董眾+徐卓異+張善從
摘 要: 提出一種基于多普勒貢獻(xiàn)比加權(quán)的GEO?LEO星載雙基地SAR二維頻譜求解方法,與現(xiàn)有的頻譜求解方法不同,該方法根據(jù)加權(quán)因子的物理意義,并利用GEO?LEO的軌道參數(shù)推導(dǎo)其相應(yīng)的解析表達(dá)式,在沒有引入誤差的情況下,解決了GEO?LEO雙基地SAR的二維頻譜表達(dá)式求解問題。并與二維尺度變換逆FFT成像算法結(jié)合,實(shí)現(xiàn)了GEO?LEO雙基地SAR對(duì)地面目標(biāo)的精確成像。仿真實(shí)驗(yàn)結(jié)果表明了算法的優(yōu)越性。
關(guān)鍵詞: GEO?LEO; 雙基地SAR; 二維頻譜; 駐相原理; 多普勒貢獻(xiàn)比
中圖分類號(hào): TN951?34 文獻(xiàn)標(biāo)識(shí)碼: A 文章編號(hào): 1004?373X(2014)16?0098?06
GEO?LEO BI?SAR imaging algorithm
DONG Zhong1, XU Zhuo?yi2, ZHANG Shan?cong1
(1. Technology and Engineering Center for Space Utilization, Chinese Academy of Science, Beijing 100094, China;
2. Space Star Technology Co., Ltd, Beijing 100083, China)
Abstract: A Doppler distribution weighted method is proposed to solve the two?dimensional spectrum of GEO?LEO Bi?SAR imaging system. Different from the existing methods, this method deduces the corresponding analytical expression according to the physical significance of weight factor and the orbital parameters of GEO?LEO satellites. The solution difficulty of the two?dimensional spectrum expression was overcome without any introducing errors. In combination with an Inverse Scaled Fast Fourier Transformation algorithm, the accurate ground target imaging of GEO?LEO Bi?SAR was realized. The simulation results show the advantages of the imaging method proposed in the paper.
Keywords: GEO?LEO; BI?SAR; two?dimensional spectrum; principle of stationary phase; Doppler contribution ratio
0 引 言
本文率先研究了GEO?LEO星載雙基地SAR成像技術(shù)這一SAR領(lǐng)域的前沿問題,在分析其成像機(jī)理的基礎(chǔ)上得出二維頻譜的求解是成像的關(guān)鍵所在。而對(duì)于GEO?LEO系統(tǒng)利用駐相原理求解時(shí),無法從對(duì)應(yīng)一元四次方程組中得到解析解,因此GEOSAR的成像算法[1?6]無法適用。而現(xiàn)有雙基地SAR二維頻譜求解方法為:LBF方法[7?8],該方法將系統(tǒng)看作兩個(gè)獨(dú)立的單基地系統(tǒng)來求解系統(tǒng)沖擊響應(yīng)的二維頻譜,沒有考慮雙基駐相點(diǎn)的差異,僅適用于平行等速飛行的兩基地情況;ELBF方法[9?11],則是用收、發(fā)雷達(dá)相位史的多普勒調(diào)頻率的差異進(jìn)行加權(quán),這一條件在GEO?LEO這種雙基速度差異較大的系統(tǒng)中很難滿足,具有較大誤差;級(jí)數(shù)反演方法[12?14],該方法通過Taylor展開去除高階項(xiàng)進(jìn)行多項(xiàng)式求解,也含有一定的近似誤差。