• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An automatic identification algorithm for freeway bottleneckbased on loop detector data

    2014-09-06 10:49:51WangChaonanLiWenquanTongXiaolongChenChen
    關(guān)鍵詞:占有率自動(dòng)識別瓶頸

    Wang Chaonan Li Wenquan Tong Xiaolong Chen Chen

    (School of Transportation, Southeast University, Nanjing 210096, China)

    ?

    An automatic identification algorithm for freeway bottleneckbased on loop detector data

    Wang Chaonan Li Wenquan Tong Xiaolong Chen Chen

    (School of Transportation, Southeast University, Nanjing 210096, China)

    A bottleneck automatic identification algorithm based on loop detector data is proposed. The proposed algorithm selects the critical flow rate as the trigger variable of the algorithm, which is calculated by the road conditions, the level of service and the proportion of trucks. The process of identification includes two parts. One is to identify the upstream of the bottleneck by comparing the distance between the current occupancy rate and the mean value of the occupancy rate and the variance of the occupancy rate. The other process is to identify the downstream of the bottleneck by calculating the difference of the upstream occupancy rate with that of the downstream. In addition, the algorithm evaluation standards, which are based on the time interval of the data, the detection rate and the false alarm rate, are discussed. The proposed algorithm is applied to detect the bottleneck locations in the Shanghai Inner Ring Viaduct Dabaishu-Guangzhong road section. The proposed method has a good performance in improving the accuracy and efficiency of bottleneck identification.

    bottleneck; loop detector data; occupancy rate; flow rate

    Typical bottleneck analysis methods involve congestion graphics, vehicle arrival curves and the traffic flow theory. The methods above are based on the loop detector data. They assume that traffic patterns can be determined by the functional relationship of traffic flow and occupancy. The data analysis methods include decision trees, statistical analysis and filtering. With the development of data collection and information processing technology, the fuzzy theory, expert evaluation, pattern recognition, and artificial intelligence techniques have become important methods in congestion automatic identification algorithms. ACI algorithms can be divided into discrete and continuous types[1-2]. The discrete method is based on the traffic parameter threshold. It is assumed that congestion occurs when a certain traffic parameter is greater than the threshold value. In 1997, with the vehicle arrival curves, Cassidy et al.[3]discussed the length of queues and waiting time in congestion. Based on the research findings of congestion, Bertini et al.[4]proposed an automatic bottleneck recognition algorithm in 2005, identifying and classifying bottlenecks with historical data, and taking speed as the indicator of a bottleneck. However, these algorithms have not analyzed the statistical features of a bottleneck in detail, which decrease the precision of identification algorithms. Besides, most congestion identification algorithms were about congestion points. The research target of bottleneck identification is to discover the congestion influence scope, including the upstream and downstream of bottleneck locations. Therefore, a traffic flow analysis with more integrity is necessary.

    In this research, based on loop detector data, the critical flow rate is calculated as the trigger variable, which is calculated by the road conditions, the level of service and the proportion of trucks. Occupancy is calculated as the identification parameters. In addition, algorithm evaluation standards are discussed.

    1 Description of the Algorithm

    In this algorithm, the critical flow rate is defined as the trigger variable, and it is calculated based on the road conditions, the level of service and the proportion of trucks. When the flow rate is greater than the critical value, the identification process can start[5-6].

    1.1 Trigger variable of the algorithm

    According to the traffic flow theory, when traffic demand exceeds road capacity, resulting in congestion, the flow rate decreases and congestion forms. Therefore, the flow rate can be used as the trigger variable of the algorithm. The critical flow rate is determined by the designed capacity and the level of service. User perceptions are variable at different time and in different environments. AASHTO design standards suggest that a good target level of service in an urban area is D, but in a rural area a good target level of service is C. Generally, when the level of service is C, average speeds begin to decline with increasing flow[7]. We define the situation, in which the level of service is C, as the trigger point. However, it is difficult for the bottleneck automatic identification system to calculate theV/Cratio. The trigger value should be obtained immediately. Therefore, the accumulative flow rate in 5 min as the trigger variable is chosen. Tab.1 lists the criticalV/Cratio based on the level of service and the design speed. The capacity should be multiplied by theV/Cratio when the level of service is C to obtain the trigger value.

    Tab.1 Critical V/Cratio based on LOS and FFS

    The influence of large vehicle on traffic flow is not considered when calculating the free flow speed. Therefore, the trigger value obtained from Tab.1 should be multiplied byfHV.

    1.2 Identification process

    There are two elementary values which need to be defined in the bottleneck automatic identification algorithm. One is the minimum value of the difference between the upstream and downstream occupancy rates. The other one is the minimum value of the upstream occupancy rate. To define the difference between the upstream and downstream occupancy, it must be ensured that the upstream is in a state of congestion, and the downstream is free flow[8-10].

    Before defining the critical value, we should analyze the historical data to obtain the difference between the upstream and downstream occupancy rates. Experiments show that there are some overlaps in the difference between them. As this algorithm also requires the upper occupancy rate greater than a certain critical value, it should be ensured that the critical value of the difference between the upstream and downstream occupancy rates is smaller than the occupancy rate when a bottleneck occurs.

