeofMathematics,JilinUniversity,Changchun130012,China;
2.SchoolofMathematicsandStatistics,NortheastNormalUniversity,Changchun130024,China)
The singular perturbation initial-boundary value problem of the KdV-Burgers equation was discussed.Using the renormalization group (RG) method, we gave the uniformly valid asymptotic expansion for the problem.
renormalization group method; singular perturbation; KdV-Burgers equation
2014-09-22.
黃開銀(1990—), 男, 漢族, 碩士研究生, 從事常微分方程理論及應(yīng)用的研究, E-mail: huangky1010@163.com.通信作者: 田 華(1968—), 女, 漢族, 高級工程師, 從事常微分方程理論及應(yīng)用的研究, E-mail: thua@jlu.edu.cn.
國家自然科學(xué)基金青年基金(批準(zhǔn)號: 11301210).
O175.12
A
1671-5489(2014)06-1207-03
10.13413/j.cnki.jdxblxb.2014.06.19
趙立芹)