針對(duì)于此,本文提出了一種基于多普勒貢獻(xiàn)比加權(quán)的求解方法,根據(jù)加權(quán)因子的物理意義,并利用GEO?LEO的軌道參數(shù)推導(dǎo)其相應(yīng)的解析表達(dá)式,在沒有引入誤差的情況下,得到二維頻譜的表達(dá)式,并與二維尺度變換逆FFT成像算法[15?16]結(jié)合,實(shí)現(xiàn)了GEO?LEO雙基地SAR對(duì)地面目標(biāo)的精確成像,仿真實(shí)驗(yàn)結(jié)果表明了算法的優(yōu)越性。
1 GEO?LEO BI?SAR成像機(jī)理
由如圖1所示的GEO?LEO雙基地成像系統(tǒng),可以看出由于LEO衛(wèi)星的波束覆蓋范圍比GEO小很多,且其運(yùn)動(dòng)速度要快,因此GEO?LEO的合成孔徑時(shí)間長(zhǎng)度主要由LEO決定,對(duì)于一般的LEO衛(wèi)星,其值在5 s左右,與GEO大于500 s的合成孔徑時(shí)間相比,在這段時(shí)間內(nèi)GEO和LEO衛(wèi)星的運(yùn)動(dòng)軌跡均完全可以當(dāng)成直線運(yùn)動(dòng)計(jì)算。因此GEO?LEO雙基地SAR成像建模為軌道不同,運(yùn)動(dòng)方向不同,速度不同的移變雙基地成像系統(tǒng)。同時(shí)由于發(fā)射GEO衛(wèi)星的波束覆蓋范圍較LEO衛(wèi)星大,在合成孔徑時(shí)間內(nèi),GEO衛(wèi)星不一定經(jīng)過其離場(chǎng)景的最近點(diǎn)(距離為[RT0]處)。如圖1所示,不妨假設(shè)[t=0]時(shí)刻,LEO達(dá)到與場(chǎng)景中心的最近距離[RR0],而此時(shí)GEO衛(wèi)星距離最近點(diǎn)距離為[ΔX=VTΔT,][0≤ΔT 圖1 GEO?LEO雙基地成像系統(tǒng) 本文只考慮收發(fā)雷達(dá)正側(cè)視飛行的情況,并以LEO衛(wèi)星的飛行方向?yàn)榉轿幌颍瑢?duì)應(yīng)航跡垂直的方向?yàn)榫嚯x向進(jìn)行回波錄取和距離歷史分析,如圖2所示。
圖2 GEO?LEO雙基地SAR距離歷史模型
由圖2可得目標(biāo)[P]到發(fā)、收雷達(dá)的距離歷史為:
[RT(tm)=R20T+(VT(tm-ΔT)-xp)2] (1)
[RR(tm)=R20R+(VRtm-xp)2] (2)
則雷達(dá)接收的基帶回波可表示為:
[s(t,tm)=pt-RT(tm)+RR(tm)cwa(tm)exp-j2πRT(tm)+RR(tm)λ] (3)
對(duì)回波進(jìn)行二維FFT可得相應(yīng)二維頻譜如下:
[S(f,fd)=P(f)wa(tm)exp-j2π(f+fc)RT(tm)+RR(tm)c+fatmdtm] (4)
由上式的回波信號(hào)二維頻譜可以看出,由于收發(fā)雷達(dá)分置,其距離歷史是不相等的,因此上式呈一個(gè)雙根號(hào)形式,無法像單基地直接采用駐相原理求解回波駐相點(diǎn),相應(yīng)的二維頻譜解析表達(dá)式也難以直接獲得,而且對(duì)GEO?LEO雙基地SAR系統(tǒng),由于具有二維空變性,它比等速平行軌跡雙基地SAR的情況更加復(fù)雜[2]。因此,GEO?LEO雙基地SAR成像的關(guān)鍵即是回波信號(hào)二維頻譜表達(dá)式的求解。針對(duì)于此,本文提出了一種基于多普勒貢獻(xiàn)比加權(quán)的二維頻譜求解方法,并與ISFFT方法結(jié)合進(jìn)行成像。
2 基于多普勒貢獻(xiàn)比加權(quán)的二維頻譜求解
由于雙基地的距離歷程為雙根號(hào)形式,無法直接通過求解駐相方程獲得二維頻譜的解析表達(dá)式[7?14]。為了解決該問題,如果能夠確定收發(fā)雷達(dá)對(duì)回波多普勒頻率的貢獻(xiàn)大小,得到其貢獻(xiàn)差異,則可在分別求解獲得其多普勒頻率表達(dá)式的基礎(chǔ)上,直接求和解決雙基地回波頻譜的雙根號(hào)和問題。
