• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Consensus problem of multi-agent systems under arbitrary topology

    2014-08-08 11:23:05DONGLijing董立靜CHAISenchun柴森春ZHANGBaihai張百海

    DONG Li-jing(董立靜), CHAI Sen-chun(柴森春), ZHANG Bai-hai(張百海)

    (School of Automation, Beijing Institute of Technology, Beijing 100081, China)

    Consensus problem of multi-agent systems under arbitrary topology

    DONG Li-jing(董立靜), CHAI Sen-chun(柴森春), ZHANG Bai-hai(張百海)

    (School of Automation, Beijing Institute of Technology, Beijing 100081, China)

    Consensus problem of second-order leader-following multi-agent systems under arbitrary topology is investigated in this paper. Arbitrary topology means the variable topology shifts continuously rather than switches among several different structures. For ensuring the consensus of leader-following multi-agent systems, some sufficient conditions and controller design principles are deduced both for a double-integrator case and a nonlinear case. Certainly, numerical simulations are carried out to prove the feasibility and effectiveness of theory derivation, which vividly illustrates that the following agents can successfully track the leader agent.

    nonlinear multi-agent system; consensus; arbitrary topology

    Since consensus of multi-agent systems (MAS) is a fundamental problem in the MAS research area, it has attracted increasing attention of researchers from various disciplines of engineering, biology and science. In multi-agent systems, consensus means to reach an agreement regarding a certain quantity of interest that depends on the states of all agents. A consensus algorithm is an interaction rule that specifies the information exchange between an agent and all of its neighbors in the network. Such problems have been formulated as consensus of leaderless problems or leader-following problems[1-3]. For a cooperative multi-agent system, leaderless consensus means that each agent updates its state based on local information of its neighbors such that all agents eventually reach an agreement on a common value, while leader-following consensus means that there exists a virtual leader which specifies an objective for all agents to follow.

    In the past few years, the multi-agent systems with integer dynamics[4-6]or invariant topology[1,4-5]have been widely studied by many researchers due to its simple construction and convenience to analyze. Certainly, there are some researchers spending effort on multi-agent system with nonlinear dynamics[1, 7]or switching topologies[2, 6, 8], and there have been some outcomes. In Ref.[1] a pinning control algorithm was proposed to achieve leader-following consensus in a network of agents with nonlinear second-order dynamics. Ref.[7] proposed an adaptive distributed controller with a disturbance estimator to solve the consensus problem under a fixed topology. By using a common Lyapunov function, Ref.[2] extended leader-following consensus control for multi-agent systems, which ensured strong mean square consensus, to the switching topology case. In Ref.[6], the sampled control protocols were induced from continuous-time linear consensus protocol by using periodic sampling technology and zero-order hold circuit. Nevertheless, since consensus problem of multi-agent systems associated with both nonlinear dynamics and variable topology, it is extremely difficult and complicated, people hardly discuss about it.

    However, considering the fact that almost all the physical plants contain nonlinearity and the communication topology may change from time to time, therefore, the velocity of each agent is time-varying and the communication radius is finite, consensus problem of multi-agent systems with nonlinear dynamics and variable topology is of vital necessity. However only a few researchers have paid attention on the consensus problem of multi-agent systems under arbitrary topology. In Ref.[9], H. Kim addresses the problem of consensus of multi-agent systems, consisting of a set of identical MIMO LTI systems, under a time-varying network that has a well-defined average (with uniform convergence to the average). A. Popov[10]proposed a sufficient scaled l1 stability condition for arbitrary topology. By employing some knowledge of complex dynamical network, the author has discussed the consensus problem of first-order leader-following multi-agent system under arbitrary topology in Ref.[11]. This paper will discuss the second-order multi-agent consensus problem under arbitrary topology situation. Based on the author’s work in Ref.[11], some sufficient conditions and controller design principles are given to ensure consensus of the second-order nonlinear multi-agent system under arbitrary topology.

    The paper is organized as follows. Some preliminaries of graph theory are briefly reviewed in section 1. Main results are presented in section 2. To illustrate the proposed theoretical results, numerical simulations are provided in section 3. And finally, conclusions are drawn in section 4.

    1 Problem description and preliminaries

    In this section, we describe the second-order multi-agent system model on which the consensus problemwas brought about. In addition, a brief summary of the relevant results in graph theory and control stability, by merging which we are able to analyze the consensus, is provided. Finally, the relevant notations are presented.

