• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Defect image segmentation using multilevel thresholding based on firefly algorithm with opposition-learning

    2014-09-06 10:49:51ChenKaiDaiMinZhangZhishengChenPingShiJinfei
    關(guān)鍵詞:東南大學(xué)螢火蟲閾值

    Chen Kai Dai Min Zhang Zhisheng Chen Ping Shi Jinfei

    (1Mechanical Engineering School, Southeast University, Nanjing 211189, China)(2Huaihai Institute of Technology, Lianyungang 222005, China)

    ?

    Defect image segmentation using multilevel thresholding based on firefly algorithm with opposition-learning

    Chen Kai1Dai Min1Zhang Zhisheng1Chen Ping1Shi Jinfei2

    (1Mechanical Engineering School, Southeast University, Nanjing 211189, China)(2Huaihai Institute of Technology, Lianyungang 222005, China)

    To segment defects from the quad flat non-lead (QFN) package surface, a multilevel Otsu thresholding method based on the firefly algorithm with opposition-learning is proposed. First, the Otsu thresholding algorithm is expanded to a multilevel Otsu thresholding algorithm. Secondly, a firefly algorithm with opposition-learning(OFA) is proposed. In the OFA, opposite fireflies are generated to increase the diversity of the fireflies and improve the global search ability. Thirdly, the OFA is applied to searching multilevel thresholds for image segmentation. Finally, the proposed method is implemented to segment the QFN images with defects and the results are compared with three methods, i.e., the exhaustive search method, the multilevel Otsu thresholding method based on particle swarm optimization and the multilevel Otsu thresholding method based on the firefly algorithm. Experimental results show that the proposed method can segment QFN surface defects images more efficiently and at a greater speed than that of the other three methods.

    quad flat non-lead (QFN) surface defects; opposition-learning; firefly algorithm; multilevel Otsu thresholding algorithm

    The quad flat non-lead (QFN) package is a type of flat no-lead package that has been widely used. However, on the surface of the QFN package, there are different types of defects which are harmful to the quality of the QFN package. The defects are relatively small, so it is difficult to segment the defects from the surface image with a single threshold. Therefore, multilevel image segmentation is applied to segmenting QFN surface defects from the QFN board.

    The Otsu thresholding segmentation algorithm[1]is a classical and efficient image segmentation algorithm. In the case of segmenting several objects from the background, Otsu thresholding needs to be extended to multilevel Otsu thresholding segmentation. However, multilevel Otsu thresholding segmentation is time-consuming and involves large computation. Thus, several meta-heuristics optimal algorithms have been introduced to solve the problems. Yin[2]presented an optimal thresholding using genetic algorithms. Ghamisi et al.[3]developed a fractional-order Darwinian particle swarm optimization and the Darwinian particle swarm optimization for determining thresholds. Gao et al.[4]designed an ant colony optimization segmentation algorithm for solving multilevel Otsu problems. Sathya and Kayalvizhi[5]introduced a bacterial foraging algorithm into finding thresholds.

    Recently, Yang[6]presented a new meta-heuristic algorithm, called the firefly algorithm. Due to the good performance on global search, the firefly algorithm has been widely used for solving optimization problems. Horng et al.[7]proposed a multilevel minimum cross entropy threshold selection based on the firefly algorithm, and demonstrated that the firefly algorithm outperformed the particle swarm optimization (PSO) and the quantum particle swarm optimization. Hassanzadeh et al.[8]applied the firefly algorithm to Otsu’s method. Nevertheless, in some cases, the firefly algorithm may easily fall into a local optimum which will lead to inappropriate results and slow convergence.

    Hence, a novel firefly algorithm with opposition-learning is proposed to help fireflies escape from the local optimum and a multilevel Otsu thresholding based on the firefly algorithm with opposition-learning is applied to segmenting QFN surface defects.

    1 Multilevel Otsu Thresholding Algorithm

    σ2=ω1(μ1-μT)2+ω2(μ2-μT)2

    (1)

    In the situation of complex or multi-target image segmentation, an image needs to be classified intojclassesC1,C2,…,Cjwith the set of thresholdst1,t2,…,tj-1. Otsu thresholding should be expanded to multilevel Otsu thresholding. The between-class variance in multilevel Otsu thresholding can be defined by

    (2)

    where

    (3)

    (4)

    Clearly, the multilevel Otsu thresholding algorithm is time-consuming and involves a large computation. Hence, the firefly algorithm with opposition-learning is proposed to solve the multilevel Otsu thresholding problem in the next section.

