盧勁曄+劉靜+盧煒+等
摘要:選取18只青年波雜山羊隨機(jī)分成高能量組與低能量組,在細(xì)胞和分子水平闡述瘤胃上皮增殖及其機(jī)理。結(jié)果顯示:高能量日糧提高山羊瘤胃上皮Cyclin D1蛋白表達(dá),加速細(xì)胞周期G1期進(jìn)程,促進(jìn)細(xì)胞增殖,加快瘤胃乳頭生長,揭示了高能量日糧促進(jìn)瘤胃乳頭生長的細(xì)胞生物學(xué)機(jī)制。
關(guān)鍵詞:高能量日糧;山羊;瘤胃上皮;細(xì)胞周期;Cyclin D1
中圖分類號: S827.5文獻(xiàn)標(biāo)志碼: A文章編號:1002-1302(2014)06-0145-04
收稿日期:2013-09-18
資助項(xiàng)目:國家自然科學(xué)基金(編號:30771568);國家“973”計(jì)劃(編號:2011CB100801)
作者簡介:盧勁曄(1983—),男,江蘇揚(yáng)州人,博士,講師,主要從事動(dòng)物營養(yǎng)生理研究。Tel:(0523)86853000;E-mail:leopardleo@163.com。
通信作者:沈贊明,從事動(dòng)物營養(yǎng)生理研究。E-mail:zmshen@njau.edu.cn。瘤胃是反芻動(dòng)物消化代謝、營養(yǎng)吸收最重要的場所之一,瘤胃上皮吸收動(dòng)物消化產(chǎn)生的能量、營養(yǎng)物質(zhì),瘤胃上皮的生長發(fā)育情況直接影響反芻動(dòng)物的生產(chǎn)性能。提高動(dòng)物日糧能量水平可以促進(jìn)山羊瘤胃上皮生長及山羊個(gè)體生長[1]。哺乳動(dòng)物體細(xì)胞數(shù)量增多是通過加快細(xì)胞的有絲分裂來完成的,細(xì)胞從一次有絲分裂結(jié)束開始到下一次有絲分裂完成所經(jīng)歷的整個(gè)有序過程稱為細(xì)胞周期。細(xì)胞周期運(yùn)行主要受細(xì)胞周期蛋白(cyclin)及細(xì)胞周期蛋白依賴性激酶(CDK)的調(diào)控,細(xì)胞周期蛋白表達(dá)水平直接影響細(xì)胞有絲分裂的速率[2]。本研究探討高能量日糧對山羊瘤胃上皮細(xì)胞周期以及CDK的影響,旨在為提高山羊生產(chǎn)性能提供依據(jù)。
1材料與方法
1.1材料
選用18只青年波雜山羊(波爾山羊×淮南羊雜交山羊,平均日齡為90 d)作為試驗(yàn)對象。試驗(yàn)開始前,對山羊進(jìn)行驅(qū)蟲,山羊自由飲水,采食花生稈,逐漸添加精料至400 g/d,適應(yīng)期30 d。試驗(yàn)正式開始后,根據(jù)體重相近原則,將山羊隨機(jī)分為高能量組(ME:1.00 MJ/(kg0.75·d),約為維持水平的2.0倍)及低能量組(ME:0.60 MJ/(kg0.75·d),約為維持水平的1.2倍),高能量組及低能量組各9只山羊。所有山羊均單圈飼養(yǎng),自由飲水,采食花生稈,日糧營養(yǎng)組成見表1。高能量組山羊每天08:00、11:00、14:00、17:00分別飼喂1次100 g精料(精料組成見表1),持續(xù)飼喂42 d,第43天屠宰取樣。
1.2主要試劑
碘化丙啶(Sigma公司),RNA酶抑制劑、隨機(jī)引物、dNTP(Promega公司),RevertAid M-MuLV反轉(zhuǎn)錄試劑盒、Taq DNA
山羊日糧的組成成分
日糧干物質(zhì)
(%)干基營養(yǎng)成分含量(%)粗蛋白質(zhì)粗脂肪粗纖維粗灰分干物質(zhì)代謝能
(MJ/kg)飼料87.7523.804.157.608.8110.85花生稈89.818.152.2531.467.136.96注:精料由玉米、豆粕、棉籽、麩皮、魚粉、磷酸鈣、微量元素、維生素組成。