    積累數(shù)學(xué)基本活動(dòng)經(jīng)驗(yàn)是一個(gè)長期的過程,需要我們在平時(shí)的教學(xué)中不斷為學(xué)生提供活動(dòng)的機(jī)會(huì),精心設(shè)計(jì)組織好每一個(gè)數(shù)學(xué)活動(dòng),使數(shù)學(xué)學(xué)習(xí)成為一個(gè)生動(dòng)活潑、富有創(chuàng)造意義的過程,促進(jìn)學(xué)生思維的發(fā)展。

    As the maximum upstream occupancy rate is affected by the road conditions, we use the distance between the current occupancy rate and the mean value of the occupancy rate fromts-1tots-6instead of the maximum upstream occupancy rate. The distance between the current occupancy rate and the mean value of the occupancy rate is equal to the current occupancy rate subtracting the mean value of occupancy rates fromts-1tots-6.

    Doi=O(i,ts)-E(Ots-1,…,Ots-6)

    (1)

    whereDoiis the distance between the current occupancy rate and the mean value of the occupancy rate fromts-1tots-6;O(i,ts) is the occupancy rate atts;E(Ots-1,…,Ots-6) is the mean value of the occupancy rate fromts-1tots-6.

    IfDoiis greater than the variance of the occupancy rate fromts-1tots-6, we assume that unitiis the upstream of the bottleneck.

    Doi=S(Ots-1,…,Ots-6)+α

    (2)

    whereS(Ots-1,…,Ots-6) is the variance of the occupancy rate fromts-1tots-6;αis the adjustment parameter.

    Based on the definition of a bottleneck, the downstream of the bottleneck is free flow, which means that there is a value difference between the upstream and downstream occupancy. Experiments show that regional differences have an impact on the critical value of the difference between the upstream and downstream occupancy. Data analysis is a common method to determine the critical value of difference, but the analysis process is very complicated. In order to make the parameter in this algorithm universal, we use an adjustment parameter. To speed up the process of bottleneck identification, we also use the mean value of occupancy rate fromts-1tots-6.

    The difference between the upstream and downstream occupancy rates equals the current occupancy rate at pointI, which subtracts the downstream occupancy rate. It should be noted that the value ofnin the following formula requires several further tests.

    P(ts)=O(i,ts)-O(i+n,ts)

    (3)

    whereP(ts) is the difference between the upstream occupancy rate and that of the downstream;O(i,ts) is the downstream occupancy rate at pointi;O(i+n,ts) is the occupancy rate,n=1, 2,…

    The critical value of difference after adjustment equals the difference between the upstream occupancy and the downstream occupancy, divided by the mean value of the occupancy rate fromts-1tots-6.

    Pr(ts)=P(ts)/E(ots-1,…,ots-6)

    (4)

    wherePr(ts) is the critical value of difference after adjustment;E(ots-1,…,ots-6) represents the mean value of the occupancy rate fromts-1tots-6.

    The parameteriin Eq.(3) is defined as the section of pavement units when identifying the location of the bottleneck. The value ofiequals the longitudinal space of loop detectors, which is 20 or 50 m on the expressway.

    The parametertis defined as the data aggregation level. The original loop detector data is collected every 20 s, which is highly volatile. Different data aggregation levels can affect the promptness and accuracy of the algorithm. So the original loop detector data should be facilitated aggregation before being used in the algorithm. Details will be discussed in the following section.

    Fig.1 shows the process of bottleneck automatic identification.

    Fig.1 The process of bottleneck automatic identification

    As shown in Fig.1, the first step of the bottleneck identification algorithm is to divide the road section into several units and to determine data aggregation level. Then, the critical rate of flow is calculated. After preprocessing,f(i,t) is compared with the critical rate. Iff(i,t) is greater, the process of bottleneck identification can start. The process of identification includes two parts. One is to identify the upstream of the bottleneck by comparing the distance between the current occupancy rate and the mean value of occupancy rateDoiwith the variance of the occupancy rate. IfDoiis greater than the variance of the occupancy rate fromts-1tots-6, assume that unitiis the upstream of bottleneck. The other is to identify the downstream of bottleneck by calculatingPr(ts). IfPr(ts) is greater than 0.2, assume that uniti+nis the downstream of bottleneck.

    1.3 Evaluation model

    The accuracy of this automatic recognition algorithm of the bottleneck should be determined by three aspects. The first aspect is the percentage of the bottleneck points that can be recognized at all the bottleneck points; the second is the percentage of “fake bottleneck points” in the bottleneck points that are recognized; and the third is the time interval of the date which can also influence the sensitivity of the algorithm. In practice, regional differences make it difficult to balance the failure of recognizing the real bottleneck points and the mistaken recognition of “fake bottleneck points”. So the optimal choice of parameters depends on the user’s choice of a composite score function that takes the relative costs of missed bottlenecks and false alarms into account.

    The percentage of the bottleneck points recognized equals the number of the bottleneck points which have been recognized divided by the number of the total bottleneck points. While the percentage of “fake bottleneck points” equals the number of the fake bottleneck points which have been recognized, divided by the number of the total bottleneck points which have also been recognized.

