奚蕾,沈偉生,曹向明(東南大學醫(yī)學院附屬江陰醫(yī)院, 江陰 214400)
·論 著·
非小細胞肺癌患者化療前后血清腫瘤標志物、HIF-1α、VEGF的變化及相關性研究
奚蕾,沈偉生,曹向明
(東南大學醫(yī)學院附屬江陰醫(yī)院, 江陰 214400)
目的 探討非小細胞肺癌(NSCLC)患者化療前后血清腫瘤標志物、缺氧誘導因子-1α(HIF-1α)、血管內(nèi)皮生長因子(VEGF)的變化及其相關性。方法 選擇本院收治的40例NSCLC患者為觀察組,來本院體檢的40名健康正常人為對照組。檢測兩組血清中HIF-1α、VEGF水平;檢測觀察組血清中癌胚抗原(CEA)、神經(jīng)元特異性烯醇化酶(NSE)、鱗狀上皮細胞癌抗原(SCC)水平。評價觀察組的臨床療效和生存質量改善情況。結果 觀察組臨床總有效率為30%,治療后NSCLC患者生存質量改善率為32.5%。對照組血清HIF-1α、VEGF水平均明顯低于觀察組,經(jīng)比較差異有顯著統(tǒng)計學意義(P<0.01)。觀察組治療后血清HIF-1α、VEGF水平明顯高于治療前,經(jīng)比較差異有顯著統(tǒng)計學意義(P<0.01)。觀察組治療后血清CEA、NSE、SCC水平均顯著低于治療前,經(jīng)比較差異有顯著統(tǒng)計學意義(P<0.01)。觀察組患者血清HIF-1α水平與VEGF水平呈顯著正相關(P<0.01);與CEA、NSE、SCC水平均呈顯著負相關(P<0.01)。結論 NSCLC患者化療后血清HIF-1α、VEGF水平明顯升高,血液學腫瘤標志物相關指標明顯下降,且以上指標存在顯著相關性。
化療;非小細胞肺癌;血管內(nèi)皮生長因子;缺氧誘導因子-1α;腫瘤標志物
目前腫瘤相關死因中,肺癌高居首位,以非小細胞肺癌(NSCLC)為主,占80%。NSCLC是一種實體腫瘤,可無限增殖和失控性生長,其最常見的現(xiàn)象是缺氧,由此所致的微環(huán)境是腫瘤發(fā)生發(fā)展的關鍵因素之一,不僅增加了腫瘤細胞對放療和化療的耐受性,還提高了腫瘤細胞的侵襲性和遠處轉移能力[1,2]。腫瘤的生長和轉移主要依賴腫瘤內(nèi)形成的新生血管,而參與腫瘤血管生成的血管生成因子中,作用最強的是血管內(nèi)皮生長因子(VEGF);起核心調(diào)控作用的是缺氧誘導因子-l α(HIF-1α),調(diào)節(jié)包括血清腫瘤標志物和VEGF在內(nèi)的多種靶基因表達[3,4]。本研究主要探討了化療前后NSCLC患者血清腫瘤標志物、VEGF、HIF-1α的變化和相關性,現(xiàn)報道如下。
1.1 臨床資料
選擇2010年7月~2012年8月本院收治的NSCLC患者40例為觀察組,所有NSCLC患者治療前均經(jīng)病理或細胞學明確診斷。其中男15例,女25例;年齡45~78歲,平均(67.2±5.0)歲;其中鱗癌24例,腺癌16例。另選擇同期來本院體檢的40名健康正常人為對照組,其中男16例,女24例,年齡48~77歲,平均(66.2±5.5)歲。兩組年齡、性別等一般資料比較,差異無統(tǒng)計學意義,具有可比性(P>0.05)。
1.2 化療方法
觀察組給予吉西他濱聯(lián)合順鉑的化療方案:吉西他濱1 000 mg/m2,靜脈滴注30~60 min,d1,8,15;順鉑100 mg/m2,靜脈滴注30~60 min,d1,每28 d重復。化療期間給予常規(guī)水化和止吐治療。每周期內(nèi)白細胞降低至(1.0~2.0)×109/L和/或血小板降低至(50~75)×109/L時,將吉西他濱劑量減少25%。除惡心、嘔吐外,不良反應未達到WHOⅢ級以上者不減少用藥劑量。
1.3 檢測方法及觀察指標
對照組在體檢當天,觀察組在化療前1~2 d、化療治療后2周期清晨,空腹采集肘靜脈血5 mL,5 000 r/min 離心10 min后分離血清,-20 ℃冰箱冷凍保存。ELISA法檢測血清中HIF-1α、VEGF水平。全自動生化分析儀檢測觀察組血清中癌胚抗原(CEA)、神經(jīng)元特異性烯醇化酶(NSE)、鱗狀上皮細胞癌抗原(SCC)等相關腫瘤標志物水平。
1.4 療效評定標準
完全緩解(CR):腫瘤完全消失4 w以上;部分緩解(PR):腫瘤縮小>50%;穩(wěn)定(NC):腫瘤縮小<50%;進展(PD):腫瘤增大>25%或出現(xiàn)新病灶??傆行?[(CR+PR)/總例數(shù)]×100%。生存質量按照Karnofsky體力狀況評分標準(KPS):治療后KPS增加≥10者為改善;減少≥10者為降低;介于二者之間為穩(wěn)定。
1.5 統(tǒng)計學方法