聚合酶試劑盒(Fermentas公司),引物設(shè)計(jì)與合成(Invitrogen公司),iQ SYBR Green Supermix(Bio-Rad公司),蛋白提取試劑盒、BCA蛋白定量分析試劑盒(北京博邁德科技發(fā)展有限公司),ECL化學(xué)發(fā)光檢測試劑盒(Pierce公司),PVDF膜(Millipore公司),兔抗Cyclin D1多克隆抗體、小鼠抗甘油醛-3-磷酸脫氫酶(Bioworld公司),鼠抗CDK4單克隆抗體(Abcam公司)。
1.3流式細(xì)胞術(shù)測定山羊瘤胃上皮細(xì)胞周期
1.3.1瘤胃上皮細(xì)胞的分離與固定取約300 mg組織塊,用D-Hanks溶液(pH值為7.4,4倍雙抗,37 ℃水浴預(yù)溫)漂洗2~3次后,加0.25%胰酶15 mL,37 ℃水浴,30 min后棄去消化液,取出瘤胃上皮組織,重復(fù)3次上述步驟。在處理后的上皮組織中加D-Hanks溶液(pH值為7.4)清洗2次,繼續(xù)加入胰酶15 mL消化10 min,1 500 r/min離心10 min,收集細(xì)胞。用PBS緩沖液(pH值為7.4)洗滌細(xì)胞沉淀2次,2 mL預(yù)冷75%乙醇重懸細(xì)胞,混勻后4 ℃保存待測。
1.3.2碘化丙啶(PI)染色與流式細(xì)胞儀檢測將用75%乙醇固定的細(xì)胞用PBS緩沖液(pH值為7.4)洗滌2次以除去乙醇,再用50 μL PBS緩沖液(pH值為7.4)重懸,加入 500 μL PI染液,振蕩混勻,室溫避光染色15 min,用流式細(xì)胞儀檢測,每個(gè)樣品計(jì)數(shù)10 000個(gè)細(xì)胞,用CellQuest軟件測定細(xì)胞大小及細(xì)胞DNA含量等數(shù)據(jù)。
1.4RT-PCR法檢測山羊瘤胃上皮細(xì)胞周期蛋白、蛋白激酶mRNA
1.4.1樣品總RNA提取取約100 mg瘤胃上皮組織,用手持電動(dòng)勻漿機(jī)徹底勻漿后采用異硫氰酸胍-酚-氯仿一步法提取瘤胃上皮總RNA。用微量核酸蛋白測定儀測定總RNA濃度及純度,所有樣品RNA的D260 nm/D280 nm比值均為1.8~2.0。用1.4%甲醛變性瓊脂糖凝膠電泳驗(yàn)證RNA的質(zhì)量,樣品條帶清晰,無拖尾現(xiàn)象,且28 S與18 S條帶灰度之比約等于2.0,表明RNA無降解、質(zhì)量可靠。調(diào)整RNA濃度為 1 μg/μL,-80 ℃保存。
1.4.2反轉(zhuǎn)錄(RT)用隨機(jī)引物同時(shí)對所有樣品的RNA進(jìn)行反轉(zhuǎn)錄,得到各樣品的cDNA。反應(yīng)總體積為25 μL,包括2 μg RNA、0.8 mmol/L dNTP、10 μmol/L隨機(jī)引物、5 U RNA酶抑制劑、100 U M-MLV反轉(zhuǎn)錄酶。先加RNA模板、dNTP、隨機(jī)引物,70 ℃變性5 min,使引物及模板配對。變性后立即置于冰上冷卻,再加入RNA酶抑制劑、M-MLV反轉(zhuǎn)錄酶,37 ℃反應(yīng)60 min,95 ℃滅活5 min,將RT產(chǎn)物置于 -20 ℃ 冰箱中保存。
1.4.3PCR引物設(shè)計(jì)根據(jù)GenBank上牛的基因引物序列,用Primer 5.0軟件設(shè)計(jì)PCR引物(表2)。表2PCR擴(kuò)增引物參數(shù)
基因引物序列來源大小
(bp)退火溫度