    (5)

    whereTis the percentage of the bottleneck points recognized;tbis the number of the bottleneck points which have been recognized;nbrepresents the number of the whole bottleneck points.

    (6)

    whereFmeans the percentage of “fake bottleneck points”;fbis the number of the fake bottleneck points which have been mistaken;ibis the number of the total bottleneck points which have been recognized.

    The accuracy of this automatic recognition algorithm of bottleneck can be calculated as

    S=β(αTT-αFF)

    (7)

    whereSis the accuracy of this automatic recognition algorithm of the bottleneck;βis the correction coefficient determined by the time interval;αTis the penalty weight of the success rate;αFis the penalty weight of the false-alarm rate.

    2 Actual Analysis

    One-week (from Sept 21 to Sept 27, 2012) loop detector data on the Shanghai Inner Ring Viaduct (5:00—11:00, 14:00—20:00) were obtained from the Shanghai Transportation Operation Department. The research scope starts from Dabaishu and runs to Guangzhong Road.

    The first step of the bottleneck identification algorithm is to divide the road sections into several units and determine the data aggregation level. In this research, the number of road units is determined by the spacing of loop detectors. If the loop detector data is aggregated into 1-min data, the algorithm should be restricted by some additional conditions. For example, a sustained bottleneck filter is added to smooth the results of the algorithm. This filter discards false positives that are isolated in the time dimension from other detections at the same location.

    It can be seen from Fig.1 that when loop detector data is aggregated into 3-min data sets, the upstream occupancy remains greater than the downstream occupancy but the difference in values fluctuates greatly. To obtain higher recognition rate, the difference between the upstream and downstream occupancy should be set to be small, which will increase the possibility of false alarm bottlenecks. Then we facilitate further aggregation into 5-min and 10-min data sets. As Figs.2(b) and (c) show, the occupancy rates in bottlenecks (Oi) remain stable.

    (a)

    (b)

    (c)

    Based on the above analysis, we conclude that the smaller time interval leads to higher sensitivity. Experiments show that 5-min aggregation data fits the algorithm best.

    In Tab.1, criticalV/Cratio is 0.83 when the level of service is C and the design speed is 80 km/h. Then,fHVis 0.9. The design capacity of the Shanghai Inner Ring Viaduct is 1 800 (pcu·h-1)/lane. Thus, the final critical flow rate in 5 min is 108 pcu.

    Then we input the 5-min data sets to Matlab. When the flow rate is greater than 108 pcu, the algorithm starts. IfDoiis greater than the variance of the occupancy rate fromts-1tots-6, assume that unitiis the upstream of the bottleneck. IfPr(ts) is greater than 0.2, assume that uniti+nis the downstream of the bottleneck.

    The session is identified by Matlab in a space-time distribution airstrip, as shown in Fig.3.

    Fig.3 Bottleneck identified with the algorithm

    Fig.3 presents the bottleneck locations identified which are marked with the triangles. In this analysis, three severe bottleneck locations were found.

    The point where No.56 loop detector is located becomes congested at 6:55, giving rise to congestion and vehicle delays between the No.55 loop detector and No.56 loop detector. The occupancy rate starts to decrease at 9:20, which means that the congestion has started to be relieved. The road section between the No.56 loop detector and No.58 loop detector is free flow between 6:00 and 6:35. Then the occupancy rate begins to increase and the point where the No.58 loop detector is located becomes congested at 7:10. The occupancy rate begins to decrease at 8:40. Finally, the road section has free flow at 9:45.

    3 Evaluation

    In section 2, we analyze the distribution of the bottleneck in time and space through identifying bottleneck locations and their activation and deactivation periods. On the other hand, we are informed of the real distribution of bottlenecks through video data. Based on this, the accuracy of the proposed algorithm is confirmed. The evaluation consists of a series of indices, including the detection rateTand the false alarm rateF.

    It can be seen from Tab.2 that the proposed algorithm has a reasonable detection performance compared to other methods. Otherwise, the percentage of fake bottleneck points is 0.1. The critical flow rate and the occupancy threshold value are decreased to increaseT. The parameter values can be optimized to decreaseFin application.

    Tab.2 Evaluation results of the proposed algorithm

    The proposed algorithm also outperforms previous cumulative curve methods in terms of precision and identification efficiency. In the cumulative curve method, each identification process is subject to interference by earlier data. In the proposed algorithm, the identifying process is only determined by the current data.

    4 Conclusion

    1) The statistical analysis of loop detector data shows that the flow rate and occupancy are more reliable parameters than speed for bottleneck identification, excluding affection by speed limits.

    2) Loop detector data should be aggregated before the identification process. Experiments show that a 5-min aggregation data fits the algorithm best.

    3) A bottleneck identification algorithm based on the flow rate and occupancy is proposed. The proposed algorithm includes the trigger variable, the identification process and the evaluation model. The algorithm reduces the influence of road conditions and data error by parameter optimization. The results show that the proposed algorithm has a good performance in improving the accuracy of bottleneck identification.

    4) Although the results are encouraging, a number of extensions to the algorithm need to be studied. Further research should be carried out to validate this algorithm on other types of roads. Note also that the original loop detectors data should be aggregated before analysis and that we need toseek a better method of data aggregation to increase the speed of the algorithm.