    2 Multilevel Otsu Thresholding based on Firefly Algorithm with Opposition-Learning

    2.1 Opposition-learning algorithm

    (5)

    (6)

    2.2 Firefly algorithm with opposition-learning

    The firefly algorithm[6]is a new meta-heuristic algorithm for optimization. In the firefly algorithm, there are three idealized rules: 1) All the fireflies are unisex so that one firefly is attracted to other fireflies regardless of their sex; 2) Attractiveness is proportional to their brightness; thus for any two flashing fireflies, the less brighter one moves towards the brighter one. If there is no brighter one than a particular firefly, it will move randomly; 3) The brightness of a firefly is affected or determined by the landscape of the objective function to be optimized. The movement of fireflyiattracted to another more attractive fireflyjis determined by

    (7)

    The firefly algorithm has shown good performance in solving optimization problems. However, in some cases, the firefly algorithm may fall into local optima. In order to improve its performance, a new firefly algorithm with opposition-learning (simplified OFA) is proposed. The aim of OFA is to combine the firefly algorithm and the opposition-learning algorithm. The main steps of OFA are as follows:

    1) Initialize the parameters of OFA, including the number of fireflyn, the light absorption coefficientγ, the initial attractionβ0, the maximum iteration number iter, and a decision valuep0.

    2) If rand(0,1)

    3) Calculate the number of opposite fireflies according to Eq.(6), and calculate the fitness value of the fireflies and opposite fireflies.

    4) Rank the fitness values of the fireflies and opposite fireflies, and select the bestnfireflies as the new fireflies.

    5) If the iteration number reaches the maximum iteration number iter, go to 8); otherwise, go to 2).

    6) Calculate the fitness values of the fireflies, and rank the fitness values.

    7) If the iteration number reaches the maximum iteration number iter, go to 8); otherwise, update fireflies according to Eq.(7), and go to 2).

    8) Output the maximum fitness value and the corresponding firefly.

    In the OFA, the role of the opposition-learning algorithm is different from the random disturbance term in the firefly algorithm. With the advantage of the opposition-learning algorithm, fireflies can easily escape from local optima and the diversity of fireflies can be increased. As a result, the global optima can be quickly found by the OFA.

    2.3 Multilevel Otsu thresholding method based on OFA

    In order to solve the optimization problem of the multilevel Otsu thresholding method, an OFA-based multilevel Otsu thresholding method is proposed.

    Fig.1 Flowchart of the OFA-based multilevel Otsu thresholding method

    3 Experiment

    In order to verify the efficiency of the proposed method, three QFN defect images (QFN images with scratch defect, scrape defect and void defect) acquired from the test handler for QFN were tested in this paper and three other methods were programmed for comparison. All the experiments were implemented in a Matlab on a computer with Intel Core 2.26 GHz and 2 GB memory.

    The parameters of the OFA-based method are set in Tab.1. The images of segmentation results with two and three thresholds are shown in Fig.2. In Fig.2, the first column is the tested images (QFN image with scratch defect, scrape defect and void defect from up to down); the second column and the third column are the corresponding images of the segmentation results with two thresholds and three thresholds.

    Tab.1 Parameters of OFA-based method

    Three benchmark methods (i.e., the exhaustive search, PSO-based multilevel Otsu thresholding and FA-based multilevel Otsu thresholding) were implemented for comparison. The parameters of the PSO-based multilevel Otsu thresholding are shown in Tab.2 and the parameters of the FA-based method are set the same as the proposed method. Tab.3 gives the thresholds and the corresponding fitness values of the four methods. It can be found that: 1) The results of the OFA-based method and the FA-based method are equal to that of the exhaustive method; 2) The PSO-based method cannot find the global best results.

    Fig.2 Images of segmentation results

    Tab.2 Parameters of PSO-based method

    In order to further verify the superiority of the proposed method, the computation time and PSNR (peak signal-to-noise ratio) evaluation criteria are used to analyze the performance. The formula of PSNR is

    (8)

    Taking all into account, the OFA-based method can segment QFN surface defects images more efficiently and with greater speed than that of the other three methods.

