鄧春源
(華南師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院,廣州 510631)
(ii) 存在單位算子I的預(yù)解集{E():σ(A)}和可逆算子S使得
由引理1可知,如果P3=P,則σ(P)?{0,1,-1}.如果σ(P)={0,1,-1},則存在可逆算子S使得SPS-1=I1?-I2?0.特別地,如果σ(P)={0,1},則三次冪等退化成冪等P2=P,且有對(duì)角矩陣表示SPS-1=I1?0;如果σ(P)={1,-1},則三次冪等退化成對(duì)合P2=I,且有對(duì)角矩陣表示SPS-1=I1?-I2. 也就是說,三次冪等向冪等和對(duì)合的退化是通過譜點(diǎn)的減少來實(shí)現(xiàn)的.
下面給出本文的主要結(jié)論.
(1)
其中,k=0,1,2,…,8.
冪等算子Fi(i=1,…,27)的定義如下:
F27=(I-P2)(I-Q2)(I-R2).
(2)
本文得到如下定理,其表示簡(jiǎn)潔,有效地涵蓋、推廣了一些已有的結(jié)論.
(3)
則以下結(jié)論成立:
證明由式(2)的定義,易得
TPT-1=[I1I2I3I4I5I6I7I8I9][-I10-I11-I12-I13-I14-I15-I16-I17-I18]
(4)
特別要注意的是,如果式(2)中的某個(gè)Fi=0,則相應(yīng)的對(duì)角元Ii和系數(shù)αi,βi,γi將自動(dòng)消失,此時(shí)式(4)中的對(duì)角算子階數(shù)將小于27.比如說,如果P,Q,R退化成P2=I,Q2=I,R2=I,則Fi=0(i=3,6,7,8,9,12,15,16,…,27).相應(yīng)的Ii和系數(shù)αi,βi,γi將不會(huì)出現(xiàn),TPT-1,TQT-1,TRT-1將自動(dòng)約化為至多8×8對(duì)角算子矩陣:
TPT-1=I1I2I4I5-I10-I11-I13-I14,
TQT-1=I1I2-I4-I5I10I11-I13-I14,
TRT-1=I1-I2I4-I5I10-I11I13-I14.
(5)
基于上述構(gòu)造,由式(4)知,存在可逆算子T使得
(6)
注意到α27=β27=γ27=0.由引理1知,Ψ是三次冪等的充要條件是:當(dāng)Fi≠0時(shí),aαi+bβi+cγi=1,或-1,或0.類似地有結(jié)論(b)和(c).證畢.
下面給出一個(gè)實(shí)例(文獻(xiàn)[3]中的定理3.1)具體解釋定理1的應(yīng)用.
證明在定理1中,取R=0.由式(2)知,非零Fi(i=1,…,27)只剩下F3=PQ,F9=P(I-Q),F(xiàn)21=(I-P)Q和F27=(I-P)(I-Q).從而式(4)中的TPT-1,TQT-1和式(6)中的Ψ分別退化成TPT-1=I3I900,TQT-1=I30I210和
TΨT-1=T(aP+bQ)T-1=(a+b)I3aI9bI210.
(1)若F3=PQ=0,項(xiàng)(a+b)I3將不會(huì)出現(xiàn),從而a=1,b=1.
(2)若F21=(I-P)Q=0,項(xiàng)bI21將不會(huì)出現(xiàn),從而a=1,b=-1.
(3)若F9=P(I-Q)=0,項(xiàng)aI9將不會(huì)出現(xiàn),從而a=-1,b=1.
文獻(xiàn)[1]的定理2.2和定理2.3給出了問題(a)和問題(b)所有可能情況,我們這里給出一種簡(jiǎn)潔的證明,定理1的一個(gè)特殊情況是P2=I,Q2=I和R2=I(問題(a)),此時(shí)式(4)中的TPT-1,TQT-1和TRT-1退化為式(5),并且
T(aP+bQ+cR)T-1=(a+b+c)I1
(a+b-c)I2(a-b+c)I4(a-b-c)I5
(-a+b+c)I10(-a+b-c)I11
(-a-b+c)I13(-a-b-c)I14.
(7)
則aP+bQ+cR是三次冪等的充要條件是式(7)中的系數(shù)只能是1,-1和0. 容易驗(yàn)證文獻(xiàn)[1]的定理2.2中的條件(a)~(f)滿足上述條件.定理的另外一個(gè)特殊情況是P2=I,Q2=I和R3=R(問題(b)),此時(shí)式(2)中的非零元是Fi≠0(i=1,…,6,10,…,15).同樣可驗(yàn)證aP+bQ+cR是三次冪等的充要條件是文獻(xiàn)[1]的定理2.3中(a′)~(o′)成立.
如果P2=P,Q2=Q和R2=R,此時(shí)式(2)中的非零元Fi≠0(i=1,3,7,9,19,21,25,27),因此TPT-1,TQT-1和TRT-1退化為
TPT-1=I1I3I7I90000,
TQT-1=I1I300I19I2100,
TRT-1=I10I70I190I250.
(8)
注意到
PQ=P?F7=0,F9=0;
PR=P?F3=0,F9=0;
QR=R?F7=0,F25=0.
(9)
式(6)中的表示退化為:
T(aP+bQ+cR)T-1=(a+b+c)I1(a+b)I3
(a+c)I7aI9(b+c)I19bI21cI250.
