• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      Uniqueness of the Best Approximation in a New Haar Type Space*1

      2014-09-06 03:08:50方東輝
      關(guān)鍵詞:吉首向陽廣義

      UniquenessoftheBestApproximationinaNewHaarTypeSpace*1

      The problem of the best approximation with generalized restrictions is considered in this paper.By introducing a new Haar type space,the uniqueness and strong uniqueness of the best approximation on this Haar type space are given.

      best approximation;Haar type space;uniqueness;strong uniqueness

      1 Introduction

      The uniqueness and strong uniqueness of the best approximation have received much attention (ref. [1-9]).In ref. [1],Chalmers and Taylor introduced a general method of investigating uniqueness of best approximations with constraints,which provided a unified approach to the problem.However,this approach essentially provided only sufficient conditions for uniqueness of best constrained approximation.In ref. [4],the authors introduced a new Haar space,namely,LHaar space,and established a Haar type theory for constrained approximation,and gave some necessary and sufficient conditions for uniqueness and strong uniqueness.Note thatIHaar is not Haar as shown in ref. [9].Thus,the authors in ref. [9] introduced another Haar type space and studied the characterization for this Haar type space.

      Inspired by those works mentioned above,we continue to study the problem of the best approximation with generalized restrictions.By introducing a new Haar type space defined in ref. [9],we establish the uniqueness and strong uniqueness of the best approximation.

      2 L* Haar Spaces

      (1)

      Definition2 It is said thatp∈Unvanishes onAorA*ifp(xi)=0(1≤i≤s) and (Lp)(yj)=0(1≤j≤r).

      Definition3UnisL(resp.L*) Haar if nop∈Un{0} vanishes on a nondegenerateL(resp.L*) extremal set forUn.

      Letf∈C[a,b] andp∈Un(l,u), we denote

      The following definition was introduced in ref. [1].

      Definition4 A functionf∈C[a,b]Un(l,u) is said to be admissible if inf{‖f-q‖:q∈Un(l,u)}>max{l(y)-f(x),f(x)-u(y)} holds for eachx∈[a,b] andy∈Kwithex=Ly.

      LetCa[a,b] denote the set of all admissible functions.In particular,ifl(y)≤f(x)≤u(y) for allx∈[a,b] andy∈K,thenf∈Ca[a,b].Letf∈C[a,b],p∈Un(l,u),denoteΓ(f,p)=(EX+ (p)∩LK- (p))∪ (EX-(p)∩LK+ (p)).Then we have the following proposition.

      Proposition1 The following statements are equivalent:

      (ⅰ)f∈Ca[a,b];

      (ⅱ) For everyp∈Un(l,u),ifx∈X(p) andy∈K(p) withex=Ly,thenσ1(f,p,x)=σ2(f,p,y);

      (ⅲ) For eachp∈Un(l,u),we haveΓ(f,p)=?;

      (ⅳ) There existsp0∈Un(l,u) such thatΓ(f,p0)=?;

      (ⅴ) There existsp0∈PUn(l,u)(f) such thatΓ(f,p0)=?.

      Proof(ⅰ)?(ⅱ).Suppose that (ⅰ) holds and that there existp∈Un(l,u),x∈X(p) andy∈K(p) withex=Ly,butσ1(f,p,x) ≠σ2(f,p,y).Without loss of generality,we assume thatσ1(f,p,x)=-1,σ2(f,p,y)=1,that is,f(x)-p(x)=-‖f-p‖ andLp(y)=l(y).Sincefis admissible,it follows that

      max{l(y)-f(x),f(x)-u(y)}<‖f-p‖=ex(p)-f(x)=Ly(p)-f(x)=l(y)-f(x),

      which is a contradiction.

      (ⅱ)?(ⅲ).Suppose that (ⅱ) holds and that there existsp∈Un(l,u) such thatΓ(f,p)≠ ?.Without loss of generality,we assume thatEX+(p)∩LK-(p)≠ ?,then there existx∈X+(p) andy∈K-(p) such thatex=Ly.But this implies thatσ1(f,p,x)=1 andσ2(f,p,y)=-1 ,which contradicts with (ⅱ).