    Tab.3 Thresholds and the corresponding fitness values obtained by the four methods

    Tab.4 Computation time and PSNR value of the four methods

    4 Conclusion

    This paper presents a novel multilevel Otsu thresholding based on the firefly algorithm with opposition-learning for segmenting QFN surface defect image. The main contributions are: 1) The firefly algorithm with opposition-learning (OFA) is proposed; 2) The OFA is applied when searching multilevel thresholds for image segmentation. Experimental results show that the proposed method can efficiently deal with QFN surface defects segmentation and its speed is faster than that of the other three methods. In the future, the adaptive selection of threshold number and defect feature extraction for QFN surface defects images are the next problems to be solved.

    [1]Otsu N. Threshold selection method from gray-level histograms[J].IEEETransactionsonSystems,Man,andCybernetics, 1979, 9(1):62-66.

    [2]Yin P Y. A fast scheme for optimal thresholding using genetic algorithms [J].SignalProcessing, 1999, 72(2): 85-95.

    [3]Ghamisi P, Couceiro M S, Benediktsson J A, et al. An efficient method for segmentation of images based on fractional calculus and natural selection [J].ExpertsSystemswithApplications, 2012, 39(16): 12407-12417.

    [4]Gao K L, Dong M, Zhu L Q, et al. Image segmentation method based upon Otsu ACO Algorithm [C]//InformationandAutomation:CommunicationsinComputerandInformationScience. Springer, 2011, 86: 574-580.

    [5]Sathya P D, Kayalvizhi R. Optimal multilevel thresholding using bacterial foraging algorithm [J].ExpertSystemswithApplications, 2011, 38(12): 15549-15564.

    [6]Yang X S. Firefly algorithms for multimodal optimization [C]//StochasticAlgorithms:FoundationsandApplications. Springer, 2009: 169-178.

    [7]Horng M H, Liou R J. Multilevel minimum cross entropy threshold selection based on the firefly algorithm [J].ExpertSystemswithApplications, 2011, 38(12): 14805-14811.

    [8]Hassanzadeh T, Vojodi H, Eftekhari A M. An image segmentation approach based on maximum variance intra-cluster method and firefly algorithm [C]//2011SeventhInternationalConferenceonNaturalComputation. Shanghai, China, 2011: 1817-1821.

    [9]Tizhoosh H R. Opposition-based learning: a new scheme for machine intelligence [C]//InternationalConferenceonIntelligentAgents,WebTechnologiesandInternetCommerce. Canberra, Australia, 2005, 1: 695-701.

    基于反向螢火蟲算法的多閾值缺陷圖像分割

    陳 愷1戴 敏1張志勝1陳 平1史金飛2

    (1東南大學(xué)機(jī)械工程學(xué)院,南京211189)(2淮海工學(xué)院,連云港222005)

    為了分割QFN表面的缺陷,提出一種基于反向螢火蟲算法的大津多閾值分割法.首先,將大津閾值分割擴(kuò)展為大津多閾值分割.其次,提出了一種基于反向?qū)W習(xí)的螢火蟲算法.在該算法中,生成的反向螢火蟲用于增加螢火蟲的多樣性和全局搜索能力.然后,將基于反向?qū)W習(xí)的螢火蟲算法應(yīng)用于多閾值分割.最后,使用所提出的方法對QFN缺陷圖像進(jìn)行閾值分割實(shí)驗(yàn),并將結(jié)果與窮舉法、基于粒子群算法的大津多閾值分割法、基于螢火蟲算法的大津多閾值分割法進(jìn)行比較.實(shí)驗(yàn)結(jié)果表明,所提方法能更有效地分割QFN表面缺陷,且分割速度快.

    QFN表面缺陷;反向?qū)W習(xí);螢火蟲算法;大津多閾值算法

    TP391.41

    Received 2014-03-10.

    Biographies:Chen Kai (1986—), female, graduate; Zhang Zhisheng(corresponding author), male, doctor, professor, oldbc@seu.edu.cn.

    s:The National Natural Science Foundation of China (No.50805023), the Science and Technology Support Program of Jiangsu Province (No.BE2008081), the Transformation Program of Science and Technology Achievements of Jiangsu Province (No.BA2010093), the Program for Special Talent in Six Fields of Jiangsu Province (No.2008144).

    :Chen Kai, Dai Min, Zhang Zhisheng, et al. Defect image segmentation using multilevel thresholding based on firefly algorithm with opposition-learning.[J].Journal of Southeast University (English Edition),2014,30(4):434-438.