    [1]Chung K, Rudjanakanoknad J, Cassidy M J. Relation between traffic density and capacity drop at three freeway bottlenecks[J].TransportationResearchPartB:Methodological, 2007, 41(1): 82-95.

    [2]Banks J H. Review of empirical research on congested freeway flow[J].TransportationResearchRecord, 2002, 1802: 225-232.

    [3]Cassidy M J, Windover J R. Methodology for assessing dynamics of freeway traffic flow[J].TransportationResearchRecord, 1995(1484): 73-79.

    [4]Bertini R L, Myton A. Using PeMS data to empirically diagnose freeway bottleneck locations in Orange County, California[J].TransportationResearchRecord, 1925, 2005: 48-57.

    [5]Shoraka M, Puan O C. Review of evaluating existing capacity of weaving segments[J].InternationalJournalofCivilandStructuralEngineering, 2010, 1(3): 683-694.

    [6]Coifman B, Mishalani R, Wang C, et al. Impact of lane-change maneuvers on congested freeway segment delays: pilot study [J].TransportationResearchRecord, 2006, 1965: 152-159.

    [7]Cassidy M J, Mauch M. An observed traffic pattern in long freeway queues[J].TransportationResearchPartA:PolicyandPractice, 2001, 35(2): 143-156.

    [8]Kumar R, Wolenetz M, Agarwalla B, et al. DFuse:a framework for distributed data fusion[C]//Proceedingsofthe1stInternationalConferenceonEmbeddedNetworkedSensorSystems. Los Angeles, CA, USA, 2003:114-125.

    [9]Newell G F. A simplified car-following theory: a lower order model[J].TransportationResearchPartB:Methodological, 2002, 36(3): 195-205.

    [10]Cassidy M J. Bivariate relations in nearly stationary highway traffic[J].TransportationResearchPartB:Methodological,1998, 32(1): 49-59.

    基于線圈數(shù)據(jù)的瓶頸點(diǎn)自動(dòng)識別算法

    王超楠 李文權(quán) 童小龍 陳 晨

    (東南大學(xué)交通學(xué)院, 南京 210096)

    提出了一種基于線圈數(shù)據(jù)的瓶頸點(diǎn)自動(dòng)識別算法.算法以臨界流量作為算法的觸發(fā)變量,根據(jù)道路條件、服務(wù)水平和大型車比例計(jì)算臨界流量.算法的識別程序包括2部分:首先通過計(jì)算當(dāng)前占有率與前時(shí)刻占有率的相對差值來判定瓶頸點(diǎn)上游位置;然后通過計(jì)算上游占有率與下游占有率的相對差值確定瓶頸點(diǎn)下游的位置.此外,提出了基于數(shù)據(jù)集計(jì)周期、瓶頸點(diǎn)識別率和誤判率的算法性能評價(jià)方法.利用上海市內(nèi)環(huán)高架大柏樹-廣中路段的線圈數(shù)據(jù)進(jìn)行試驗(yàn),結(jié)果表明,瓶頸點(diǎn)自動(dòng)識別算法在準(zhǔn)確率和效率上有顯著提高.

    瓶頸點(diǎn);線圈數(shù)據(jù);占有率;流量

    U491.2

    Received 2014-02-22.

    Biographies:Wang Chaonan (1990—), female, graduate; Li Wenquan(corresponding author), male, doctor, professor, wenqli@seu.edu.cn.

    :Wang Chaonan, Li Wenquan, Tong Xiaolong, et al. An automatic identification algorithm for freeway bottleneck based on loop detector data[J].Journal of Southeast University (English Edition),2014,30(4):495-499.