(℃)18S rRNA正向:5′-CGGACATCTAAGGGCATCA-3′;反向:5′-AAGACGGACCAGAGCGAAA-3′DQ222453.153858Cyclin D1正向:5′-CCTGCCGTCCATGCGGAA-3′;反向:5′-GAACTTCACATCTGTGGCAC-3′NM_001046273.143060Cyclin A正向:5′-ACAGTATGAGGGCTATCC-3′;反向:5′-TGTGGTGCTCTGAGGTAG-3′NM_001075123.158658CDK2正向:5′-GCTTTCTGCCACTCTCAT-3′;反向:5′-GCTCCGTCCATCTTCATC-3′NM_001014934.143858CDK4正向:5′-CGTTGGCTGTATCTTTGC-3′;反向:5′-GATTCGCTTGTGTGGGTT-3′NM_001037594.125658CDK6正向:5′-GCAGTATGAGTGCGTGG-3′;反向:5′-TTATGGTTTCAGTGGGC-3′XM_58915133552
1.4.4PCR擴(kuò)增將所有待測RT產(chǎn)物的等比例混合樣對反應(yīng)條件及循環(huán)圈數(shù)進(jìn)行優(yōu)化。PCR反應(yīng)體積為25 μL,包括2 μL上、下游引物(其中18S rRNA引物為0.12 μmol/L,其他目的基因引物為0.6 μmol/L),2 μL RT產(chǎn)物,0.1 μL(1 U)Taq DNA聚合酶,2.5 μL 10×Buffer(含100 mmol/L Tris-HCl,500 mmol/L KCl、1.0% Triton X-100),0.8 μL 0.32 mmol/L dNTP,1.8 μL MgCl2。PCR反應(yīng)條件為: 94 ℃ 預(yù)變性5 min;94 ℃變性30 s,52~60 ℃復(fù)性35 s,72 ℃延伸40 s,重復(fù)32個(gè)循環(huán);72 ℃延伸10 min。同時(shí)用ddH2O、RNA樣品分別取代RT產(chǎn)物作為對照,以檢驗(yàn)是否有外源性、基因組DNA污染。
1.4.5電泳及結(jié)果分析PCR反應(yīng)結(jié)束后,取18 μL PCR產(chǎn)物與2 μL 10 ×上樣Buffer混勻后上樣于2%瓊脂糖凝膠中(含0.1 μg/mL溴化乙錠)。在1×TAE電泳緩沖液中100 V電壓下電泳30 min,采用Marker DL2000同時(shí)電泳作為DNA標(biāo)準(zhǔn)分子量,采用Kodak 1D圖像分析系統(tǒng)觀察并分析結(jié)果。
1.5Real-time Q-PCR法檢測山羊瘤胃上皮Cyclin D1、CDK4 mRNA表達(dá)
以18S rRNA為內(nèi)標(biāo)基因,用熒光實(shí)時(shí)定量PCR(Real-time Q-PCR)進(jìn)行相對定量。根據(jù)GenBank上的牛的基因引物序列,應(yīng)用Primer 5.0軟件設(shè)計(jì)引物。Cyclin D1基因編號為EU525165.1,正向:5′-TTGTCTCCTGCGACTTCA-3′,反向:5′-CCACCACCCTGTTACTGTT-3′。CDK4基因編號為NM_001127269.1,正向:5′-TGAGCATCCCAGTGTTGT-3′,反向:5′-CCTTGTCCAGATACTTCCT-3′。18S rRNA基因編號為DQ222453,正向:5′-GAAACGGCTACCACATCC-3′,反向:5′-ACCAGACTTGCCCTCC-3′。反應(yīng)體積20 μL,包括 2 μL RT產(chǎn)物,2 μL上、下游引物,1× iQ SYBR Green supermix。用所有待測RT產(chǎn)物的混合樣(每份待測樣品等體積混合)對反應(yīng)條件進(jìn)行優(yōu)化。反應(yīng)條件為:95 ℃ 30 s預(yù)變性;95 ℃ 5 s,54 ℃ 30 s,重復(fù)40個(gè)循環(huán)。通過熔點(diǎn)曲線判斷是否有非特異性擴(kuò)增產(chǎn)物或引物二聚體出現(xiàn),單一產(chǎn)物的熔點(diǎn)曲線只有1個(gè)單一峰,沒有雜峰,也不出現(xiàn)主峰的異常增寬。采用2-ΔΔCt法分析數(shù)據(jù)。ΔΔCt計(jì)算公式如下。
