夏世金 吳俊珍 胡明冬
低氧致炎與低氧性肺動脈高壓
Hypoxia-induced inflammation and hypoxic pulmonary hypertension
夏世金1吳俊珍1胡明冬2
低氧; 肺動脈高壓; 炎癥
低氧性肺動脈高壓(hypoxic pulmonary hypertension, HPH)對人的長期嚴(yán)重危害依然未得到很好解決,是一治療極為棘手、高致死率和高致殘率的病理生理綜合征,被認(rèn)為是“假惡性”腫瘤[1]。低氧性肺血管結(jié)構(gòu)重建(hypoxic pulmonary vascular structural remodeling, HPVSR)和低氧性肺血管收縮(hypoxic pulmonary vasoconstriction, HPV)是HPH形成的兩大基本病理生理特征[2]。肺血管內(nèi)皮細(xì)胞(pulmonary vascular endothelial cell, PVEC)、肺血管平滑肌細(xì)胞(pulmonary vascular smooth muscle cell, PVSMC)和肺成纖維細(xì)胞是構(gòu)成肺血管壁的主要細(xì)胞,這些細(xì)胞結(jié)構(gòu)和功能的異常變化是導(dǎo)致HPVSR和HPV的主要原因。目前,對HPH的機制:①HPH機制復(fù)雜,尚未完全闡明;②有關(guān)HPH機制理論可歸納為低氧性肺血管結(jié)構(gòu)重建學(xué)說、低氧性肺血管收縮學(xué)說、低氧性肺血栓學(xué)說、低氧性細(xì)胞增殖學(xué)說、低氧性細(xì)胞凋亡學(xué)說和低氧性炎癥學(xué)說等。在HPH治療方面: HPH治療策略有降低肺動脈壓力、抑制血管異常增生、減輕肺血管肥厚及其結(jié)構(gòu)重建和抗炎等。近年來,以前未被足夠重視的低氧性炎癥機制和抗炎治療策略在HPH研究中越來越受到高度關(guān)注,并可望成為研究的重點和熱點。
研究表明,低氧能誘發(fā)炎癥,可稱之為低氧性炎癥。低氧是HPH的獨立危險因素[2]。臨床研究顯示,肺動脈高壓(pulmonary artery hypertension, PAH)患者肺血管叢狀病變周圍存在T細(xì)胞、B細(xì)胞、巨噬細(xì)胞及樹突狀細(xì)胞等炎癥細(xì)胞浸潤[3]。PAH患者血清白細(xì)胞介素-1(interleukin-1, IL-1)、IL-6 、腫瘤壞死因子-α(tumor necrosis factor-α, TNF-α)、C反應(yīng)蛋白(C-reactive protein, CRP)和單核細(xì)胞趨化因子1(monocyte chemotactic factor-1, MCP-1)等水平明顯升高[4],且肺動脈叢狀病變處趨化因子CX3CLl和CCL5表達顯著升高,誘導(dǎo)縮血管物質(zhì)血管內(nèi)皮生長因子(vascular endothelial growth factor, VEGF)、內(nèi)皮素-l(endothelin, ET-1)、血小板衍化生長因子(platelet -derived growth factor, PDGF)等高表達[5]。炎性細(xì)胞及其分泌的炎性細(xì)胞因子、趨化因子、黏附分子等可導(dǎo)致PVEC損傷和PVSMC的增殖,從而參與HPV 和HPVSR進程[3]。這些研究結(jié)果提示炎癥是PAH形成的重要因素[3]。
動物實驗表明,在HPH大鼠PVSMC中,促炎細(xì)胞因子巨噬細(xì)胞移動抑制因子 (migration inhibitory factor, MIF)表達升高,進而增強肺動脈血管收縮,參與HPH發(fā)生[6]。PVSMC中的Rho/Rho-kinase (ROCK) 信號通路在PAH的發(fā)病機制中發(fā)揮著重要作用。Rho-kinase 有2個亞型,ROCK1 和 ROCK2,在不同細(xì)胞中發(fā)揮不同的作用,ROCK1主要在循環(huán)炎癥細(xì)胞,ROCK2主要在脈管系統(tǒng)中起作用[7]。在低氧培養(yǎng)的PVEC和HPH動物模型中可誘導(dǎo)出brahma-related gene 1 (Brg1) 和 brahma (Brm) 。Brg1/Brm過表達增強,同時其消耗減少,導(dǎo)致細(xì)胞黏附分子(cell adhesion molecule, CAM)的過量轉(zhuǎn)錄[8]。低氧時PVEC中15-脂氧合酶(15-lipoxygenase)出現(xiàn)高表達,后者可提高NK-κB的活性[9]。慢性HPH中,NALP3 炎癥小體激活,導(dǎo)致促炎癥細(xì)胞因子分泌,尤其是IL-1β,引起中性粒細(xì)胞炎癥,激活的炎癥細(xì)胞進一步招募更多的炎癥細(xì)胞并釋放大量的炎癥因子引起炎癥的瀑布反應(yīng),損傷血管內(nèi)皮細(xì)胞[10]。