    10.3969/j.issn.1003-7985.2014.04.006

    10.3969/j.issn.1003-7985.2014.04.006

    猜你喜歡
    東南大學(xué)螢火蟲閾值
    《東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》稿約
    《東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》稿約
    《東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》稿約
    《東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》稿約
    小波閾值去噪在深小孔鉆削聲發(fā)射信號處理中的應(yīng)用
    基于自適應(yīng)閾值和連通域的隧道裂縫提取
    螢火蟲
    比值遙感蝕變信息提取及閾值確定(插圖)
    河北遙感(2017年2期)2017-08-07 14:49:00
    螢火蟲
    室內(nèi)表面平均氡析出率閾值探討
    亚洲,欧美精品.| 成年版毛片免费区| 亚洲欧美一区二区三区久久| 脱女人内裤的视频| 久久人人爽av亚洲精品天堂| av网站在线播放免费| e午夜精品久久久久久久| 日本wwww免费看| 免费在线观看黄色视频的| 亚洲精品粉嫩美女一区| 嫩草影院精品99| 成人特级黄色片久久久久久久| 日日爽夜夜爽网站| 精品国产美女av久久久久小说| 亚洲少妇的诱惑av| 18禁观看日本| 亚洲一区二区三区色噜噜 | 国产精品国产高清国产av| 又黄又爽又免费观看的视频| 亚洲午夜精品一区,二区,三区| 一边摸一边抽搐一进一出视频| 一本综合久久免费| 欧美 亚洲 国产 日韩一| 热99国产精品久久久久久7| 免费日韩欧美在线观看| 日韩精品中文字幕看吧| 少妇 在线观看| 亚洲欧美激情在线| 国产精品亚洲一级av第二区| 一级a爱视频在线免费观看| av免费在线观看网站| 在线观看66精品国产| 欧美成人午夜精品| 身体一侧抽搐| 欧美亚洲日本最大视频资源| 老司机靠b影院| 男女午夜视频在线观看| 亚洲第一av免费看| 日韩精品免费视频一区二区三区| 一级a爱片免费观看的视频| av在线播放免费不卡| 丰满的人妻完整版| 欧美激情 高清一区二区三区| 日韩欧美三级三区| 国产午夜精品久久久久久| 啦啦啦 在线观看视频| 丝袜美腿诱惑在线| 久久久久久久精品吃奶| 69av精品久久久久久| cao死你这个sao货| 国产精品久久久久久人妻精品电影| 校园春色视频在线观看| 久久伊人香网站| 国产精品一区二区免费欧美| 日日夜夜操网爽| 一本大道久久a久久精品| 国产精品一区二区精品视频观看| 亚洲成人免费电影在线观看| 不卡一级毛片| 国产一区二区三区视频了| 久久国产精品影院| 亚洲中文字幕日韩| 精品电影一区二区在线| 亚洲少妇的诱惑av| 精品一品国产午夜福利视频| 午夜福利一区二区在线看| av欧美777| 国产一卡二卡三卡精品| 日本精品一区二区三区蜜桃| 国产三级黄色录像| 精品久久久久久久毛片微露脸| 日本免费a在线| av有码第一页| 日韩欧美一区二区三区在线观看| 国产成人系列免费观看| 大型黄色视频在线免费观看| 欧美日韩精品网址| 欧美精品啪啪一区二区三区| 一级a爱视频在线免费观看| 在线观看66精品国产| 午夜两性在线视频| 老司机靠b影院| 久久国产精品男人的天堂亚洲| 男人舔女人下体高潮全视频| 久久精品国产亚洲av香蕉五月| 国产欧美日韩一区二区三| 成人免费观看视频高清| 精品国产乱码久久久久久男人| 最近最新免费中文字幕在线| 久久精品亚洲av国产电影网| 视频区图区小说| 欧美中文日本在线观看视频| 中文字幕最新亚洲高清| 午夜日韩欧美国产| 久热爱精品视频在线9| 日本免费一区二区三区高清不卡 | a级毛片黄视频| 亚洲欧美日韩另类电影网站| 亚洲成人久久性| 波多野结衣av一区二区av| 一区福利在线观看| 午夜免费观看网址| 亚洲人成77777在线视频| 啪啪无遮挡十八禁网站| 男人操女人黄网站| 国产97色在线日韩免费| www.