    1.1 Problem description

    The system to be considered in this paper is a leader-following multi-agent system. The second-order multi-agent system is composed of one virtual leader agent andNnonlinear coupled following agents, labeled from 1 toN. The virtual leader agent is described with the following dynamic:

    (1a)

    wherexr∈Rmandvr∈Rmare position and velocity states of the virtual leader respectively.f(t,xr,vr)∈misanonlinearcontinuousfunctiontodescribetheself-dynamicsoftheleaderagent.Thisisanactiveleaderwhenf(t,xr,vr)≠0, which means the velocity of leader is time-varying.Whenf(t,xr,vr)=0, the leader posses a constant velocity.

    The following agents are assumed to have the second-order dynamics as

    i∈{1,2,…,N},

    (1b)

    wherexi∈Rmandvi∈Rmare position and velocity states of agentirespectively,f(t,xi,vi)∈Rmis a nonlinear continuous function to describe the self-dynamics of agenti,ui∈Rmare control input of agenti. Whenf(t,xi,vi)=0, the dynamics of multi-agent system will turn into double-integrator dynamics with a constant reference velocity.

    The objective of this paper is to design a control protocol which ensures the following agents effectively pursue the leader agent under arbitrary topology.

    1.2 Preliminaries

    To analyze the consensus problem of second-order leader-following multi-agent systems, some relevant theories in graph theory and control stability are recalled.

    A weighted graph denoted byG={v,ε,A} with a node setv={1,2,…,N},an edge setε?v×vand a weighted adjacency matrixA=(aij)N×Nwith nonnegative elements[12]. We consider that (i,j)∈εif and only if vertex (node)ican send its information to vertexj. If (i,i)∈ε, we say that vertexihas the self-loop. In this paper, it is assumed that no self-loop exists. The set of neighbors of vertexiis denoted byNi={j|j∈v,(j,i)∈ε}, whenj?Ni, which means there is no information flow from vertexjto vertexi, thenaij=0, otherwiseaij>0. The in-degree and out-degree of nodeiare, respectively, defined as[13]

    DenoteDdiag{degin(1),degin(2),…,degin(N)},thentheLaplacianmatrixLofthegraphGisdefinedasLD-A.

    Fromthegraphtheorypointofview,everyagentcanbetreatedasavertex.Thenthemulti-agentsystemcanbetreatedasadynamicgraphGwhenitisanalyzedintheory.

    Inthispaper, aij,theweightedvalueofagentjtoagenti,isconscioustime-varying,anditisdenotedasaij(t),whichmeansthetopologyofmulti-agentsystemisarbitraryalongwithtime.

    Definition 1 The leader-following multi-agent system (1) is said to achieve second-order consensus when following equation is satisfied.

    (2)

    Lemma 1[14]Let Abearealsymmetricn×n-matrixandλmax(A)≥λi(A)≥λmin(A)(i=1,2,…,n), then the following inequality equation on inner product is established.

    λmax(A)〈X,X〉≥〈AX,X〉≥λmin(A)〈X,X〉.

    1.3 Notations

    Some mathematical notations are used throughout this paper. DenoteIN∈RN×Nas anN-dimensional identity matrix, 1N=[1,1,…,1]T∈RNas a vector of all ones. LetATandA-1be the transpose and the inverse of matrix Arespectively.λmax(A) denotes the maximal eigenvalue of matrixAandλmin(A) denotes the minimal eigenvalue of matrixA. ‖·‖ denotes Euclidean norm.

    2 Main results

    This section presents control protocol design principle and the consensus proof of second-order leader-following multi- agent systems under arbitrary topology under two cases:

    Case Ⅰ:f=0 (double integrator dynamics)

    Case Ⅱ:f≠0 (nonlinear dynamics)

    In the two cases, the control protocol is adopted in the following format for each agent:

    (3)

    whereγ>0 andk>0 are parameters to be designed.bi(t) indicates the accessibility of the leader agent by the following agentiat timet.bi(t)>0 indicates the case that agentican get the position and velocity value of the leader at timet, andbi(t)=0 indicates the case that the information of leader agent is not accessible by the following agenti.

    (4)

    2.1 Consensus with double integrator dynamics

    In case off=0, the second-order multi-agent system is reduced into the following double-integrator system (5) with control protocol (3).

    (5)

    Andtheleaderagentisdescribedby

    (6)

    Combining the following agents (5) and the leader agent (6), disagreement equation can be deduced as

    (7)

    In this case, the following result about consensus problem of multi-agent system under arbitrary topology is established.

    Theorem 1 The second-order leader-following consensus of multi-agent system (5) under arbitrary topology is achieved if the following conditions are satisfied.