從該思想出發(fā),本文提出一個(gè)能體現(xiàn)收發(fā)雷達(dá)對(duì)回波總多普勒頻率貢獻(xiàn)比的參數(shù)——多普勒貢獻(xiàn)比(該參數(shù)定義為發(fā)射雷達(dá)對(duì)多普勒頻率的貢獻(xiàn)占總的多普勒頻率的比例),并利用收發(fā)平臺(tái)的運(yùn)動(dòng)參數(shù)和目標(biāo)的位置,求得其在二維頻域的近似解。進(jìn)而利用駐相原理和Taylor展開建立了GEO?LEO星載雙基地SAR的點(diǎn)目標(biāo)回波二維頻域模型。
根據(jù)前文分析,GEO?LEO雙基地SAR的回波相位可表示為:
[φBi=2π(fr+fc)R(tm)c+2πfatm =2π(fr+fc)RT(tm)c+α2πfatm+ 2π(fr+fc)RR(tm)c+(1-α)2πfatm =φT(tm,fa)+φR(tm,fa) ] (5)
在上式中,引入瞬時(shí)多普勒貢獻(xiàn)比,則可得信號(hào)的多普勒頻率為:[fa(tm)=ddtm1λR20T+(VT(tm-ΔT)-xp)2+1λR20R+(VRtm-xp)2 =V2T(tm-ΔT)-VTxpλR20T+(VTtm-VTΔT-xp)2+V2Rtm-VRxpλR20R+(VRtm-xp)2 =faT(tm)+faR(tm) ] (6)
則可得發(fā)射雷達(dá)對(duì)總的多普勒頻率的瞬時(shí)貢獻(xiàn)比[α]為:[α=faT(tm)fa(tm)]。分別求解發(fā)射雷達(dá)和接收雷達(dá)的駐相方程[?T′(tm,fa;α)=0]和[?R′(tm,fa;α)=0],可得[?T(tm,fa;α)]和[?R(tm,fa;α)]對(duì)應(yīng)的加權(quán)駐相點(diǎn)[t*T]和[t*R]分別為:
[t*T=ΔT+xpVT-αfaR0Tfc+frc2-α2faVT2] (7)
[t*R=xpVR-(1-α)faR0Tfc+frc2-(1-α)2faVR2] (8)
由[α]的物理意義可知,當(dāng)[α]足夠精確時(shí),求得收、發(fā)雷達(dá)的加權(quán)駐相點(diǎn)[t*R]和[t*T]應(yīng)該是相等的,因此可通過求解如下方程得到瞬時(shí)多普勒貢獻(xiàn)比[α]:
[αfaR0Tfc+frc2-α2faVT2-(1-α)faR0Tfc+frc2-(1-α)2faVR2=ΔT+xpVT-xpVR] (9)
式(9)可通過數(shù)值計(jì)算法或者解析式來求解,這里不再贅述。在正側(cè)視情況下,通過解析式可求解得到多普勒貢獻(xiàn)比的[α]的表達(dá)式如下:
[α=ΔT+xpVT-xpVRKaTKaR+faKaTKaT+KaRfa] (10)
式中,[KaT=V2TR0Tfc+fc],[KaR=V2RR0Rfc+fc]分別為發(fā)射雷達(dá)和接收雷達(dá)的多普勒調(diào)頻率。
將[?T(tm,fa;α)]和[?R(tm,fa;α)]分別在各自的駐相點(diǎn)[t*T]和[t*R]處做二階Taylor展開,且由駐相原理可知[?T′(t*T,fa;α)=0],[?R′(t*R,fa;α)=0],并忽略高階項(xiàng)可得:
[?T(tm)=?T(t*T)+12?T″(t*T)(tm-t*T)2] (11)
[?R(tm)=?R(t*R)+12?R″(t*R)(tm-t*R)2] (12)
至此,得到多普勒貢獻(xiàn)比加權(quán)的點(diǎn)目標(biāo)回波二維頻譜。且可得:
(1) [α]取0.5即可得到經(jīng)典的LBF二維頻譜。該方法認(rèn)為在任一時(shí)刻兩平臺(tái)對(duì)系統(tǒng)的多普勒頻率貢獻(xiàn)相當(dāng),然而對(duì)于GEO?LEO這種速度差異較大的移變雙基地系統(tǒng),收發(fā)雷達(dá)對(duì)回波多普勒頻率的貢獻(xiàn)比存在較大的差異,因此采用該方法求得到的二維頻譜必然存在較大的誤差。
(2) 當(dāng)[ΔT+xpVT=xpVR]時(shí),用收、發(fā)雷達(dá)的多普勒調(diào)頻率的差異進(jìn)行加權(quán),即為ELBF方法。該條件只有在GEO和LEO衛(wèi)星同時(shí)經(jīng)過其運(yùn)行軌跡離目標(biāo)最近點(diǎn)的時(shí)候,即兩者零多普勒時(shí)刻相等的情況下才能精確滿足,當(dāng)兩者的差異越大,該方法的性能就越差。而由于GEO和LEO波束覆蓋范圍存在很大的差異,具體的成像場(chǎng)景很難滿足這一條件,因此ELBF方法在GEO?LEO雙基地SAR系統(tǒng)中也往往是存在較大誤差的。