    10.3969/j.issn.1003-7985.2014.04.016

    10.3969/j.issn.1003-7985.2014.04.016

    猜你喜歡
    占有率自動(dòng)識別瓶頸
    數(shù)據(jù)參考
    自動(dòng)識別系統(tǒng)
    特別健康(2018年3期)2018-07-04 00:40:18
    微軟領(lǐng)跑PC操作系統(tǒng)市場 Win10占有率突破25%
    突破霧霾治理的瓶頸
    金屬垃圾自動(dòng)識別回收箱
    基于IEC61850的配網(wǎng)終端自動(dòng)識別技術(shù)
    電測與儀表(2016年6期)2016-04-11 12:06:38
    突破瓶頸 實(shí)現(xiàn)多贏
    滁州市中小學(xué)田徑場地現(xiàn)狀調(diào)查與分析
    9月服裝銷售疲軟
    中國服飾(2014年11期)2015-04-17 06:48:50
    如何渡過初創(chuàng)瓶頸期
    欧美在线一区亚洲| 日本精品一区二区三区蜜桃| 日韩精品有码人妻一区| 国产91精品成人一区二区三区| 久久久久久久久久黄片| 91麻豆精品激情在线观看国产| 天堂√8在线中文| 成年女人永久免费观看视频| 国产伦精品一区二区三区视频9| 亚洲精品成人久久久久久| 婷婷精品国产亚洲av在线| 熟女电影av网| 日韩欧美 国产精品| 中文字幕av成人在线电影| 99国产极品粉嫩在线观看| 精品久久久久久久久亚洲 | 亚洲五月天丁香| av在线蜜桃| 亚洲专区中文字幕在线| 国产午夜精品久久久久久一区二区三区 | 欧美高清性xxxxhd video| av在线亚洲专区| 两性午夜刺激爽爽歪歪视频在线观看| av天堂中文字幕网| 日韩中字成人| 免费观看人在逋| 97超级碰碰碰精品色视频在线观看| 免费人成在线观看视频色| 熟女电影av网| 少妇的逼好多水| 给我免费播放毛片高清在线观看| 亚洲天堂国产精品一区在线| 午夜福利在线观看免费完整高清在 | 少妇熟女aⅴ在线视频| 亚洲精品一区av在线观看| 国产一区二区亚洲精品在线观看| 乱系列少妇在线播放| 精品一区二区三区av网在线观看| 日韩欧美 国产精品| 国产国拍精品亚洲av在线观看| 99久久精品国产国产毛片| 国产 一区 欧美 日韩| 国产毛片a区久久久久| 一级a爱片免费观看的视频| 最新中文字幕久久久久| 一个人观看的视频www高清免费观看| 91麻豆av在线| 亚洲精品一卡2卡三卡4卡5卡| 国产一区二区在线观看日韩| 久久午夜福利片| 免费黄网站久久成人精品| 欧美激情久久久久久爽电影| 成人国产麻豆网| 亚洲av熟女| 婷婷丁香在线五月| 亚洲av二区三区四区| 午夜a级毛片| 久久久久久久精品吃奶| 国内久久婷婷六月综合欲色啪| 成人国产综合亚洲| 色吧在线观看| 亚洲av免费高清在线观看| 午夜精品一区二区三区免费看| 成年女人看的毛片在线观看| 男女边吃奶边做爰视频| 少妇人妻精品综合一区二区 | 一级黄片播放器| 在线国产一区二区在线| 欧美日本亚洲视频在线播放| 日韩av在线大香蕉| 九九爱精品视频在线观看| h日本视频在线播放| 成人国产麻豆网| 欧美黑人巨大hd| 日韩欧美在线二视频| 亚洲av二区三区四区| 99热网站在线观看| 真人一进一出gif抽搐免费| 黄色欧美视频在线观看| av中文乱码字幕在线| 欧美性猛交╳xxx乱大交人| 国产视频内射| 成年版毛片免费区| 久久精品国产清高在天天线| 日本一二三区视频观看| 窝窝影院91人妻| 精品人妻偷拍中文字幕| 少妇裸体淫交视频免费看高清| 国产单亲对白刺激| 免费av不卡在线播放| 最新中文字幕久久久久| 国产欧美日韩一区二区精品| 在线国产一区二区在线| 久久精品久久久久久噜噜老黄 | 欧美一区二区精品小视频在线| 色哟哟·www| 中文字幕精品亚洲无线码一区| 大又大粗又爽又黄少妇毛片口| 久久久久国产精品人妻aⅴ院| 欧美绝顶高潮抽搐喷水| 别揉我奶头~嗯~啊~动态视频| 真人一进一出gif抽搐免费| 淫妇啪啪啪对白视频| 国产亚洲精品久久久久久毛片| 黄片wwwwww| 嫩草影院新地址| 能在线免费观看的黄片| 校园春色视频在线观看| av在线老鸭窝| 真实男女啪啪啪动态图| 欧美zozozo另类| 毛片女人毛片| 老司机福利观看| 成人综合一区亚洲| 99久久精品一区二区三区| 成人国产综合亚洲| av天堂在线播放| 免费不卡的大黄色大毛片视频在线观看 | 久久人妻av系列| 婷婷亚洲欧美| 久久人人精品亚洲av| 国产高清视频在线观看网站| 99国产精品一区二区蜜桃av| 99在线视频只有这里精品首页| 国产色婷婷99| 