1.6Western Blot檢測山羊瘤胃上皮Cyclin D1、CDK4含量
1.6.1樣品蛋白的提取參照試劑盒說明書提取瘤胃上皮組織蛋白,采用BCA法測定蛋白濃度,分裝后置于-80 ℃保存。
1.6.2變性電泳取50 μg蛋白樣品與6×SDS上樣緩沖液按5 ∶1(體積比)混合均勻,100 ℃煮沸5 min,自然冷卻后加樣,5%濃縮膠、10%分離膠分別在80、100 V恒壓下電泳至溴酚藍(lán)前沿移動(dòng)至凝膠底部。
1.6.3轉(zhuǎn)印電泳結(jié)束后,將凝膠上的蛋白用半干轉(zhuǎn)印儀轉(zhuǎn)印到PVDF膜上,轉(zhuǎn)印條件為電流1 mA/cm2,反應(yīng)時(shí)間為40 min。
1.6.4封閉、抗體孵育轉(zhuǎn)印完畢后,取出PVDF膜,置于含有5%脫脂奶粉的TBST中室溫封閉2 h。封閉完成后用TBST清洗PVDF膜上多余的奶粉,一抗(Cyclin D1和CDK4 1 ∶1 000 TBST稀釋,GAPDH 1 ∶5 000 TBST稀釋)中4 ℃孵育過夜,TBST充分洗滌后,繼續(xù)在二抗(辣根過氧化物酶標(biāo)記的羊抗兔IgG或兔抗小鼠IgG,1 ∶6 000 TBST稀釋)中室溫孵育1 h。
1.6.5發(fā)光、照相TBST充分洗滌后加入化學(xué)發(fā)光液,暗室曝光、顯影、定影,在膠片上獲得相應(yīng)的蛋白條帶。
1.7數(shù)據(jù)處理
用Kodak 1D凝膠圖像分析系統(tǒng)對條帶進(jìn)行光密度測定,以目的條帶與GAPDH條帶的光密度比值代表目的條帶表達(dá)的相對水平。結(jié)果以平均數(shù)±標(biāo)準(zhǔn)誤表示。采用SPSS 13.0軟件分析數(shù)據(jù)。
2結(jié)果與分析
2.1日糧能量水平對山羊瘤胃上皮細(xì)胞周期的影響HL組山羊瘤胃上皮細(xì)胞S期、G2/M期細(xì)胞百分率均顯著高于LL組,G0/G1期細(xì)胞百分率顯著低于LL組。由此可知,高能量日糧能加速山羊瘤胃上皮細(xì)胞周期G1期進(jìn)程,促進(jìn)細(xì)胞增殖。
日糧能量水平對山羊瘤胃上皮細(xì)胞周期的影響
組別細(xì)胞百分率(%)G0/G1期S期G2/M期低能量組(LL)89.19±1.319.09±1.441.72±0.39高能量組(HL)81.16±1.24*14.96±1.33*3.87±0.65*注:“*”表示與LL組相比差異顯著,各期細(xì)胞百分率測定以檢測10 000個(gè)細(xì)胞為基準(zhǔn)。
2.2細(xì)胞周期蛋白和蛋白激酶基因在山羊瘤胃上皮的表達(dá)
Cyclin D1、Cyclin A、CDK2、CDK4、CDK6 mRNA 在山羊瘤胃上皮均有表達(dá)。
2.3日糧能量水平對山羊瘤胃上皮Cyclin D1 mRNA和蛋白表達(dá)的影響
HL組山羊瘤胃上皮Cyclin D1 mRNA表達(dá)水平顯著高于LL組。由圖3可知,Western Blot法檢測出 Cyclin D1蛋白在山羊瘤胃上皮均有表達(dá)。HL組山羊瘤胃上皮Cyclin D1蛋白表達(dá)水平顯著高于LL組。由此可知,高能量日糧能促進(jìn)山羊瘤胃上皮G1期細(xì)胞周期調(diào)節(jié)蛋白Cyclin D1蛋白表達(dá)。
2.4日糧能量水平對山羊瘤胃上皮CDK4 mRNA、蛋白表達(dá)的影響
CDK4 mRNA表達(dá)水平在HL組與LL組之間差異不顯著。由圖5可知,Western Blot法檢測出CDK4蛋白在山羊瘤胃上皮表達(dá)。HL組山羊瘤胃上皮CDK4蛋白表達(dá)水平顯著高于LL組。由此可知,高能量日糧通過促進(jìn)山羊瘤胃上皮Cyclin D1-CDK4復(fù)合物形成,推動(dòng)G1期細(xì)胞進(jìn)入S期。