2.1 觀察組臨床療效
觀察組40例患者,CR 0例,PR 12例,NC 15例,PD 13例,臨床總有效率為30%(12/40)。NSCLC患者治療后KPS評分有不同程度改善,改善率為32.5%(13/40)。
2.2 各組化療前后血清HIF-1α、VEGF水平變化
對照組血清HIF-1α、VEGF水平分別為(37.1±4.3)ng/L、(596.5±60.4)pg/mL,均明顯低于觀察組(治療前和治療后),經(jīng)比較差異有顯著統(tǒng)計學意義(P<0.01)。觀察組治療后血清HIF-1α、VEGF水平明顯高于治療前,經(jīng)比較差異有顯著統(tǒng)計學意義(P<0.01)(見表1)。
與對照組比較,**P<0.01;與治療前比較,##P<0.01
2.3 觀察組化療前后血清腫瘤標志物水平變化情況
觀察組化療治療前檢測的血清腫瘤標志物CEA、NSE、SCC水平分別為(40.3±4.1)、(33.8±4.6)、(38.5±4.6);化療治療后CEA、NSE、SCC水平分別為(28.4±3.4)、(19.6±2.4)、(22.7±2.6)。觀察組治療后血清CEA、NSE、SCC水平均顯著低于治療前,經(jīng)比較差異有顯著統(tǒng)計學意義(P<0.01)(見表2)。
表2 觀察組血清腫瘤標志物水平變化情況
與治療前比較,**P<0.01
2.4 化療前后觀察組血清HIF-1α與VEGF、腫瘤標志物水平表達的相關性
NSCLC患者血清HIF-1α水平與VEGF呈顯著正相關(P<0.01);與CEA、NSE、SCC水平均呈顯著負相關(P<0.01)(見表3)。
表3 化療前后觀察組血清HIF-1α與VEGF、腫瘤標志物水平表達的相關性
肺癌為病死率較高的惡性腫瘤,其發(fā)生部位起源于肺部支氣管黏膜上皮。近年來,隨著生活環(huán)境的改變,城市工業(yè)化發(fā)展的加速,肺癌的發(fā)病率呈逐年上升趨勢,日益受到學者們的關注[5,6]。研究[7]表明,癌細胞所處的環(huán)境與癌細胞的增殖、擴散密切相關,缺氧環(huán)境能導致癌細胞對藥物的耐受性增加。另有研究[8]證實,腫瘤發(fā)生部位的新血管生成與癌細胞的擴散遷移密切相關,VEGF為參與血管新生的重要因子,在腫瘤細胞遷移擴散的過程中發(fā)揮重要作用,HIF-1α則在血管生成的過程中起到整體調(diào)控的作用。大量研究[9-11]報道,肺癌患者的血清VEGF水平明顯高于健康對照組,且VEGF水平與肺癌TNM分期增加成正比,而不同性別、分化程度和病理類型的NSCLC患者之間血清VEGF水平差異無統(tǒng)計學意義。由于在肺癌的發(fā)生、發(fā)展和轉移過程中VEGF具有重要作用,因此,肺癌患者血清中的VEGF水平變化可作為評估肺癌的早期診斷、療效和預后的重要指標[12]。
HIF是一種轉錄因子,在缺氧環(huán)境下廣泛存在于人體和哺乳動物中,具有維持氧穩(wěn)態(tài)的重要生理功能。HIF主要成分為氧調(diào)節(jié)亞單位HIF-1α和結構亞單位HIF-1β的異二聚體[13],HIF-1α亞基具有調(diào)節(jié)HIF-1活性功能,下游靶基因有100多種,與其結合后均可促進腫瘤的生長和轉移。研究[14,15]表明,HIF-1α參與了血管形成、惡性腫瘤進展、遷移等過程,HIF-1α的表達水平可有效評估惡性腫瘤預后。研究[16,17]表明,NSCLC患者組織中HIF-1α的高表達水平與有無遠處轉移和臨床分期等有關,而在遠離腫瘤組織15~20 cm處的正常肺組織中無表達,提示在NSCLC的發(fā)生發(fā)展、遠處轉移和局部浸潤中HIF-1α起著重要的作用。本研究結果顯示,NSCLC患者血清中HIF-1α、VEGF水平均明顯高于正常人群,且經(jīng)過化療后二者水平明顯增加,這與其他學者的研究相一致。
由于癌基因及其產(chǎn)物的異常表達,腫瘤組織和細胞產(chǎn)生的抗原和生物活性物質就是血液學腫瘤標志物,其在肺癌早發(fā)現(xiàn)和早診斷方面具有重要研究價值。肺癌常用標志物有CEA、VEGF、SCC和NSE,與腫瘤負荷緊密聯(lián)系,在癌癥晚期水平升高。有研究[18,19]表明,SCC水平在Ⅲ、Ⅳ期顯著高于在I、Ⅱ期,提示SCC水平與肺癌TNM分期成正比,而CEA、NSE等的升高與SCC呈正相關。本研究中,NSCLC患者化療后血清CEA、NSE、SCC水平均顯著低于治療前,且血清HIF-1α水平與VEGF、CEA、NSE、SCC水平均呈顯著正相關。