精华液| 伦理电影免费视频| 久久青草综合色| 在线国产一区二区在线| 两性午夜刺激爽爽歪歪视频在线观看 | 99国产综合亚洲精品| 成在线人永久免费视频| 国产伦人伦偷精品视频| 一个人观看的视频www高清免费观看 | 欧美成人性av电影在线观看| 亚洲一区二区三区欧美精品| 中文字幕人妻熟女乱码| 久久精品国产99精品国产亚洲性色 | 婷婷精品国产亚洲av在线| 色在线成人网| 午夜福利,免费看| 日本a在线网址| 十八禁人妻一区二区| 99热国产这里只有精品6| 久久久久国产一级毛片高清牌| 国产片内射在线| 日日摸夜夜添夜夜添小说| 欧美日韩瑟瑟在线播放| 女人被躁到高潮嗷嗷叫费观| 婷婷精品国产亚洲av在线| 在线永久观看黄色视频| 国产亚洲欧美在线一区二区| 性色av乱码一区二区三区2| 嫁个100分男人电影在线观看| 99热国产这里只有精品6| 高清av免费在线| 亚洲午夜理论影院| 国产乱人伦免费视频| 少妇粗大呻吟视频| 男女午夜视频在线观看| 亚洲视频免费观看视频| 黄色视频,在线免费观看| 电影成人av| 很黄的视频免费| 正在播放国产对白刺激| 国产亚洲精品综合一区在线观看 | 亚洲一区二区三区不卡视频| www日本在线高清视频| 悠悠久久av| 亚洲第一av免费看| 亚洲精品美女久久久久99蜜臀| 久久人妻熟女aⅴ| 成年人黄色毛片网站| 很黄的视频免费| 国产精品一区二区在线不卡| 久久久久久久久中文| 精品少妇一区二区三区视频日本电影| av天堂在线播放| 欧美激情 高清一区二区三区| 天堂中文最新版在线下载| 麻豆国产av国片精品| 国产97色在线日韩免费| 欧美最黄视频在线播放免费 | 在线观看免费视频网站a站| 欧美激情极品国产一区二区三区| 久久久久久久精品吃奶| 美女 人体艺术 gogo| 天堂影院成人在线观看| 91九色精品人成在线观看| 亚洲精品在线美女| 日本五十路高清| 日本精品一区二区三区蜜桃| 免费女性裸体啪啪无遮挡网站| tocl精华| 欧洲精品卡2卡3卡4卡5卡区| 国产免费男女视频| 久热爱精品视频在线9| 国产精品久久久av美女十八| 亚洲av日韩精品久久久久久密| 久久久久九九精品影院| av片东京热男人的天堂| xxx96com| 岛国在线观看网站| 精品人妻1区二区| 免费在线观看完整版高清| 日本a在线网址| 国产精品秋霞免费鲁丝片| 91老司机精品| 又紧又爽又黄一区二区| 午夜影院日韩av| 亚洲熟妇熟女久久| 18美女黄网站色大片免费观看| 人人妻人人澡人人看| xxx96com| 水蜜桃什么品种好| 婷婷六月久久综合丁香| 满18在线观看网站| aaaaa片日本免费| 国产在线精品亚洲第一网站| 水蜜桃什么品种好| 波多野结衣av一区二区av| 视频区欧美日本亚洲| 欧美日韩视频精品一区| 日本三级黄在线观看| 亚洲av成人一区二区三| 亚洲国产欧美日韩在线播放| 男女做爰动态图高潮gif福利片 | 999久久久精品免费观看国产| 在线观看一区二区三区| 久久久精品欧美日韩精品| 制服诱惑二区| 黑人猛操日本美女一级片| 国产精品国产高清国产av| 久久人人精品亚洲av| 国产欧美日韩精品亚洲av| 国产成人精品无人区| 国产精品秋霞免费鲁丝片| 人人澡人人妻人| 变态另类成人亚洲欧美熟女 | 日本欧美视频一区| 