日本色播在线视频| 午夜福利视频1000在线观看| 在线观看舔阴道视频| 18禁黄网站禁片免费观看直播| 日本 欧美在线| 日韩欧美国产在线观看| 欧美日韩黄片免| 国产黄a三级三级三级人| 51国产日韩欧美| 91狼人影院| 午夜福利欧美成人| 久9热在线精品视频| 午夜免费男女啪啪视频观看 | 一夜夜www| 成熟少妇高潮喷水视频| 国产高潮美女av| 偷拍熟女少妇极品色| 亚洲av不卡在线观看| 中文亚洲av片在线观看爽| 天堂√8在线中文| 亚洲人成伊人成综合网2020| av天堂中文字幕网| 嫩草影院精品99| 女人被狂操c到高潮| 成年版毛片免费区| 亚洲av日韩精品久久久久久密| 久久草成人影院| 三级男女做爰猛烈吃奶摸视频| 五月玫瑰六月丁香| 亚洲欧美激情综合另类| 欧美激情久久久久久爽电影| 色哟哟·www| 又爽又黄无遮挡网站| 国产精品1区2区在线观看.| 亚洲自偷自拍三级| 国产单亲对白刺激| 12—13女人毛片做爰片一| 欧美一区二区亚洲| 别揉我奶头 嗯啊视频| 欧美日韩黄片免| 俄罗斯特黄特色一大片| 男女那种视频在线观看| 日韩欧美精品v在线| 成人无遮挡网站| 又黄又爽又刺激的免费视频.| 不卡视频在线观看欧美| 夜夜夜夜夜久久久久| 国产av麻豆久久久久久久| 日本-黄色视频高清免费观看| 久久婷婷人人爽人人干人人爱| 男人和女人高潮做爰伦理| 人人妻人人看人人澡| 婷婷色综合大香蕉| 真人一进一出gif抽搐免费| 亚洲无线观看免费| 亚州av有码| 午夜激情福利司机影院| 国产欧美日韩精品一区二区| 日韩精品中文字幕看吧| 老司机午夜福利在线观看视频| 一本精品99久久精品77| 免费av观看视频| 免费无遮挡裸体视频| 国产在视频线在精品| 天堂av国产一区二区熟女人妻| 看免费成人av毛片| 亚洲电影在线观看av| 婷婷色综合大香蕉| 男女之事视频高清在线观看| 韩国av在线不卡| 国产av麻豆久久久久久久| 国产精品一区二区性色av| 一进一出好大好爽视频| 精品久久久久久久末码| 成人亚洲精品av一区二区| 国内精品一区二区在线观看| 深夜a级毛片| 日韩欧美免费精品| 日本黄色片子视频| 亚洲国产精品合色在线| 国产精品一区二区三区四区久久| 男人狂女人下面高潮的视频| 亚洲第一区二区三区不卡| 欧美性感艳星| 国产欧美日韩精品一区二区| 亚洲av.av天堂| 精品无人区乱码1区二区| 在线a可以看的网站| 狂野欧美激情性xxxx在线观看| 免费黄网站久久成人精品| ponron亚洲| 99久久无色码亚洲精品果冻| 成人永久免费在线观看视频| 91麻豆精品激情在线观看国产| 97超级碰碰碰精品色视频在线观看| 国产视频一区二区在线看| 欧美一区二区亚洲| 真人做人爱边吃奶动态| 亚洲av.av天堂| 亚洲成a人片在线一区二区| 国产老妇女一区| 国产精品女同一区二区软件 | 热99在线观看视频| 久久99热6这里只有精品| 一区二区三区激情视频| 性插视频无遮挡在线免费观看| 99久久精品一区二区三区| 国产伦精品一区二区三区视频9| 美女 人体艺术 gogo| 少妇高潮的动态图| 免费看美女性在线毛片视频| 麻豆一二三区av精品| 国产精品av视频在线免费观看| 午夜激情欧美在线| 我的老师免费观看完整版| 91在线精品国自产拍蜜月| 日韩大尺度精品在线看网址| 丰满的人妻完整版| 久久精品国产99精品国产亚洲性色| 国产极品精品免费视频能看的| 91久久精品国产一区二区三区| 精品日产1卡2卡| 国产精品国产高清国产av| 亚洲成人精品中文字幕电影| 一个人观看的视频www高清免费观看| 亚洲avbb在线观看| 小说图片视频综合网站| 亚洲综合色惰| 亚洲成人久久爱视频| 免费观看精品视频网站| 精品人妻1区二区| 露出奶头的视频| 亚洲成人久久爱视频| 日日摸夜夜添夜夜添小说| 一进一出抽搐gif免费好疼| 亚洲av免费在线观看| 美女xxoo啪啪120秒动态图| 午夜福利在线观看吧| av女优亚洲男人天堂| 97超级碰碰碰精品色视频在线观看| 久久久国产成人精品二区| 国产精品久久电影中文字幕| 中文字幕人妻熟人妻熟丝袜美| 99热精品在线国产| 国产精品99久久久久久久久| av福利片在线观看| 嫩草影视91久久| 在线观看一区二区三区| 五月玫瑰六月丁香| 日韩欧美免费精品| 18禁裸乳无遮挡免费网站照片| 少妇人妻精品综合一区二区 | 国产主播在线观看一区二区| 狠狠狠狠99中文字幕| 神马国产精品三级电影在线观看| 欧美性猛交黑人性爽| 国产麻豆成人av免费视频| 亚洲精华国产精华液的使用体验 | 成人鲁丝片一二三区免费| 欧美精品啪啪一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 欧美在线一区亚洲| 