綜上所述,在預測腫瘤的發(fā)生發(fā)展、轉移和預后方面,HIF-1α、VEGF及腫瘤標志物具有重要意義和相關性。聯(lián)合檢測NSCLC患者治療前后血清HIF-1α 、VEGF及腫瘤標志物含量可反映腫瘤血管生成程度,對臨床判斷化療反應、機體腫瘤負荷、預后及腫瘤生長轉移有積極的指導作用。
[1] Deacon K, Onion D, Kumari R,etal. Elevated SP-1 transcription factor expression and activity drives basal and hypoxia-induced vascular endothelial growth factor (VEGF) expression in non-small cell lung cancer[J]. Journal of Biological Chemistry, 2012, 287(47): 39967-39981.
[2] Wouters A, Pauwels B, Lambrechts HA,etal. Retention of the in vitro radiosensitizing potential of gemcitabine under anoxic conditions, in p53 wild-type and p53-deficient non-small-cell lung carcinoma cells[J]. Int J Radiat Oncol Biol Phys, 2011, 80(2): 558-566.
[3] Furrukh M, Burney IA, Kumar S,etal. Improving Outcomes in Advanced Lung Cancer: Maintenance therapy in non-small-cell lung carcinoma[J]. Sultan Qaboos Univ Med J, 2013, 13(1): 3-18.
[4] Wang Y, Huang L, Yang Y,etal. Effects of autocrine vascular endothelial growth factor (VEGF) in non-small cell lung cancer cell line A549[J]. Mol Biol Rep, 2013,40(4): 3093-3099.
[5] Falchook GS, Naing A, Hong DS,etal. Dual EGFR inhibition in combination with anti-VEGF treatment: a phase I clinical trial in non-small cell lung cancer[J]. Oncotarget, 2013, 4(1): 118-127.
[6] Pallis AG, Syrigos KN. Targeting tumor neovasculature in non-small-cell lung cancer[J]. Crit Rev Oncol Hematol, 2013, 86(6): 130-142.
[7] Kim SJ, Rabbani ZN, Dewhirst MW,etal. Expression of HIF-1alpha, CA IX, VEGF, and MMP-9 in surgically resected non-small cell lung cancer[J]. Lung Cancer, 2005,49(3): 325-335.
[8] Nakajima T, Anayama T, Koike T,etal. Endobronchial ultrasound doppler image features correlate with mRNA expression of HIF1-α and VEGF-C in patients with non-small-cell lung cancer[J]. J Thorac Oncol, 2012, 7(11): 1661-1667.
[9] Ramlau R, Gorbunova V, Ciuleanu TE,etal. Aflibercept and Docetaxel versus Docetaxel alone after platinum failure in patients with advanced or metastatic non-small-cell lung cancer: a randomized, controlled phase III trial[J]. J Clin Oncol, 2012, 30(29): 3640-3647.