久久久久久久午夜电影 | 亚洲三区欧美一区| av在线播放免费不卡| 久久人妻福利社区极品人妻图片| bbb黄色大片| 夜夜躁狠狠躁天天躁| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产精品sss在线观看 | 日本撒尿小便嘘嘘汇集6| 怎么达到女性高潮| 亚洲国产精品合色在线| 免费看a级黄色片| 亚洲中文av在线| 免费看十八禁软件| av网站在线播放免费| 好看av亚洲va欧美ⅴa在| 国产精品综合久久久久久久免费 | 亚洲三区欧美一区| 一进一出好大好爽视频| 亚洲精华国产精华精| 国产精品永久免费网站| av免费在线观看网站| 村上凉子中文字幕在线| 老汉色av国产亚洲站长工具| 在线观看午夜福利视频| 午夜成年电影在线免费观看| 曰老女人黄片| 亚洲欧美日韩无卡精品| 国产黄a三级三级三级人| 国产精品久久视频播放| 国产亚洲欧美精品永久| 日韩免费高清中文字幕av| 丝袜在线中文字幕| 一区二区日韩欧美中文字幕| 大陆偷拍与自拍| 国产麻豆69| 看片在线看免费视频| 超碰97精品在线观看| 久久精品国产清高在天天线| 一级,二级,三级黄色视频| 国产亚洲欧美精品永久| 最近最新免费中文字幕在线| 国产av又大| 黄色怎么调成土黄色| 亚洲 欧美 日韩 在线 免费| 国产精品香港三级国产av潘金莲| 日本a在线网址| 精品久久蜜臀av无| 亚洲自偷自拍图片 自拍| 99久久人妻综合| 女性生殖器流出的白浆| 69精品国产乱码久久久| 国产精品一区二区免费欧美| 黑人巨大精品欧美一区二区mp4| 亚洲国产看品久久| 香蕉丝袜av| 精品午夜福利视频在线观看一区| 老司机亚洲免费影院| 无遮挡黄片免费观看| 91av网站免费观看| 18禁黄网站禁片午夜丰满| 国产精品野战在线观看 | 交换朋友夫妻互换小说| www.精华液| 亚洲精品成人av观看孕妇| 另类亚洲欧美激情| 交换朋友夫妻互换小说| 黄色丝袜av网址大全| 国产视频一区二区在线看| 80岁老熟妇乱子伦牲交| 老鸭窝网址在线观看| 熟女少妇亚洲综合色aaa.| 欧美不卡视频在线免费观看 | 啦啦啦免费观看视频1| 国产伦人伦偷精品视频| 人妻久久中文字幕网| 9热在线视频观看99| 少妇被粗大的猛进出69影院| 母亲3免费完整高清在线观看| 欧洲精品卡2卡3卡4卡5卡区| 国产精品一区二区精品视频观看| 亚洲国产看品久久| 69av精品久久久久久| 色综合欧美亚洲国产小说| 超碰成人久久| 国产在线观看jvid| 久久99一区二区三区| 大码成人一级视频| 老熟妇乱子伦视频在线观看| 亚洲第一av免费看| 亚洲一区二区三区欧美精品| 搡老乐熟女国产| 久久精品91蜜桃| 午夜福利在线免费观看网站| 老司机福利观看| 水蜜桃什么品种好| 午夜福利一区二区在线看| 中国美女看黄片| 精品久久久久久久久久免费视频 | 男女床上黄色一级片免费看| 久久性视频一级片| 亚洲色图综合在线观看| 伊人久久大香线蕉亚洲五| 中文字幕另类日韩欧美亚洲嫩草| 国产精品亚洲av一区麻豆| 欧美日韩瑟瑟在线播放| 99re在线观看精品视频| 一级片免费观看大全| 亚洲精品国产色婷婷电影| 色哟哟哟哟哟哟| 黑丝袜美女国产一区| 中文字幕色久视频| 久久精品亚洲熟妇少妇任你| 午夜福利欧美成人| 一区二区三区精品91| 黄色a级毛片大全视频| 亚洲专区中文字幕在线| 亚洲人成77777在线视频| 亚洲一区高清亚洲精品| 岛国在线观看网站| 在线免费观看的www视频| 亚洲色图 男人天堂 中文字幕| 色综合婷婷激情| 色在线成人网| 一级片免费观看大全| 国产99久久九九免费精品| 乱人伦中国视频| 黄频高清免费视频| 色综合欧美亚洲国产小说| 国产亚洲精品久久久久久毛片| 久久精品影院6| aaaaa片日本免费| 97人妻天天添夜夜摸| 亚洲,欧美精品.