3 仿真實(shí)驗(yàn)
為了驗(yàn)證本文提出的成像方法的優(yōu)點(diǎn),采用如表1所示系統(tǒng)參數(shù)進(jìn)行成像仿真。
從前文的分析可知,對(duì)于GEO?LEO雙基地系統(tǒng)而言,最為關(guān)鍵的是回波二維頻譜表達(dá)式的求解,因此從二維頻譜的積分相位的精度即可從一定程度上反映成像算法的精度。利用上文提出的二維頻譜計(jì)算方法求得頻譜的近似相位,并通過數(shù)值法求解其實(shí)際的相位值,對(duì)各個(gè)頻率點(diǎn)上的相位值求差,并逐點(diǎn)累加求均值即可得到不同算法由于近似引入的誤差。
表1 GEO?LEO BI?SAR系統(tǒng)參數(shù)
圖3,圖4分別給出了GEO和LEO經(jīng)過目標(biāo)最近點(diǎn)時(shí)刻差值為0和為20 s情況下的相位誤差隨目標(biāo)位置的變化情況。
圖3 [ΔT=0]時(shí)各算法相位誤差
圖4 [ΔT=20]時(shí)各算法相位誤差
由上述仿真結(jié)果可以看出,基于多普勒貢獻(xiàn)比的二維頻譜計(jì)算方法有著較高的精度,其二維頻譜相位誤差隨著目標(biāo)離場(chǎng)景中心的距離增大而增大,但是總體上都保持著很小的值;ELBF在[ΔT=0]可保持較好的性能,當(dāng)[ΔT]增大,其誤差就會(huì)變大;而LBF由于完全沒有考慮兩基地駐相點(diǎn)和對(duì)多普勒頻率的貢獻(xiàn)的差異,其頻譜精度最差。為了更清晰地比較各個(gè)算法的性能,選取目標(biāo)在場(chǎng)景中心位置,[ΔT=20]的場(chǎng)景,分別采用以上三種方法進(jìn)行成像仿真,結(jié)果如圖5~圖10所示。
圖5 [ΔT=0]時(shí)多普勒貢獻(xiàn)比加權(quán)法成像結(jié)果
圖6 [ΔT=20]時(shí)多普勒貢獻(xiàn)比加權(quán)法成像結(jié)果
由仿真結(jié)果可以看出,多普勒貢獻(xiàn)比方法能實(shí)現(xiàn)目標(biāo)完全聚焦,成像效果很好,而ELBF和LBF成像時(shí),目標(biāo)均會(huì)在方位向上有一定的發(fā)散,其中LBF基本難以正確實(shí)現(xiàn)方位向聚焦。當(dāng)成像區(qū)域內(nèi)同時(shí)存在兩個(gè)距離較近的目標(biāo)點(diǎn)時(shí),LBF和ELBF方法均無法進(jìn)行正確區(qū)分。同時(shí)在計(jì)算量上,多普勒貢獻(xiàn)比和ELBF,LBF相當(dāng)。
圖7 [ΔT=0]時(shí)ELBF成像結(jié)果
圖8 [ΔT=20]時(shí)ELBF成像結(jié)果
4 結(jié) 論
本文對(duì)GEO?LEO雙基地SAR成像算法進(jìn)行了研究,分析了其成像機(jī)理,并以LEO的航向?yàn)榛鶞?zhǔn)建立了成像平面模型,在此基礎(chǔ)上,創(chuàng)新性地提出了多普勒貢獻(xiàn)比方法來解決二維頻譜求解問題。
圖9 [ΔT=0]時(shí)LBF成像結(jié)果
圖10 [ΔT=20]時(shí)LBF成像結(jié)果
通過仿真實(shí)驗(yàn)和理論分析,得出了如下幾個(gè)結(jié)論:
(1) GEO?LEO雙基地SAR的成像可建模為軌道不同,運(yùn)動(dòng)方向不同,速度不同的移變雙基地成像系統(tǒng),在距離向和方位向均具有較強(qiáng)的移變特性。
(2) 二維頻譜估計(jì)是GEO?LEO雙基地成像的關(guān)鍵,而多普勒貢獻(xiàn)比加權(quán)的二維頻譜求解方法具有比LBF和ELBF高的精度。
(3) 采用多普勒貢獻(xiàn)比加權(quán)?ISFFT的成像方法能很好地實(shí)現(xiàn)GEO?LEO雙基地SAR成像,且其計(jì)算量與LBF和ELBF相比沒有增加,具有較高的實(shí)際使用價(jià)值。
參考文獻(xiàn)
[1] TOM I K, PACELLI J L. Synthetic aperture radar imaging from an inclined geosynchronous orbit [J]. IEEE Transactions on Geoscience and Remote Sensing, 1983, 21(3): 324?329.