3結(jié)論與討論
高能量飼料能促進(jìn)青年奶牛瘤胃乳頭生長[3-4]。Stobo等研究表明,與粗料相比,高能量精料能促進(jìn)犢牛體重增加,提高瘤胃揮發(fā)性脂肪酸濃度,刺激瘤胃上皮乳頭增大[5]。研究表明,高能量日糧能促進(jìn)多種反芻動(dòng)物,包括山羊、綿羊、牛的瘤胃上皮乳頭生長[6-9]。測定動(dòng)物機(jī)體及其器官生長最經(jīng)典的表觀指標(biāo)是質(zhì)量。器官質(zhì)量的改變可通過細(xì)胞數(shù)量性增生或細(xì)胞肥大完成。細(xì)胞從一次有絲分裂結(jié)束開始到下一次有絲分裂完成所經(jīng)歷的整個(gè)有序過程稱為細(xì)胞周期。完成1次細(xì)胞周期后,1個(gè)母細(xì)胞分裂為2個(gè)子細(xì)胞。細(xì)胞周期由G1期(生長期,DNA合成前期)、S期(DNA合成期)、G2期(DNA合成后期)、M期(有絲分裂期)多個(gè)環(huán)節(jié)組成。本研究發(fā)現(xiàn),高能量日糧山羊瘤胃上皮細(xì)胞G1期細(xì)胞百分率降低,S期、G2/M期細(xì)胞百分率升高,說明高能量日糧能加速山羊瘤胃上皮細(xì)胞G1期進(jìn)程,推動(dòng)細(xì)胞從G1期進(jìn)入S期、G2/M期,從而加速細(xì)胞周期運(yùn)轉(zhuǎn),促進(jìn)細(xì)胞增殖。細(xì)胞周期進(jìn)程受到細(xì)胞周期蛋白(Cyclins)、細(xì)胞周期蛋白依賴性激酶(cyclin-dependent kinases,CDKs)復(fù)合物的調(diào)節(jié)。每種Cyclin與相應(yīng)CDK裝配形成具有全酶活性Cyclin-CDK復(fù)合物,通過底物磷酸化作用確保細(xì)胞周期各個(gè)階段順利運(yùn)行。Cyclin D-CDK4/6復(fù)合物、Cyclin E-CDK2復(fù)合物調(diào)節(jié)細(xì)胞周期G1期的進(jìn)程[10]。Cyclin A-CDK2復(fù)合物調(diào)節(jié)細(xì)胞周期S期進(jìn)程,之后由Cyclin B-CDK1(cdc2)復(fù)合物推動(dòng)G2期、M期運(yùn)行。本研究表明,Cyclin D1、CDK4 的mRNA及蛋白在山羊瘤胃上皮中均有表達(dá),高能量日糧條件下山羊瘤胃上皮細(xì)胞細(xì)胞周期G1期進(jìn)程加快與G1期細(xì)胞周期蛋白Cyclin D1及CDK4表達(dá)升高有關(guān)。Cyclin D1從G1早期開始合成,持續(xù)合成并累積至G1中期,與CDK4、CDK6形成Cyclin D1-CDK4/6復(fù)合物。G0期、G1早期的Rb蛋白處于低磷酸化水平,Cyclin D1-CDK4復(fù)合物磷酸化Rb蛋白的S795位點(diǎn),釋放E2F轉(zhuǎn)錄因子[11]。G1晚期在Cyclin E-CDK2參與下,Rb蛋白多個(gè)位點(diǎn)(S780、S795、S807、S811)高度磷酸化,釋放全部E2F轉(zhuǎn)錄因子[12-13],活化的E2F啟動(dòng)下游細(xì)胞周期的進(jìn)程關(guān)鍵基因轉(zhuǎn)錄[14],從而使細(xì)胞周期從G1期順利進(jìn)入S期。哺乳動(dòng)物細(xì)胞中G1期細(xì)胞周期蛋白Cyclin D1、Cyclin E的合成受到多種外界因素的調(diào)節(jié),日糧能量水平是其中最重要的因素之一。提高日糧能量水平能促進(jìn)小鼠體重增加、提高復(fù)層上皮細(xì)胞及肝臟上皮細(xì)胞Cyclin D1表達(dá)[15]。