      (ⅲ)?(ⅳ)?(ⅴ) are trivial.

      (ⅴ)?(ⅰ).Suppose that (ⅴ) holds and thatfis not admissible.Then for everyp∈PUn(l,u)(f),x∈[a,b] andy∈Kwithex=Ly,one has ‖f-p0‖≤max{l(y)-f(x),f(x)-u(y)}.Note that

      f(x)-u(y)≤f(x)-Lp0(y)=f(x)-p0(x)≤‖f-p0‖

      (2)

      and

      l(y)-f(x) ≤Lp0(y)-f(x)=p0(x)-f(x) ≤‖f-p0‖.

      Then

      ‖f-p0‖≤max{l(y)-f(x),f(x)-u(y)}≤‖f-p0‖.

      (3)

      Thus,the equalities in (3) must hold.

      (a) Iff(x)-u(y)=‖f-p0‖,then,by (2),we haveu(y)=Lp0(y) andf(x)-p0(x)=‖f-p0‖.This meansx∈X+(p0) andy∈K-(p0).Hence,EX+(p0)∩LK-(p0)≠ ?,contradicting with (ⅴ).

      (b) Similarly,ifl(y)-f(x)=‖f-p0‖,then we haveEX-(p0)∩LK+(p0)≠ ?,contradicting with (ⅴ).The proof is complete.

      Definition5 Letf∈C[a,b] andp∈Un,theL*extremal setA*is said to be anL*extremal set with respect to (f,p) (denote byA*(f,p)),ifxi,yj,ci,djin (1) satisfy the following conditions:

      (ⅰ)xi∈X(p),yj∈K(p);

      (ⅱ) sgnci=σ1(f,p,xi),i=1,2,...,s;

      (ⅲ) sgndj=σ2(f,p,yj),j=1,2,...,r.

      Proposition2 Letf∈Ca[a,b],p0∈PUn(l,u)(f).IfUnis anL*Haar space,then there exists a nondegenerateL*extremal setA*(f,p0) forUn.

      ProofLetf∈Ca[a,b],p0∈PUn(l,u)(f).Then,by ref. [9,theorem 3.1],there exist points {x1,...,xs}?X(p0),{y1,...,yr}?K(p0)(s+r≤n+1) andc1,...,cs,d1,...,dr≠ 0 such that

      (4)

      3 Uniqueness of the Best Approximation

      Theorem1 LetUnbe anL*Haar space,then for everyf∈Ca[a,b] andl,u∈C(K) withl(t)

      (5)

      Below we show that

      (6)

      (7)

      In order to establish some results on the strong uniqueness of the best approximation fromUn(l,u),we first introduce the concept of the strong uniqueness of orderγ>0;see,for example,ref. [4,8].

      Definition6 Suppose thatf∈C[a,b],p0∈PUn(l,u)(f).It is said thatp0is strongly unique of orderγ>0 if there exists a constantα=α(f) such that ‖f-p‖γ≥‖f-p0‖γ+α‖p-p0‖γ,p∈Un(l,u).In the case whenγ=1 we simply say thatp0is strongly unique.

      Theorem2 LetUnbe anL*Haar space.Then for everyf∈Ca[a,b] andl,u∈C(K) withl(t)

      Letp1∈Un(l,u) be such that ‖f-p1‖=‖f-p0‖+with 1>>0.Since (f-p0)(xi)= (sgnci)‖f-p0‖,i=1,...,s,it follows that

      sgnci(p0-p1)(xi)= sgnci(f-p1)(xi)-sgnci(f-p0)(xi)≤

      ‖f-p1‖-‖f-p0‖=.

      (8)

      Furthermore,y1,...,yl∈K-(p0),yl+1,...,yr∈K+(p0) yield

      L(p0-p1)(yj)≥0(j=1,...,l),L(p0-p1)(yj)≤0 (j=l+1,...,r).