研究發(fā)現(xiàn),低氧誘導(dǎo)因子-1(hypoxia-inducible factor 1, HIF-1)是介導(dǎo)低氧性炎癥的信號通路。低氧使巨噬細(xì)胞和中性粒細(xì)胞中HIF-1 激活。HIF-1可上調(diào)VEGF及其受體表達,使局部血管通透性增強,導(dǎo)致更多的免疫細(xì)胞到達炎癥部位,引起PVEC的炎癥性損傷[11]。低氧時HIF-1α過度表達可增強NF-κB p65核定位與轉(zhuǎn)錄活性,導(dǎo)致上皮細(xì)胞釋放大量的趨化因子和細(xì)胞因子(TNF-α等)[12]。而TNF-α可誘導(dǎo)成纖維細(xì)胞大量表達NF-κB[13],低氧時小鼠PVSMC中NF-κB表達增強,促進HIF-1α轉(zhuǎn)錄[14]。低氧所誘導(dǎo)細(xì)胞產(chǎn)生和釋放的炎癥細(xì)胞因子可強化NF-κB通路,增加HIF表達,反過來又加劇細(xì)胞低氧[15]。上述研究提示HIF-1與NF-κB會話信號通路(cross talk)可能在調(diào)控HPH炎癥發(fā)生中處于重要地位[16],是維系低氧與炎癥惡性循環(huán)的紐帶,可望成為有效干預(yù)HPH的理想靶標(biāo),值得深入研究。此外,環(huán)磷酸腺苷應(yīng)答元件結(jié)合蛋白(CAMP response element binding protein, CREB)是一種重要的核轉(zhuǎn)錄因子,參與炎癥細(xì)胞因子(如IL-6等)等基因的轉(zhuǎn)錄,與NF-κB存在“cross talk”關(guān)系[17],與低氧損傷及HPH密切相關(guān)[18],近年來受到極大的關(guān)注,可能在HPH炎癥中發(fā)揮重要作用。
在HPH中,炎癥反應(yīng)可導(dǎo)致肺組織的氧供需失衡,肺組織細(xì)胞代謝需氧量劇增,肺微循環(huán)血栓等阻斷氧的供給。炎癥是肺組織對損害因子的一種防御反應(yīng),但侵入肺部的炎性細(xì)胞耗氧量增加,炎癥部位形成低氧環(huán)境,加重低氧程度[12]。低氧可誘發(fā)炎癥,炎癥又可加重低氧,于是2012年著名雜志刊文提出“inflammatory hypoxia,炎癥性低氧”新概念[19]。
動物實驗表明,早期發(fā)現(xiàn)炎癥細(xì)胞因子受體拮抗劑對PAH大鼠模型有一定的效果[20-21],近期發(fā)現(xiàn)間質(zhì)干細(xì)胞移植能逆轉(zhuǎn)HPH[12]。但HPH的抗炎研究主要集中于動物模型,而抗炎藥物對HPH早期有效,可是存在有免疫抑制問題[22],臨床應(yīng)用已受到嚴(yán)格的限制。因此,尋求安全有效的HPH抗炎策略已成為當(dāng)務(wù)之急。
上述研究提示,低氧性炎癥與炎癥性低氧二者共處一體即HPH共同體,且低氧與炎癥存在著惡性循環(huán)關(guān)系,但其機制尚未闡明。就某種意義而言,炎癥既是低氧的“果”,又是加重低氧的“因”,炎癥在HPH發(fā)生中起著關(guān)鍵作用。低氧與炎癥的惡性循環(huán)可能是HPH防治困難的主因之一,而要打破這種惡性循環(huán)的關(guān)鍵環(huán)節(jié)的策略就是抗炎,見圖1。
圖1 低氧導(dǎo)致HPH發(fā)生過程的簡要模擬圖
目前,由于炎癥在HPH發(fā)生發(fā)展的作用與機制尚未闡明,嚴(yán)重制約了抗炎在HPH臨床中的應(yīng)用。因此,積極篩選并明確機體的內(nèi)源性基因,作為干預(yù)HPH的目標(biāo)基因,調(diào)控目標(biāo)基因的內(nèi)源性表達,從而達到安全有效防治HPH之目的是防治HPH的新方向與新策略。
在HPH中炎癥細(xì)胞因子基因表達出現(xiàn)上調(diào)或下調(diào),那么這些基因的表達變化是一過性的?還是在一定時間內(nèi)維持穩(wěn)定?又能持續(xù)多久?需要從表觀遺傳學(xué)入手解答這些問題。
表觀遺傳學(xué)調(diào)控是一類不涉及遺傳物質(zhì)改變的基因調(diào)節(jié)方式,發(fā)現(xiàn)其幾乎存在于生物調(diào)控的所有環(huán)節(jié)[23]。表觀遺傳學(xué)調(diào)控的一個最常見、最清楚和最重要的機制是DNA甲基化。DNA甲基化可調(diào)控基因表達的開啟、關(guān)閉與水平。甲基化常導(dǎo)致基因表達沉默或降低,去甲基化則使基因表達重新激活。DNA甲基化主要由DNA甲基化轉(zhuǎn)移酶(DNA methyltrasferases, DNMTs)所控制。已鑒定的人類具有催化活性的DNMTs有三種:DNMT1、DNMT3A和DNMT3B[24]。表觀遺傳修飾一旦形成,即使撤除干預(yù)因素,也可長時間保持穩(wěn)定,維持對基因表達水平的調(diào)控,從而參與細(xì)胞和機體形成與環(huán)境相適應(yīng)的穩(wěn)態(tài)。