Kobayashi等給大鼠飼喂不同能量水平日糧,高能量組大鼠前列腺上皮Cyclin D1表達(dá)較低能量組顯著升高、細(xì)胞增殖加快[16]。限制大鼠的日糧能量攝入后,大鼠乳腺上皮細(xì)胞Cyclin D1蛋白表達(dá)水平下降,其下降幅度與日糧能量降低幅度呈正相關(guān)[17]。研究發(fā)現(xiàn),早期肝臟上皮細(xì)胞的異常增生、癌變與攝入大量高能量食物有關(guān),飼喂高能量日糧能提高大鼠肝臟上皮細(xì)胞Cyclin D1表達(dá),導(dǎo)致細(xì)胞增殖加快[18]。研究表明,Cyclin D1、Cyclin E表達(dá)升高均能導(dǎo)致細(xì)胞周期G1期進(jìn)程加快。Resnitzky運(yùn)用轉(zhuǎn)基因技術(shù)使大鼠成纖維細(xì)胞Cyclin B1、Cyclin D1、Cyclin E蛋白過表達(dá),結(jié)果發(fā)現(xiàn),Cyclin D1、Cyclin E蛋白過表達(dá)的未同步化的體外培養(yǎng)大鼠成纖維細(xì)胞G1期進(jìn)程均較對照組顯著加快,Cyclin B1過表達(dá)則對細(xì)胞周期進(jìn)程無影響,表現(xiàn)為Cyclin D1組、Cyclin E組較對照組G1期細(xì)胞百分率降低,S期、G2/M期細(xì)胞百分率升高;Cyclin B1組與對照組G1期、S期、G2/M期細(xì)胞百分率均無顯著差異[19]。研究發(fā)現(xiàn),Cyclin D1異位過表達(dá)的大鼠肝臟上皮細(xì)胞較正常表達(dá)組G1期時(shí)間縮短,細(xì)胞體積變小[20-21]。研究人員體外用鋅處理停滯在G1期的人乳腺上皮細(xì)胞,提高Cyclin D1蛋白表達(dá),15 h后33%~38%的細(xì)胞進(jìn)入S期,相反,當(dāng)Cyclin D1蛋白表達(dá)水平下降時(shí),Cyclin D1-CDK4復(fù)合物活化水平降低,細(xì)胞周期停滯在G1期。據(jù)報(bào)道,體外添加SJSZ糖蛋白能抑制肝臟上皮細(xì)胞Cyclin D1表達(dá),同時(shí)提高細(xì)胞周期蛋白激酶抑制蛋白(CDK inhibitor,CKI)p53、p21、p27蛋白表達(dá),抑制Cyclin D1-CDK4活化,進(jìn)而使其細(xì)胞周期停滯在G1期[22]。高能量日糧對大鼠細(xì)胞周期的影響也主要作用在G1期[23]。細(xì)胞周期G1期的調(diào)節(jié)由Cyclin D1-CDK4復(fù)合物與Cyclin E-CDK2復(fù)合物共同完成,但是Cyclin D1-CDK4復(fù)合物合成要先于Cyclin E-CDK2復(fù)合物。研究發(fā)現(xiàn),Cyclin E的表達(dá)依賴于Cyclin D1-CDK4復(fù)合物的活化,并且Cyclin D1表達(dá)促進(jìn)Cyclin E的合成。
參考文獻(xiàn):
[1]Shen Z,Seyfert H M,Lhrke B,et al. An energy-rich diet causes rumen papillae proliferation associated with more IGF type 1 receptors and increased plasma IGF-1 concentrations in young goats[J]. Journal of Nutrition,2004,134(1):11-17.
[2]Norbury C,Nurse P. Animal cell cycles and their control[J]. Annual Review of Biochemistry,1992,61:441-470.