[2] WANG Z. Analysis for resolution of bistatic SAR configuration with geosynchronous transmitter and UAV receiver [J]. International Journal of Antennas and Propagation, 2013(6): 1?10.
[3] HU C, LONG T, TIAN Y. An improved nonlinear chirp scaling algorithm based on curved trajectory in geosynchronous SAR [J]. Progress in Electromagnetics Research, 2013, 135: 481?513.
[4] CHENG Hu, TAO Zeng, TENG Long, et al. A novel range migration algorithm of GEO SAR echo data [C]// 2010 IEEE International Geoscience and Remote Sensing Symposium. [S.l.]: IEEE, 2010: 4656?4659.
[5] BAO M, XING M D, LI Y C. Chirp scaling algorithm for GEO SAR based on fourth?order range equation [J]. Electronics letters, 2012, 48(1): 41?42.
[6] 趙秉吉,齊向陽,宋紅軍,等.基于橢圓軌道的 Geo?SAR 精確多普勒參數(shù)解析計(jì)算方法[J].電子與信息學(xué)報(bào),2012,34(11):2642?2647.
[7] OTMAR L, NIES H, PETERS V, et al. Models and useful relations for bistatic SAR processing [J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(10): 2031?2038.
[8] ZARE A, MASNADI?SHIRAZI M A, SAMADI S. Range?Doppler algorithm for processing bistatic SAR data based on the LBF in the constant?offset constellation [C]// 2012 IEEE Radar Conference (RADAR). [S.l.]: IEEE, 2012: 0017?0021.
[9] UL?ANN Q, LOFFELD O, NIES H, et al. A point target reference spectrum based on Loffelds Bistatic Formula (LBF) for hybrid configurations [C]// Proceedings of International Conference on Emerging Technologies. Pakistan: [s.n.], 2008: 74?77.
[10] UL?ANN Q, LOFFELD O, NIES H, et al. Optimizing the individual azimuth contribution of transmitter and receiver phase terms in Loffeld's bistatic formula (LBF) for bistatic SAR processing [C]// International Geoscience and Remote Sensing Symposimu. [S.l.]: IGARSS, 2008:455?458.
[11] HUAN L, JIANXIONG Z, QIANG F. Bistatic forward?looking SAR imaging based on an improved two dimension spectrum [C]// IET 2012 International Conference on Radar Systems. [S.l.]: IET, 2012: 1?4.
[12] NEO Y L. A two?dimensional spectrum for bistatic SAR processing using series reversion [J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1):93?96.
[13] NEO Y L, WONG F H, CUMMING I G. A comparison of point target spectra derived for bistatic SAR processing [J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(9):2481?2492.
[14] CHEN S, XING M, ZHOU S, et al. Focusing of tandem bistatic SAR data using the chirp?scaling algorithm [J]. EURASIP Journal on Advances in Signal Processing, 2013, 2013(1): 1?13.
[15] LOFFELD O, SCHNEIDER F, HEIN A. Focusing SAR images by inverse scaled Fourier transformation [C]// Proceedings of International Conference on Signal Process. Las Palmas, Spain: [s.n.], 1998, 2: 630?632.
[16] WU J, LI Z, HUANG Y, et al. Processing one?stationary bistatic SAR data using inverse scaled Fourier transform [J]. Progress in Electromagnetics Research, 2012, 129: 143?159.
[6] 趙秉吉,齊向陽,宋紅軍,等.基于橢圓軌道的 Geo?SAR 精確多普勒參數(shù)解析計(jì)算方法[J].電子與信息學(xué)報(bào),2012,34(11):2642?2647.
[7] OTMAR L, NIES H, PETERS V, et al. Models and useful relations for bistatic SAR processing [J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(10): 2031?2038.
[8] ZARE A, MASNADI?SHIRAZI M A, SAMADI S. Range?Doppler algorithm for processing bistatic SAR data based on the LBF in the constant?offset constellation [C]// 2012 IEEE Radar Conference (RADAR). [S.l.]: IEEE, 2012: 0017?0021.