    (i)λmin((L(t)+B(t))?Im)>0

    (ii) The derivation d((L(t)+B(t))?Im)/dtexists andλmax(d((L(t)+B(t))?Im)/dt)<0.

    ProofIntheviewofLemma1,itisclearthat

    (8)

    By employing the Lyapunov function (4) and the above inequality (8), it follows that

    (9)

    Fork>0 andλmin((L(t)+B(t))?Im)>0, it is clear that the Lyapunov function defined in Eq.(4) is positive definite in this case.

    The derivation of Lyapunov function (4) along the disagreement system (7) is deduced as

    (10)

    Itisclearthat

    (11)

    Substitute Eq.(11) into Lyapunov function’s derivation (10), consequently, Eq.(10) can obtained as

    (12)

    InviewofLemma1,itisclearthat

    (13)

    Accordingtotheaboveillustrations,wecanconcludethatconditions(i)and(ii)inTheorem1ensurethestabilityofthedisagreementsystem(7).FromDefinition1,thecontrolprotocol(3)solvestheconsensusproblemofsecond-ordermulti-agentsystem,inwhichthefollowingagents’dynamicmodelisEq.(5)andtheleaderagent’sdynamicmodelisEq.(6),underarbitrarytopologywithoutanyspecialrequestforcontrolparameterγandk. This completes the proof.

    2.2 Consensus with second-order nonlinear dynamics

    In the case off≠0, the second-order following agents’ dynamics Eq.(1b) become system (14) with control protocol (3). The leader, in this case, is an active agent described by Eq.(1a).

    (14)

    Assumption 1 For the nonlinear functionf, there exists a constantl>0 such that ‖f(t,xi(t),vi(t))-f(t,xr(t),vr(t))‖≤l(‖xi(t)-xr(t)‖+‖vi(t)-vr(t)‖) which indicates

    (15)

    Combining system (14) and the virtual leader (1a), the disagreement multi-agent system can be deduced.

    B(t))??).

    (16)

    In this case, the following consensus theorem of second-order leader-following system with nonlinear self-dynamic is established.

    Theorem 2 The second-order leader-following consensus of multi-agent system (14) is achieved if all the conditions in Theorem 1 hold and the control parametersγ,ksatisfy the following conditions.

    (i)k>-l/λmax(d(L(t)+B(t))?Im/dt)

    (ii)γk>3l/2λmin((L(t)+B(t))?Im).

    Proof Under the conditions in Theorem 2 and consider the proof of Theorem 1, it can be easily seen that

    (17)

    (18)

    3 Numericalexamples

    Inthissection,asecond-ordermulti-agentsystemwhichconsistsof1leaderagentand3followingagentsisemployedtoverifythefeasibilityandeffectivenessofthiswork.TwoapplicationsofTheorem1andTheorem2arecarriedout.Theleaderandfollowingagentsaredescribedas

    (19)

    1.5cos(2.5t)+ui(t),i∈{1,2,3},

    (20)

    wherex∈R3andv∈R3are position and velocity states of the agents in 3-dimensional respectively. The nonlinear continuous functionf(t,x,v) is embodied by

    -sin(x(t))-0.25v(t)+1.5cos(2.5t).

    As the topology of multi-agent system is arbitrary, Laplacian matrix of topology graph at timetis described by a time-varying matrix (L(t)+B(t))?I3.AndL(t)+B(t)isembodiedas

    (21)

    wherea11=(e2-1)th(t)+earctan(t),a12=(1-e)th(t)-2earctan(t),a13=earctan(t),a22=th(t)-2e2arctan(t),a23=2th(t)+e2arctan(t),a33=3(e-e2)th(t)+arctan(t).

    The leader’s initial position and velocity in 3-dimensional are

    xr(0)=[0 0 0],

    vr(0)=[0.03 0.02 -0.04].

    The position and velocity in 3-dimensional of the 3 following agents are initialized as

    x1(0)=[0.05 -0.04 0.01],

    x2(0)=[-0.05 0.03 -0.07],

    x3(0)=[0.03 -0.06 0.08],

    v1(0)=[0.05 -0.01 0.01],

    v2(0)=[-0.04 0.05 0.03],

    v3(0)=[-0.05 0.08 -0.01].

    3.1 Multi-agent system with double-integrator dynamics

    In this case, the nonlinear function in Eqs.(19) (20) is replaced by 0. Arbitrary topology and the above mentioned initial conditions are employed in this simulation. Fig.1 and Fig.2 present the position and velocity disagreement vectors of the leader and 3 following agents with double-integrator dynamics.