| 女警被强在线播放| 欧美性长视频在线观看| 一区二区日韩欧美中文字幕| 欧美色视频一区免费| 一本综合久久免费| 婷婷六月久久综合丁香| 制服诱惑二区| 丝袜美足系列| 精品一品国产午夜福利视频| 99riav亚洲国产免费| 99精品在免费线老司机午夜| 国产男靠女视频免费网站| 免费女性裸体啪啪无遮挡网站| 多毛熟女@视频| 精品电影一区二区在线| 俄罗斯特黄特色一大片| 欧美中文综合在线视频| 一区二区三区激情视频| 国产精品一区二区三区四区久久 | 精品久久久精品久久久| av在线播放免费不卡| 亚洲一卡2卡3卡4卡5卡精品中文| 一本综合久久免费| 亚洲激情在线av| 欧美色视频一区免费| 在线国产一区二区在线| 男人舔女人下体高潮全视频| 超色免费av| 成人永久免费在线观看视频| 欧美黑人精品巨大| 精品熟女少妇八av免费久了| 成人永久免费在线观看视频| 欧美午夜高清在线| aaaaa片日本免费| 国产精品一区二区精品视频观看| 国产一区二区激情短视频| 视频区图区小说| 亚洲av五月六月丁香网| 在线天堂中文资源库| 欧美中文日本在线观看视频| 麻豆成人av在线观看| 精品国产乱子伦一区二区三区| 女人高潮潮喷娇喘18禁视频| 一边摸一边抽搐一进一小说| 国产99久久九九免费精品| 国产亚洲精品第一综合不卡| 免费看十八禁软件| 欧美最黄视频在线播放免费 | 十八禁网站免费在线| 午夜老司机福利片| 又紧又爽又黄一区二区| 亚洲人成77777在线视频| 国产片内射在线| 日韩免费av在线播放| 亚洲国产欧美一区二区综合| 亚洲色图综合在线观看| 99re在线观看精品视频| 在线观看免费午夜福利视频| www日本在线高清视频| 久久中文看片网| 97超级碰碰碰精品色视频在线观看| a级毛片黄视频| 久久久久久久午夜电影 | 精品国产一区二区三区四区第35| 桃红色精品国产亚洲av| 好看av亚洲va欧美ⅴa在| 深夜精品福利| 久久精品国产99精品国产亚洲性色 | 极品教师在线免费播放| 在线av久久热| 午夜91福利影院| 亚洲av美国av| 国产欧美日韩一区二区精品| 高潮久久久久久久久久久不卡| 国产男靠女视频免费网站| 桃红色精品国产亚洲av| 国产精品久久久久成人av| 国产91精品成人一区二区三区| 欧美中文日本在线观看视频| 又紧又爽又黄一区二区| 黄色视频,在线免费观看| 久久久久精品国产欧美久久久| 午夜视频精品福利| 啪啪无遮挡十八禁网站| 色播在线永久视频| 深夜精品福利| 美女扒开内裤让男人捅视频| 好男人电影高清在线观看| 1024视频免费在线观看| 亚洲av片天天在线观看| 黄片小视频在线播放| 精品无人区乱码1区二区| 久久香蕉精品热| 午夜亚洲福利在线播放| 日日摸夜夜添夜夜添小说| av视频免费观看在线观看| 国产亚洲欧美98| 激情视频va一区二区三区| а√天堂www在线а√下载| 日韩大尺度精品在线看网址 | 一区福利在线观看| 女警被强在线播放| 欧美 亚洲 国产 日韩一| 五月开心婷婷网| 成人影院久久| 韩国精品一区二区三区| 天堂中文最新版在线下载| 人妻久久中文字幕网| av国产精品久久久久影院| 久久久久国产精品人妻aⅴ院| 黄色 视频免费看| 村上凉子中文字幕在线| 中文字幕精品免费在线观看视频| 最好的美女福利视频网| 成人黄色视频免费在线看| 亚洲欧美日韩另类电影网站| 亚洲欧美一区二区三区黑人| 亚洲精品av麻豆狂野| 另类亚洲欧美激情| 欧美丝袜亚洲另类 | 黄色女人牲交| 亚洲一区高清亚洲精品| 纯流量卡能插随身wifi吗| 久久天躁狠狠躁夜夜2o2o| 老司机亚洲免费影院| 露出奶头的视频| 两个人看的免费小视频| 日韩精品免费视频一区二区三区| x7x7x7水蜜桃| 