[3]Flatt W P,Warner R G,Loosli J K. Influence of purified materials on the development of the ruminant stomach[J]. Journal of Dairy Science,1958,41(11):1593-1600.
[4]Harrison H N,Warner R G,Sander E G,et al. Changes in the tissue and volume of the stomachs of calves following the removal of dry feed or consumption of inert bulk[J]. Journal of Dairy Science,1960,43(9):1301-1312.
[5]Stobo I J,Roy J H,Gaston H J. Rumen development in the calf.2.The effect of diets containing different proportions of concentrates to hay on digestive efficiency[J]. British Journal of Nutrition,1966,20(2):189-215.
[6]Nozière P,Attaix D,Bocquier F,et al. Effects of underfeeding and refeeding on weight and cellularity of splanchnic organs in ewes[J]. Journal of Animal Science,1999,77(8):2279-2290.
[7]Lane M A,Baldwin R L,Jesse B W. Sheep rumen metabolic development in response to age and dietary treatments[J]. Journal of Animal Science,2000,78(7):1990-1996.
[8]Mcleod K R,Baldwin R L. Effects of diet forage:concentrate ratio and metabolizable energy intake on visceral organ growth and in vitro oxidative capacity of gut tissues in sheep[J]. Journal of Animal Science,2000,78(3):760-770.
[9]Zitnan R,Voigt J,Wegner J,et al. Morphological and functional development of the rumen in the zitnan calf:influence of the time of weaning[J]. Arch Tierernahr,1999,52(4):351-362.
[10]Sherr C J. Mammalian G1 cyclins[J]. Cell,1993,73(6):1059-1065.
[11]Connell-Crowley L,Harper J W,Goodrich D W. Cyclin D1/CDK4 regulates retinoblastoma protein-mediated cell cycle arrest by site-specific phosphorylation[J]. Mol Bio Cell,1997,8(2):287-301.
[12]Matsushime H,Quelle D E,Shurtleff S A,et al. D-type cyclin-dependent kinase ctivity in mammalian cells[J]. Molecular and Cellular Biology,1994,14(3):2066-2076.
[13]Meyerson M,Harlow E. Identification of a G1 kinase activity for cdk6,a novel cyclin D partner[J]. Molecular and Cellular Biology,1994,14(3):2077-2086.
[14]Beijersbergen R L,Bernards R. Cell cycle regulation by the retinoblastoma family of growth inhibitory proteins[J]. Biochimica et Biophysica Acta,1996,1287(2/3):103-120.
[15]Moore T,Beltran L,Carbajal S,et al. Dietary energy balance modulates signaling through the Akt/mammalian target of rapamycin pathways in multiple epithelial tissues[J]. Cancer Prevention Research,2008,1(1):65-76.
[16]Kobayashi N,Barnard R J,Said J J,et al. Effect of low-fat diet on development of prostate cancer and Akt phosphorylation in the himyc transgenic mouse model[J]. Cancer Research,2008,68(8):3066-3073.
[17]Wang Y,Ausman L M,Greenberg A S,et al. Nonalcoholic steatohepatitis induced by a high-fat diet promotes diethylnitrosamine initiated early hepatocarcinogenesis in rats[J]. International Journal of Cancer,2009,124(3):540-546.
[18]Resnitzky D,Gossen M,Bujard H,et al. Acceleration of the G1/S phase transition by expression of cyclin D1 and E with an inducible system[J]. Molecular and Cellular Biology,1994,14(3):1669-1679.
[19]Jiang W,Kahn S M,Zhou P,et al. Overerexpression of cyclin D1 in rat fibroblasts causes abnormalities in growth control,cell cycle progression and gene expression[J]. Oncogene,1993,8(12):3447-3457.
[20]Zhou P,Jiang W,Weghorst C M,et al. Overexpression of cyclin D1 enhances gene amplification[J]. Cancer Research,1996,56(1):36-39.
[21]Lee J,Lim K T. Phytoglycoprotein(38 kDa)induces cell cycle(G0/G1)arrest and apoptosis in HepG2 cells[J]. Journal of Cellular Biochemistry,2011,112(11):3129-3139.
[22]Misikangas M,Pajari A M,Pivrinta E,et al. Promotion of adenoma growth by dietary inulin is associated with increase in cyclin D1 and decrease in adhesion proteins in Min/+mice mucosa[J]. Journal of Nutritional Biochemistry,2005,16(7):402-409.