[9] UL?ANN Q, LOFFELD O, NIES H, et al. A point target reference spectrum based on Loffelds Bistatic Formula (LBF) for hybrid configurations [C]// Proceedings of International Conference on Emerging Technologies. Pakistan: [s.n.], 2008: 74?77.
[10] UL?ANN Q, LOFFELD O, NIES H, et al. Optimizing the individual azimuth contribution of transmitter and receiver phase terms in Loffeld's bistatic formula (LBF) for bistatic SAR processing [C]// International Geoscience and Remote Sensing Symposimu. [S.l.]: IGARSS, 2008:455?458.
[11] HUAN L, JIANXIONG Z, QIANG F. Bistatic forward?looking SAR imaging based on an improved two dimension spectrum [C]// IET 2012 International Conference on Radar Systems. [S.l.]: IET, 2012: 1?4.
[12] NEO Y L. A two?dimensional spectrum for bistatic SAR processing using series reversion [J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1):93?96.
[13] NEO Y L, WONG F H, CUMMING I G. A comparison of point target spectra derived for bistatic SAR processing [J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(9):2481?2492.
[14] CHEN S, XING M, ZHOU S, et al. Focusing of tandem bistatic SAR data using the chirp?scaling algorithm [J]. EURASIP Journal on Advances in Signal Processing, 2013, 2013(1): 1?13.
[15] LOFFELD O, SCHNEIDER F, HEIN A. Focusing SAR images by inverse scaled Fourier transformation [C]// Proceedings of International Conference on Signal Process. Las Palmas, Spain: [s.n.], 1998, 2: 630?632.
[16] WU J, LI Z, HUANG Y, et al. Processing one?stationary bistatic SAR data using inverse scaled Fourier transform [J]. Progress in Electromagnetics Research, 2012, 129: 143?159.
[6] 趙秉吉,齊向陽,宋紅軍,等.基于橢圓軌道的 Geo?SAR 精確多普勒參數(shù)解析計(jì)算方法[J].電子與信息學(xué)報(bào),2012,34(11):2642?2647.
[7] OTMAR L, NIES H, PETERS V, et al. Models and useful relations for bistatic SAR processing [J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(10): 2031?2038.
[8] ZARE A, MASNADI?SHIRAZI M A, SAMADI S. Range?Doppler algorithm for processing bistatic SAR data based on the LBF in the constant?offset constellation [C]// 2012 IEEE Radar Conference (RADAR). [S.l.]: IEEE, 2012: 0017?0021.
[9] UL?ANN Q, LOFFELD O, NIES H, et al. A point target reference spectrum based on Loffelds Bistatic Formula (LBF) for hybrid configurations [C]// Proceedings of International Conference on Emerging Technologies. Pakistan: [s.n.], 2008: 74?77.
[10] UL?ANN Q, LOFFELD O, NIES H, et al. Optimizing the individual azimuth contribution of transmitter and receiver phase terms in Loffeld's bistatic formula (LBF) for bistatic SAR processing [C]// International Geoscience and Remote Sensing Symposimu. [S.l.]: IGARSS, 2008:455?458.
[11] HUAN L, JIANXIONG Z, QIANG F. Bistatic forward?looking SAR imaging based on an improved two dimension spectrum [C]// IET 2012 International Conference on Radar Systems. [S.l.]: IET, 2012: 1?4.
[12] NEO Y L. A two?dimensional spectrum for bistatic SAR processing using series reversion [J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1):93?96.
[13] NEO Y L, WONG F H, CUMMING I G. A comparison of point target spectra derived for bistatic SAR processing [J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(9):2481?2492.
[14] CHEN S, XING M, ZHOU S, et al. Focusing of tandem bistatic SAR data using the chirp?scaling algorithm [J]. EURASIP Journal on Advances in Signal Processing, 2013, 2013(1): 1?13.
[15] LOFFELD O, SCHNEIDER F, HEIN A. Focusing SAR images by inverse scaled Fourier transformation [C]// Proceedings of International Conference on Signal Process. Las Palmas, Spain: [s.n.], 1998, 2: 630?632.
[16] WU J, LI Z, HUANG Y, et al. Processing one?stationary bistatic SAR data using inverse scaled Fourier transform [J]. Progress in Electromagnetics Research, 2012, 129: 143?159.