老汉色∧v一级毛片| 亚洲精华国产精华精| 免费在线观看视频国产中文字幕亚洲| 女生性感内裤真人,穿戴方法视频| 在线播放国产精品三级| 丁香欧美五月| x7x7x7水蜜桃| 身体一侧抽搐| 高清毛片免费观看视频网站 | 天天躁狠狠躁夜夜躁狠狠躁| 国产欧美日韩综合在线一区二区| 激情视频va一区二区三区| 亚洲黑人精品在线| 欧美性长视频在线观看| 欧美日韩亚洲综合一区二区三区_| 在线国产一区二区在线| 日本黄色日本黄色录像| 高清在线国产一区| 成人三级黄色视频| 黄色片一级片一级黄色片| 久久久久久免费高清国产稀缺| 一级片免费观看大全| 亚洲色图av天堂| 亚洲精品中文字幕一二三四区| 黄色毛片三级朝国网站| 欧美激情 高清一区二区三区| 欧美中文综合在线视频| 免费看a级黄色片| aaaaa片日本免费| 韩国精品一区二区三区| 日韩有码中文字幕| 999精品在线视频| 后天国语完整版免费观看| 久久精品91蜜桃| 中国美女看黄片| 九色亚洲精品在线播放| 欧美成人性av电影在线观看| 搡老熟女国产l中国老女人| 视频区欧美日本亚洲| 亚洲 欧美一区二区三区| 国产欧美日韩一区二区三| 午夜成年电影在线免费观看| 日本欧美视频一区| 性少妇av在线| 国产精品影院久久| 久久这里只有精品19| 好男人电影高清在线观看| 99精品久久久久人妻精品| 每晚都被弄得嗷嗷叫到高潮| 久9热在线精品视频| 妹子高潮喷水视频| 亚洲精华国产精华精| 在线观看66精品国产| 亚洲五月婷婷丁香| 免费在线观看影片大全网站| 一进一出抽搐动态| 亚洲国产看品久久| 看片在线看免费视频| 最近最新免费中文字幕在线| 亚洲伊人色综图| 搡老乐熟女国产| 国产精品av久久久久免费| 丰满饥渴人妻一区二区三| e午夜精品久久久久久久| 99热只有精品国产| 国产成人精品久久二区二区免费| 一边摸一边抽搐一进一小说| 国产野战对白在线观看| 50天的宝宝边吃奶边哭怎么回事| 在线看a的网站| 三上悠亚av全集在线观看| 熟女少妇亚洲综合色aaa.| 色综合站精品国产| 国产精品亚洲一级av第二区| 久久久国产成人精品二区 | 韩国av一区二区三区四区| 午夜免费激情av| 亚洲欧美日韩无卡精品| 久久青草综合色| 母亲3免费完整高清在线观看| 国产深夜福利视频在线观看| 欧美大码av| 叶爱在线成人免费视频播放| 国产一区二区三区视频了| 校园春色视频在线观看| 午夜福利免费观看在线| 日韩中文字幕欧美一区二区| 精品久久蜜臀av无| 五月开心婷婷网| 精品少妇一区二区三区视频日本电影| 夜夜夜夜夜久久久久| 在线免费观看的www视频| 欧美性长视频在线观看| 免费在线观看黄色视频的| 他把我摸到了高潮在线观看| 成人永久免费在线观看视频| 久久香蕉激情| 少妇被粗大的猛进出69影院| 成人永久免费在线观看视频| 69精品国产乱码久久久| 久久精品国产亚洲av香蕉五月| 韩国av一区二区三区四区| 如日韩欧美国产精品一区二区三区| 搡老岳熟女国产| 真人做人爱边吃奶动态| 十八禁人妻一区二区| 日本欧美视频一区| 一区二区三区国产精品乱码| 黄片大片在线免费观看| 精品国产一区二区三区四区第35| 看黄色毛片网站| 国产精品成人在线| av欧美777| 欧美乱码精品一区二区三区| 欧美色视频一区免费| 久久精品国产亚洲av香蕉五月| 国产伦一二天堂av在线观看| 中文字幕人妻熟女乱码| 久久天堂一区二区三区四区| 不卡av一区二区三区| 在线观看日韩欧美| 91麻豆精品激情在线观看国产 | 十八禁人妻一区二区| 国产真人三级小视频在线观看| 国产成人精品久久二区二区免费| 国产色视频综合| 久久精品aⅴ一区二区三区四区| 女人爽到高潮嗷嗷叫在线视频| 午夜精品久久久久久毛片777| 他把我摸到了高潮在线观看| 不卡av一区二区三区|