(10)
文獻(xiàn)[3]的定理3.2證明了如果a=b=1,c=-1,PQ=P,PR=P,QR=R(由式(9)知這些條件等價(jià)于Fi=0(i=3,7,9,25)),那么Ψ是冪等.然而,在式(10)中的表示顯示,若a=b=1,c=-1,Ψ是冪等的充要條件是Fi=0(i=3,25),即PQ(I-R)=0,(I-P)(I-Q)R=0.所以文獻(xiàn)[4]中的條件PQ=P是多余的.
更進(jìn)一步,如果式(10)中的R=0,則Fi=0,Ii(i=1,7,19,25)也不再出現(xiàn),T(aP+bQ)T-1進(jìn)一步退化為
T(aP+bQ)T-1=(a+b)I3aI9bI210.
從而aP+bQ是三次冪等的充要條件是所有系數(shù)a+b,a,b只能取0,1,-1.
線性組合的保冪等性、三次冪等性和對(duì)合性近年來被一些學(xué)者所研究[4-8].該問題對(duì)于正規(guī)變量的二次型分布問題的研究起著重要的作用.對(duì)于任意交換n次冪等也有類似的結(jié)論.特別值得提出的是,定理1涵蓋了如下的一些結(jié)論.
(1)由文獻(xiàn)[9]有:P=P3,Q=Q3,R=0時(shí),使Ψ是三次冪等;
(2)由文獻(xiàn)[10]有:P=P2,Q=Q2,R=0時(shí),使Ψ是三次冪等;
(3)由文獻(xiàn)[11]的定理1和文獻(xiàn)[3]的定理3.2,有:P=P2,Q=Q2,R=R2時(shí),使Ψ是冪等;
(4)由文獻(xiàn)[12]的定理4,有:P=P+,Q=Q+,R=0時(shí),使Ψ廣義對(duì)和算子;
(5)由文獻(xiàn)[13]的定理2.2,有:P=P3,Q=Q3,R=0時(shí),使Ψ是冪等;
(6)由文獻(xiàn)[14]的定理2.1和定理2.2,有:P2=I,Q2=I,R=R3時(shí),使Ψ是冪等或三次冪等;
(7)由文獻(xiàn)[14]的定理2.3,有:P=P3,Q=Q3,R=0時(shí),使Ψ是對(duì)合算子;
(8)由文獻(xiàn)[14]的定理2.5,有:P=P2,Q=Q2,R=0時(shí),使Ψ是對(duì)合算子;
(9)由文獻(xiàn)[1]的定理2.2,有:P2=I,Q2=I,R2=I時(shí),使Ψ是三次冪等;
(10)由文獻(xiàn)[1]的定理2.3,有:P2=I,Q2=I,R=R3時(shí),使Ψ是三次冪等.
參考文獻(xiàn):
[1] Xu C,Xu R. Tripotency of a linear combination of two involutory matrices and a tripotent matrix that mutually commute[J]. Linear Algebra and Its Applications,2012,437: 2091-2109.
[2] Deng C,Li Q,Du H. Generalized n-idempotents and hyper-generalized n-idempotents[J]. Northeastern Mathematical Journal,2006,22: 387-394.
[3] Ozdemir H,Ozban A Y. On idempotency of linear combinations of idempotent matrices[J].Applied Mathematics and Computation,2004,159: 439-448.
[4] Baksal J K,Baksal O M.Idempotency of linear combinations of two idempotent matrices[J]. Linear Algebra and Its Applications,2000,321: 3-7.
[5] Baksal J K,Baksal O M. On linear combinations of generalized projectors[J]. Linear Algebra and Its Applications,2004,388: 17-24.
[6] Baksal J K,Baksal O M,Styan G P H. Idempotency of linear combinations of an idempotent matrix and a tripotentmatrix[J]. Linear Algebra and Its Applications,2002,354: 21-34.
[7] Baksal O M. Idempotency of linear combinations of three idempotent matrices,two of which are disjoint[J]. Linear Algebra and Its Applications,2004,388: 67-78.
[8] Tian Y. Two universal similarity factorization equalities for commutative involutory and idempotent matrices and their applications[J]. Linear and Multilinear Algebra,2011,59: 129 -144.
[9] Baksal J K,Baksal O M,Ozdemir H. A note on linear combinations of commuting tripotent matrices[J].Linear Algebra and Its Applications,2004,388: 45-51.
[10] Baksal J K,Baksal O M. When is a linear combination of two idempotent matrices the group involutory matrix?[J].Linear and Multilinear Algebra,2006,54: 429-435.
[11] Baksalary O M,Beinitez J. Idempotency of linear combinations of three idempotent matrices,two of which are commuting[J]. Linear Algebra and Its Applications,2007,424: 320-337.
[12] Liu X, Wu L, Benitez J. On linear combinations of generalized involutivematrices[J]. Linear and Multilinear Algebra,2011,59: 1221-1236.
[13] Ozdemir H,Sarduvan M,Ozban A Y,et al. On idempotency and tripotency of linear combinations of two commuting tripotentmatrices[J].Applied Mathematics and Computation,2009,207:197-201.
[14] Sarduvan M,Ozdemir H. On linear combinations of two tripotent,idempotent,and involutive matrices[J].Applied Mathematics and Computation,2008,200: 401-406.