[23]Sherr C J. D-type Cyclins[J]. Trends in Biochemical Sciences,1995,20(5):187-190.
[15]Moore T,Beltran L,Carbajal S,et al. Dietary energy balance modulates signaling through the Akt/mammalian target of rapamycin pathways in multiple epithelial tissues[J]. Cancer Prevention Research,2008,1(1):65-76.
[16]Kobayashi N,Barnard R J,Said J J,et al. Effect of low-fat diet on development of prostate cancer and Akt phosphorylation in the himyc transgenic mouse model[J]. Cancer Research,2008,68(8):3066-3073.
[17]Wang Y,Ausman L M,Greenberg A S,et al. Nonalcoholic steatohepatitis induced by a high-fat diet promotes diethylnitrosamine initiated early hepatocarcinogenesis in rats[J]. International Journal of Cancer,2009,124(3):540-546.
[18]Resnitzky D,Gossen M,Bujard H,et al. Acceleration of the G1/S phase transition by expression of cyclin D1 and E with an inducible system[J]. Molecular and Cellular Biology,1994,14(3):1669-1679.
[19]Jiang W,Kahn S M,Zhou P,et al. Overerexpression of cyclin D1 in rat fibroblasts causes abnormalities in growth control,cell cycle progression and gene expression[J]. Oncogene,1993,8(12):3447-3457.
[20]Zhou P,Jiang W,Weghorst C M,et al. Overexpression of cyclin D1 enhances gene amplification[J]. Cancer Research,1996,56(1):36-39.
[21]Lee J,Lim K T. Phytoglycoprotein(38 kDa)induces cell cycle(G0/G1)arrest and apoptosis in HepG2 cells[J]. Journal of Cellular Biochemistry,2011,112(11):3129-3139.
[22]Misikangas M,Pajari A M,Pivrinta E,et al. Promotion of adenoma growth by dietary inulin is associated with increase in cyclin D1 and decrease in adhesion proteins in Min/+mice mucosa[J]. Journal of Nutritional Biochemistry,2005,16(7):402-409.
[23]Sherr C J. D-type Cyclins[J]. Trends in Biochemical Sciences,1995,20(5):187-190.
[15]Moore T,Beltran L,Carbajal S,et al. Dietary energy balance modulates signaling through the Akt/mammalian target of rapamycin pathways in multiple epithelial tissues[J]. Cancer Prevention Research,2008,1(1):65-76.
[16]Kobayashi N,Barnard R J,Said J J,et al. Effect of low-fat diet on development of prostate cancer and Akt phosphorylation in the himyc transgenic mouse model[J]. Cancer Research,2008,68(8):3066-3073.
[17]Wang Y,Ausman L M,Greenberg A S,et al. Nonalcoholic steatohepatitis induced by a high-fat diet promotes diethylnitrosamine initiated early hepatocarcinogenesis in rats[J]. International Journal of Cancer,2009,124(3):540-546.
[18]Resnitzky D,Gossen M,Bujard H,et al. Acceleration of the G1/S phase transition by expression of cyclin D1 and E with an inducible system[J]. Molecular and Cellular Biology,1994,14(3):1669-1679.
[19]Jiang W,Kahn S M,Zhou P,et al. Overerexpression of cyclin D1 in rat fibroblasts causes abnormalities in growth control,cell cycle progression and gene expression[J]. Oncogene,1993,8(12):3447-3457.
[20]Zhou P,Jiang W,Weghorst C M,et al. Overexpression of cyclin D1 enhances gene amplification[J]. Cancer Research,1996,56(1):36-39.
[21]Lee J,Lim K T. Phytoglycoprotein(38 kDa)induces cell cycle(G0/G1)arrest and apoptosis in HepG2 cells[J]. Journal of Cellular Biochemistry,2011,112(11):3129-3139.
[22]Misikangas M,Pajari A M,Pivrinta E,et al. Promotion of adenoma growth by dietary inulin is associated with increase in cyclin D1 and decrease in adhesion proteins in Min/+mice mucosa[J]. Journal of Nutritional Biochemistry,2005,16(7):402-409.
[23]Sherr C J. D-type Cyclins[J]. Trends in Biochemical Sciences,1995,20(5):187-190.