      (9)

      Letp*=p0-p1∈Un,by (8)

      (10)

      Moreover,(9) yields thatdjLp*(yj)≤0 (j=1,...,r).Taking also into account (10) we have

      |Lp*(yj)|≤M1j=1,...,r,

      (11)

      This together with (8) implies

      |p*(xi)|≤M2i=1,...,s,

      (12)

      By the equivalence of norms in finite dimensional spaces,there exists constantM3>0 such that

      ‖p0-p1‖=‖p*‖≤M3N(p*)≤c=c(‖f-p1‖-‖f-p0‖),

      [1] CHALMERS B L,TAYLOR G D.A Unified Theory of Strong Uniqueness in Uniform Approximation with Constraints[J].J. Approx.Theory,1983(37):29-43.

      [2] CULBERTSON J.On Approximation by Monotone Polynomials in the Chebyshev Norm Characterization and Uniqueness[D].Master’s Thesis University of Maryland,1968.

      [3] FANG Donghui,LI Chong,YANG Wenshan.Strong CHIP and Characterization of the Best Approximation with Generalized Restrictions[J].Acta Mathematica Sinica,2004,47(6):1 115-1 123.(in Chinese)

      [5] SHI Yingguang.The Limits of a Chebyshev Type Theory of Restricted Range Approximation[J].J. Approx. Theory,1988,53:41-53.

      [6] SINGER I.Best Approximation by Elements of Linear Subspaces in Linear Spaces[M].New York:Spring Verleg,1974.

      [7] RICE J R.The Approximation Functions[M].London:Addison Wesley,1964.

      [8] XU Shiying,LI Chong,YANG Wenshan.The Theory of Nonlinear Approximation in Banach Spaces[M].Beijing:Science Press,1997.(in Chinese)

      [9] WANG Xianyun,FANG Donghui.Characterizations forLHaar Space[J].Journal of Jishou University:Natural Sciences Edition,2005(1):12-14.(in Chinese)

      (責(zé)任編輯 向陽潔)

      FANG Donghui

      (College of Mathematics and Statistics,Jishou University,Jishou 416000,Hunan China)

      一類新的Haar子空間中最佳逼近的唯一性

      方東輝

      (吉首大學(xué)數(shù)學(xué)與統(tǒng)計學(xué)院,湖南 吉首 416000)

      研究了廣義限制域最佳逼近問題.引入一個L*Haar子空間的概念,建立了該Haar子空間中最佳逼近的唯一性和強唯一性.

      最佳逼近;L*Haar子空間;唯一性;強唯一性

      O174.41

      A

      1007-2985(2014)04-0008-05

      date:2014-05-01

      Supported by National Natural Science Foundation of China (11101186);Scientific Research Fund of Hunan Provincial Education Department (13B095)

      Biography:FANG Donghui(1979-),male,was born in Dongkou County,Hunan Province,doctor,associate professor at Jishou University,research area are nonsmooth analysis and nonlinear optimization.

      O174.41DocumentcodeA

      10.3969/j.issn.1007-2985.2014.04.002

      猜你喜歡
      吉首向陽廣義
      吉首大學(xué)美術(shù)學(xué)院作品精選
      聲屏世界(2022年15期)2022-11-08 10:58:04
      Rn中的廣義逆Bonnesen型不等式
      新年話“?!?/a>
      湘粵專家學(xué)者相聚吉首研討聲樂套曲《四季如歌》
      字海拾“貝”
      吉首美術(shù)館
      從廣義心腎不交論治慢性心力衰竭
      Sunny Side Up 向陽而生
      紅向陽
      有限群的廣義交換度
      金门县| 罗源县| 潢川县| 山西省| 宜兴市| 靖西县| 偏关县| 个旧市| 镇雄县| 巴林左旗| 金昌市| 米脂县| 元氏县| 西安市| 翁牛特旗| 惠安县| 余庆县| 垣曲县| 潞城市| 福清市| 翁牛特旗| 商丘市| 平定县| 浮梁县| 岑巩县| 禹州市| 新蔡县| 岑巩县| 南澳县| 沂水县| 北流市| 福海县| 大埔县| 鹿泉市| 林周县| 宾川县| 岑巩县| 华安县| 武威市| 黔西县| 双流县|