[10] Sandler A, Hirsh V, Reck M,etal. An evidence-based review of the incidence of CNS bleeding with anti-VEGF therapy in non-small cell lung cancer patients with brain metastases[J]. Lung Cancer, 2012, 78(1): 1-7.
[11] Siejka A, Barabutis N, Schally AV. GHRH antagonist inhibits focal adhesion kinase (FAK) and decreases expression of vascular endothelial growth factor (VEGF) in human lung cancer cells in vitro[J]. Peptides, 2012, 37(1): 63-68.
[12] Kausar H, Jeyabalan J, Aqil F,etal. Berry anthocyanidins synergistically suppress growth and invasive potential of human non-small-cell lung cancer cells. Cancer Lett[J]. 2012, 325(1): 54-62.
[13] Andersen S, Donnem T, Stenvold H,etal. Overexpression of the HIF hydroxylases PHD1, PHD2, PHD3 and FIH are individually and collectively unfavorable prognosticators for NSCLC survival[J]. PLoS One, 2011, 6(8): 23847.
[14] Singh-Gupta V, Joiner MC, Runyan L,etal. Soy isoflavones augment radiation effect by inhibiting APE1/Ref-1 DNA repair activity in non-small cell lung cancer[J]. J Thorac Oncol, 2011, 6(4): 688-698.
[15] Jackson AL, Zhou B, Kim WY. HIF, hypoxia and the role of angiogenesis in non-small cell lung cancer. Expert Opin Ther Targets[J]. 2010, 14(10): 1047-1057.
[16] Jacoby JJ, Erez B, Korshunova MV,etal. Treatment with HIF-1alpha antagonist PX-478 inhibits progression and spread of orthotopic human small cell lung cancer and lung adenocarcinoma in mice[J]. J Thorac Oncol, 2010, 5(7): 940-949.
[17] Choi YJ, Rho JK, Lee SJ,etal. HIF-1alpha modulation by topoisomerase inhibitors in non-small cell lung cancer cell lines[J]. J Cancer Res Clin Oncol, 2009, 135(8): 1047-1053.
[18] Ma S, Shen L, Qian N,etal. The prognostic values of CA125, CA19.9, NSE, AND SCC for stage I NSCLC are limited[J]. Cancer Biomark, 2011, 10(3-4): 155-162.
[19] Lazarev SM, Massard Zh, Reshetov AV,etal. Role of biological tumor markers CEA, Cyfra-21, NSE, TU M2-PK in diagnosis and treatment of lung cancer[J]. Vestn Khir Im II Grek, 2010, 169(1): 39-43.
Changes and Relevance Analysis of Serum Tumor Markers, HIF-1α and VEGF Before and After Chemotherapy in Patients with Non-small Cell Lung Cancer
XILei,SHENWei-sheng,CAOXiang-ming
(JiangyinHospitalAffiliatedtoMedicalSchoolofSoutheastUniversity,Jiangyin214400,China)
Objective To explore the changes and relevance analysis of serum tumor markers, hypoxia inducible factor-1α(HIF-1α) and vascular endothelial growth factor (VEGF) before and after chemotherapy in patients with non-small cell lung cancer (NSCLC). Methods A total of 40 NSCLC patients were selected as observation group while another 40 healthy people taking physical examination in our hospital served as control group. Serum HIF-1α and VEGF levels were detected, serum carcinoembryonic antigen (CEA), neuron-specific enolase (NSE) and squamous cell carcinoma antigen (SCC) levels in observation group were examined, and clinical efficacy and quality of life (QOL) in observation group were evaluated before and after treatments. Results The total clinical efficacy of observation group was 30%, and the improvement rate of QOL was 32.5%. Serum HIF-1α and VEGF levels were evidently lower in control group than in observation group (P<0.01) and were apparently higher after treatment than before (P<0.01). Serum CEA, NSE and SCC levels in observation were markedly lower after treatment than before treatment (P<0.01). Serum HIF-1α was in positive relation with VEGF level (P<0.01), and in reverse correlation with CEA, NSE and SCC levels (P<0.01). Conclusion After chemotherapy, serum HIF-1α and VEGF levels increase whereas haematological tumor markers decrease obviously in NSCLC patients. These parameters are in significant association.
Chemotherapy; Non-Small Cell Lung Cancer; Vascular Endothelial Growth Factor; Hypoxia Inducible Factor-1α; Tumor Marker
中國高校醫(yī)學期刊臨床專項資金(NO:11321679)
http://www.cnki.net/kcms/detail/51.1705.R.20140424.0407.007.html
10.3969/j.issn.1674-2257.2014.02.008
R734.2
A