男女做爰动态图高潮gif福利片| 一个人免费在线观看电影| 一级av片app| 欧美人与善性xxx| 黄片wwwwww| 男女视频在线观看网站免费| av黄色大香蕉| 国产午夜福利久久久久久| 欧美日韩中文字幕国产精品一区二区三区| 亚洲人与动物交配视频| 亚洲午夜理论影院| 美女大奶头视频| 一区二区三区免费毛片| 精品久久久久久久久久免费视频| 中亚洲国语对白在线视频| 亚洲精品乱码久久久v下载方式| av福利片在线观看| 天堂动漫精品| 国产69精品久久久久777片| 成人毛片a级毛片在线播放| 亚洲精品久久国产高清桃花| 白带黄色成豆腐渣| а√天堂www在线а√下载| 国产激情偷乱视频一区二区| 变态另类丝袜制服| 99久久成人亚洲精品观看| 精品久久久久久,| 国产成人av教育| 全区人妻精品视频| 高清毛片免费观看视频网站| 亚洲专区国产一区二区| 欧美在线一区亚洲| 日韩精品中文字幕看吧| 成人午夜高清在线视频| 老司机深夜福利视频在线观看| 有码 亚洲区| 国产成人a区在线观看| 久久这里只有精品中国| 内地一区二区视频在线| 少妇丰满av| 亚洲成a人片在线一区二区| 老熟妇仑乱视频hdxx| 午夜免费激情av| 婷婷精品国产亚洲av| 午夜亚洲福利在线播放| 成人永久免费在线观看视频| 国产精品女同一区二区软件 | 亚洲最大成人av| 国产精品电影一区二区三区| 免费高清视频大片| 免费在线观看日本一区| 波多野结衣高清作品| 国产aⅴ精品一区二区三区波| 亚洲精品成人久久久久久| 亚洲成a人片在线一区二区| 日韩人妻高清精品专区| 日韩亚洲欧美综合| 999久久久精品免费观看国产| 性插视频无遮挡在线免费观看| 日本熟妇午夜| 女人十人毛片免费观看3o分钟| 熟妇人妻久久中文字幕3abv| 国产伦人伦偷精品视频| 亚洲最大成人中文| 99国产精品一区二区蜜桃av| 一个人看视频在线观看www免费| 最近视频中文字幕2019在线8| 天堂av国产一区二区熟女人妻| 国产高清视频在线观看网站| 国产又黄又爽又无遮挡在线| 国产私拍福利视频在线观看| 老女人水多毛片| 国内揄拍国产精品人妻在线| 欧美国产日韩亚洲一区| 久久婷婷人人爽人人干人人爱| 女的被弄到高潮叫床怎么办 | 亚洲精品乱码久久久v下载方式| 18禁黄网站禁片免费观看直播| 日本黄色片子视频| 精品人妻1区二区| 亚洲成人久久爱视频| 1000部很黄的大片| 真人一进一出gif抽搐免费| 动漫黄色视频在线观看| 成年人黄色毛片网站| 亚洲成人免费电影在线观看| 亚洲四区av| 久久精品国产亚洲av涩爱 | 国产一区二区三区av在线 | 乱系列少妇在线播放| 一区二区三区高清视频在线| 三级毛片av免费| 亚洲专区中文字幕在线| 免费在线观看成人毛片| 国产三级在线视频| 91精品国产九色| 精品久久久久久,| 久久久国产成人精品二区| 国产精品福利在线免费观看| 久久久久性生活片| 午夜福利18| 成年女人毛片免费观看观看9| 91av网一区二区| 特大巨黑吊av在线直播| 99久久精品热视频| 九色国产91popny在线| 精品乱码久久久久久99久播| 欧美最黄视频在线播放免费| 国产精品日韩av在线免费观看| 欧美最黄视频在线播放免费| 淫秽高清视频在线观看| 中文资源天堂在线| 狠狠狠狠99中文字幕| 国产毛片a区久久久久| 极品教师在线免费播放| 精品久久久噜噜| 久久精品久久久久久噜噜老黄 | 亚洲av电影不卡..在线观看| 我的老师免费观看完整版| 亚洲国产精品成人综合色| 欧美最黄视频在线播放免费| 婷婷色综合大香蕉| 一本一本综合久久| 日韩国内少妇激情av| 精品久久国产蜜桃| 精品久久久久久久久久久久久| 日本与韩国留学比较| 久9热在线精品视频| 日本-黄色视频高清免费观看| 日韩欧美免费精品| 免费人成在线观看视频色| 九九久久精品国产亚洲av麻豆| 国产视频内射| 免费在线观看影片大全网站| а√天堂www在线а√下载| 看片在线看免费视频| 国产精品久久久久久精品电影| 久久99热6这里只有精品| 国产高潮美女av| 99riav亚洲国产免费| 一区二区三区激情视频| 国产成人aa在线观看| 日韩精品青青久久久久久| 99热这里只有是精品在线观看| 午夜影院日韩av| 色av中文字幕| 99久久中文字幕三级久久日本| 国产色婷婷99| 舔av片在线| 国产精品乱码一区二三区的特点| 中亚洲国语对白在线视频| 日韩中文字幕欧美一区二区| 别揉我奶头~嗯~啊~动态视频| 欧美又色又爽又黄视频| 国产精品伦人一区二区| 精品人妻偷拍中文字幕| 好男人在线观看高清免费视频| 国产高清不卡午夜福利| 亚洲欧美日韩卡通动漫| 在线国产一区二区在线| 国产精品一区二区三区四区久久| 精品午夜福利视频在线观看一区| 亚洲 国产 在线| 