炎癥細(xì)胞因子DNA甲基化與炎癥相關(guān)疾病密切關(guān)聯(lián)[25]。DNA甲基化在炎癥領(lǐng)域的研究進展較快[26]。TNF-α的DNA甲基化修飾與非腫瘤胃黏膜病變[27],IL-6的DNA甲基化修飾與口腔癌[28],IL-10甲基化修飾與乳腺癌密切相關(guān)[29]??梢酝茰y,低氧作為一種干預(yù)因素,可能會影響炎癥因子基因表達的表觀遺傳修飾調(diào)控。
總之,低氧誘發(fā)炎癥,炎癥又加重低氧,共同參與HPH的發(fā)生和發(fā)展。低氧性炎癥、炎癥性低氧與HPH形成惡性循環(huán),而抗炎是打破這種惡性循環(huán)的有效策略。抗炎策略的確立依賴于HPH炎癥機制的闡明,而表觀遺傳學(xué)(如DNA甲基化等)為闡明HPH炎癥機制提供了理論依據(jù)和有效方法。
1 McLaughlin VV, Archer SL, Badesch DB, et al. ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association[J]. J Am Coll Cardiol, 2009, 53(17): 1573-1619.
2 Lahm T, Albrecht M, Fisher AJ, et al. 17β-Estradiol attenuates hypoxic pulmonary hypertension via estrogen receptor-mediated effects [J]. Am J Respir Crit Care Med, 2012, 185(9): 965-980.
3 Price LC, Wort SJ, Perros F, et al. Inflammation in pulmonary arterial hypertension[J]. Chest, 2012, 141(1): 210-221.
4 Humbert M, Monti G, Brenot F, et al. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension[J]. Am J Respir Crit Care Med, 1995, 151(5): 1628-1631.
5 Balabanian K, Foussat A, Dorfmüller P, et al. CX(3)C chemokine fractalkine in pulmonary arterial hypertension[J]. Am J Respir Crit Care Med, 2002, 165(10): 1419-1425.
6 Zhang B, Luo Y, Liu ML, et al. Macrophage migration inhibitory factor contributes to hypoxic pulmonary vasoconstriction in rats [J]. Microvasc Res, 2012, 83(2): 205-212.
7 Shimizu T, Fukumoto Y, Tanaka S, et al. Crucial role of ROCK2 in vascular smooth muscle cells for hypoxia-induced pulmonary hypertension in mice[J]. Arterioscler Thromb Vasc Biol, 2013, 33(12): 2780-2791.
8 Chen D, Fang F, Yang Y, et al. Brahma-related gene 1 (Brg1) epigenetically regulates CAM activation during hypoxic pulmonary hypertension[J]. Cardiovasc Res, 2013, 100(3): 363-373.
9 Li J, Rao J, Liu Y, et al. 15-Lipoxygenase promotes chronic hypoxia- induced pulmonary artery inflammation via positive interaction with nuclear factor-κB[J]. Arterioscler Thromb Vasc Biol, 2013, 33(5): 971-979.
10 Villegas LR, Kluck D, Field C, et al. Superoxide dismutase mimetic, MnTE-2-PyP, attenuates chronic hypoxia-induced pulmonary hypertension, pulmonary vascular remodeling, and activation of the NALP3 inflammasome[J]. Antioxid Redox Signal, 2013, 18(14): 1753-1764.