亚洲最大成人手机在线| 精品福利观看| 超碰av人人做人人爽久久| 国产激情偷乱视频一区二区| 亚洲一级一片aⅴ在线观看| 精品午夜福利视频在线观看一区| 国产av在哪里看| 在线免费十八禁| 在线观看免费视频日本深夜| 国产精品女同一区二区软件 | 久久人人爽人人爽人人片va| 99久久成人亚洲精品观看| 综合色av麻豆| 国产一区二区亚洲精品在线观看| 欧美xxxx黑人xx丫x性爽| 91狼人影院| 成人特级av手机在线观看| 又爽又黄a免费视频| 男女下面进入的视频免费午夜| 最新在线观看一区二区三区| 精品人妻1区二区| 韩国av在线不卡| 亚洲专区中文字幕在线| 国产亚洲精品久久久com| 国产精品久久久久久久电影| 国产亚洲av嫩草精品影院| 亚洲电影在线观看av| 久久亚洲真实| 欧美激情国产日韩精品一区| 欧美性猛交黑人性爽| 亚洲午夜理论影院| 深爱激情五月婷婷| 中文字幕av在线有码专区| 九九热线精品视视频播放| 天堂av国产一区二区熟女人妻| 欧美精品国产亚洲| 欧美极品一区二区三区四区| 久久久久久九九精品二区国产| 久久国内精品自在自线图片| 在线观看免费视频日本深夜| 最近最新免费中文字幕在线| 看十八女毛片水多多多| 性色avwww在线观看| 国内精品美女久久久久久| 亚洲国产色片| 亚洲av二区三区四区| 岛国在线免费视频观看| 国产精品一区二区三区四区免费观看 | 99久久九九国产精品国产免费| 午夜亚洲福利在线播放| 91狼人影院| 乱人视频在线观看| 波多野结衣巨乳人妻| 亚洲熟妇中文字幕五十中出| 乱码一卡2卡4卡精品| 99久久精品热视频| 免费黄网站久久成人精品| 一a级毛片在线观看| 欧美日韩亚洲国产一区二区在线观看| 国产真实伦视频高清在线观看 | 国产av在哪里看| 国产亚洲欧美98| 国产午夜精品久久久久久一区二区三区 | 少妇丰满av| 亚洲久久久久久中文字幕| 婷婷色综合大香蕉| 人妻久久中文字幕网| 国产一区二区在线观看日韩| 精品午夜福利视频在线观看一区| 精品久久久久久久久亚洲 | 精品久久久久久久久亚洲 | 热99在线观看视频| 欧洲精品卡2卡3卡4卡5卡区| 99热只有精品国产| 国产精品亚洲美女久久久| 日韩欧美精品免费久久| av天堂在线播放| 久久精品国产亚洲av天美| 国产一区二区激情短视频| 婷婷亚洲欧美| 国产成人aa在线观看| avwww免费| 联通29元200g的流量卡| 一区二区三区四区激情视频 | 变态另类成人亚洲欧美熟女| 一级黄片播放器| 免费av毛片视频| 中文字幕av在线有码专区| 中亚洲国语对白在线视频| 91午夜精品亚洲一区二区三区 | 亚洲精品粉嫩美女一区| 欧美不卡视频在线免费观看| 精品人妻熟女av久视频| 久久这里只有精品中国| 色综合婷婷激情| 中国美女看黄片| 99国产极品粉嫩在线观看| 午夜久久久久精精品| 亚州av有码| 赤兔流量卡办理| 欧美日韩乱码在线| 亚洲欧美日韩东京热| 91在线精品国自产拍蜜月| 亚洲,欧美,日韩| 欧美性猛交╳xxx乱大交人| 免费一级毛片在线播放高清视频| 综合色av麻豆| 中文资源天堂在线| 嫩草影院新地址| 国产白丝娇喘喷水9色精品| 成人无遮挡网站| 精品一区二区三区视频在线观看免费| 亚洲最大成人手机在线| 91久久精品电影网| 久久精品国产亚洲网站| 国产 一区精品| 直男gayav资源| 国产精品一区二区三区四区久久| 成人欧美大片| 俄罗斯特黄特色一大片| 免费在线观看成人毛片| 夜夜看夜夜爽夜夜摸| 男人舔女人下体高潮全视频| 99热这里只有是精品50| 舔av片在线| 久久久精品大字幕| a级毛片免费高清观看在线播放| 特级一级黄色大片| 午夜福利在线观看吧| 国产极品精品免费视频能看的| 成人性生交大片免费视频hd| av在线观看视频网站免费| 精品99又大又爽又粗少妇毛片 | 国产人妻一区二区三区在| 神马国产精品三级电影在线观看| 老司机午夜福利在线观看视频| 最新中文字幕久久久久| 中文字幕人妻熟人妻熟丝袜美| 亚洲av成人av| 韩国av一区二区三区四区| 久久久久久久精品吃奶| 国产精品久久久久久久电影| 国产精品一区www在线观看 | 成人鲁丝片一二三区免费| 国产高清激情床上av| 亚洲欧美日韩高清在线视频| 久久久精品欧美日韩精品| 欧美日韩瑟瑟在线播放| 欧美成人一区二区免费高清观看| 身体一侧抽搐| 美女 人体艺术 gogo| 精华霜和精华液先用哪个| 中文字幕人妻熟人妻熟丝袜美| 变态另类丝袜制服| 欧美人与善性xxx| 欧美成人一区二区免费高清观看| 悠悠久久av| 久久久国产成人精品二区| 国产精品久久久久久精品电影| 免费人成在线观看视频色| 观看美女的网站| 久久热精品热| 精品人妻一区二区三区麻豆 | 久久久久国内视频| 日本色播在线视频|