11 Wang PP, Kong FP, Chen XQ, et al. HIF-1 signal pathway in cellular response to hypoxia[J]. J Zhejiang Univ (Medical Sci), 2011, 40(5): 559-566.
12 Lee C, Mitsialis SA, Aslam M, et al. Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension[J]. Circulation, 2012, 126(22): 2601-2611.
13 Werner SL, Barken D, Hoffmann A. Stimulus specificity of gene expression programs determined by temporal control of IKK activity[J]. Science, 2005, 309(5742): 1857-1861.
14 Belaiba RS, Bonello S, Z?hringer C, et al. Hypoxia up-regulates hypoxia-inducible factor-1alpha transcription by involving phosphatidylinositol 3-kinase and nuclear factor kappaB in pulmonary artery smooth muscle cells[J]. Mol Biol Cell, 2007, 18(12): 4691-4697.
15 Rius J, Guma M, Schachtrup C, et al. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha[J]. Nature, 2008, 453(7196): 807-811.
16 Nizet V, Johnson RS. Interdependence of hypoxic and innate immune responses[J]. Nat Rev Immunol, 2009, 9(9): 609-617.
17 Wei Z, Wang F, Song J, et al. Norisoboldine inhibits the production of interleukin-6 in fibroblast-like synoviocytes from adjuvant arthritis rats through PKC/MAPK/NF-κB-p65/CREB pathways[J]. J Cell Biochem, 2012, 113(8): 2785-2795.
18 Garat CV, Crossno JT Jr, Sullivan TM, et al. Inhibition of phosphatidylinositol 3-kinase/Akt signaling attenuates hypoxia-induced pulmonary artery remodeling and suppresses CREB depletion in arterial smooth muscle cells[J]. J Cardiovasc Pharmacol, 2013, 62(6): 539-548.
19 Clambey ET, McNamee EN, Westrich JA, et al. Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa [J]. Proc Natl Acad Sci U S A, 2012, 109(41): E2784-2793.
20 Voelkel NF, Tuder RM, Bridges J, et al. Interleukin-1 receptor antagonist treatment reduces pulmonary hypertension generated in rats by monocrotaline[J]. Am J Respir Cell Mol Biol, 1994, 11(6): 664-675.
21 Kimura H, Kasahara Y, Kurosu K, et al. Alleviation of monocrotaline- induced pulmonary hypertension by antibodies to monocyte chemotactic and activating factor/monocyte chemoattractant protein-1[J]. Lab Invest, 1998, 78(5): 571-581.
22 Vergadi E, Chang MS, Lee C, et al. Early macrophage recruitment and alternative activation are critical for the later development of hypoxia-induced pulmonary hypertension[J]. Circulation, 2011, 123(18): 1986-1995.
23 Zhao S, Xu W, Jiang W, et al. Regulation of cellular metabolism by protein lysine acetylation[J]. Science, 2010, 327(5968): 1000-1004.
24 LaPlant Q, Vialou V, Covington HE 3rd, et al. Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens[J]. Nat Neurosci, 2010, 13(9): 1137-1143.
25 Shanmugam MK, Sethi G. Role of epigenetics in inflammation-associated diseases[J]. Subcell Biochem, 2012, 61: 627-657.
26 Hartnett L, Egan LJ. Inflammation, DNA methylation and colitis-associated cancer[J]. Carcinogenesis. 2012, 33(4): 723-731.
27 Tahara T, Shibata T, Nakamura M, et al. Effect of polymorphisms of IL-1β and TNF-α genes on CpG island hyper methylation (CIHM) in the nonneoplastic gastric mucosa[J]. Mol Carcinog, 2011, 50(11): 835-845.
28 Gasche JA, Hoffmann J, Boland CR, et al. Interleukin-6 promotes tumorigenesis by altering DNA methylation in oral cancer cells[J]. Int J Cancer, 2011, 129(5): 1053-1063.
29 Son KS, Kang HS, Kim SJ, et al. Hypomethylation of the interleukin-10 gene in breast cancer tissues[J]. Breast, 2010, 19(6): 484-488.
(本文編輯:王亞南)
夏世金,吳俊珍,胡明冬. 低氧致炎與低氧性肺動脈高壓[J/CD]. 中華肺部疾病雜志: 電子版, 2014, 7(5): 563-565.
10.3877/cma.j.issn.1674-6902.2014.05.022
國家自然科學(xué)基金(81270115)
1200040 上海,復(fù)旦大學(xué)附屬華東醫(yī)院上海市 老年醫(yī)學(xué)研究所、老年醫(yī)學(xué)科
2400037 重慶,第三軍醫(yī)大學(xué)新橋醫(yī)院全軍 呼吸內(nèi)科研究所
胡明冬, Email: huhanshandd@aliyun.com
R563
A
2014-08-23)