    -sin(x(t))-0.25v(t)+1.5cos(2.5t)

    Fig.1 Position errors of the multi-agent system with double-integrator dynamics

    Fig.2 Velocity errors of the multi-agent system with double-integrator dynamics

    From Fig.1 and Fig.2, it is obvious that the following agents can track the leader effectively in 150 steps under arbitrary topology. This is a good explanation of the theoretical derivation in section 2.1.

    3.2 Multi-agent system with nonlinear dynamics

    Fig.3 Position errors of the multi-agent system with nonlinear dynamics

    In this case, the multi-agent system is described exactly the same as Eqs.(19) (20) under the arbitrary topology and the above mentioned initial conditions. Fig.3 and Fig.4 present the position and velocity disagreement vectors of 3 following agents relative to the leader with nonlinear dynamics.

    Fig.4 Velocity errors of the multi-agent system with nonlinear dynamics

    From Fig.3 and Fig.4, we can see that the position disagreement and velocity disagreement of the following agents with leader converge to zero in 250 steps, which indicates that the following agents can track the active leader in finite time nicely. This is a good explanation to theoretical derivation in section 2.2.

    By comparing the results in section 3.1 and section 3.2, the disagreement vectors of the multi-agent system with double-integrator dynamics converge faster than that with nonlinear dynamics.

    4 Conclusion

    This paper discusses the consensus problem of second-order multi-agent systems under arbitrary topology. Some sufficient conditions are obtained with the proposed control protocol and numerical simulations are employed to verify them. The multi-agent systems can reach consensus in both double-integrator case and nonlinear case. The response time of multi-agent system with double integrator dynamics is shorter. It is obvious that nonlinearity impedes the convergence rate, which tantalizingly hints that it is needed to design a more advanced controller in the future work.

    [1] Song Q, Cao J D, Yu W W. Second-order leader-following consensus of nonlinear multi-agent systems via pinning control[J]. Systems & Control Letters,2010, 59: 553-562.

    [2] Ni W, Cheng D. Leader-following consensus of multi-agent systems under fixed and switching topologies[J]. Systems & Control Letters, 2010,59(3C4): 209C217.

    [3] Ren W. Consensus tracking under directed interaction topologies: algorithms and experiments[J]. IEEE Trans Control Syst Technology, 2010,18(1) :230 -237.

    [4] Li S H, Dua H B, Lin X Z. Finite-time consensus algorithm for multiagent systems with double-integrator Dynamics[J]. Automatica,2011, 47:1706-1712.

    [5] Hua J P, Feng G. Distributed tracking control of leader-follower multiagent systems under noisy measurement[J]. Automatica,2010, 46: 1382-1387.

    [6] Xie G M, Liu H Y, Wang L, et al. Consensus in networked multi-agent systems via sampled control: switching topology case[C]∥2009 American Control Conference, 2009:4525-4530.

    [7] Sumizaki K, Liu L, Hara S. Adaptive consensus on a class of nonlinear multi-agent dynamical systems[C]∥SICE Annual Conference 2010 August 18-21,2010: 1141-1145.

    [8] Münz U, Papachristodoulou A, Allg?wer F. Consensus in multi-agent systems with coupling delays and switching topology[J]. IEEE Trans Automat Control,2011,56(12):2976-2982.

    [9] Kim H, Shim H, Back J, et al. Consensus of output-coupled linear multi-agent systems under fast switching network: averaging approach[J].Automatica, 2013, 49: 267-272.

    [10] Popov A, Werner H. Robust stability of a multi-agent system under arbitrary and time-varying communication topologies and communication delays[J]. IEEE Trans Automat Control, 2012,57(9): 2343-2347.

    [11] Dong L J, Chai S C, Zhang B H. Necessary and sufficient conditions for consensus of multi-agent systems with nonlinear dynamics and variable topology[C]∥2012 UKACC International Conference on Control, 2012:1052-1056.

    [12] Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays[J]. IEEE Trans Automat Control,2004, 49 (9) : 1520-1533.

    [13] Song Q, Cao J. On pinning synchronization of directed and undirected complex dynamical networks[J]. IEEE Trans Circuits Syst,2010, I57 (3) : 672-680.

    [14] Mirsky L. An introduction to linear algebra[M]. New York: Dover Publications, Inc.,1990.

    (Edited by Wang Yuxia)

    2013- 03- 01

    Supported by Scientific Research and Postgraduate Training Joint-Build Project (20120639002); the National Natural Science Foundation of Youth Science Fund (61104086)

    TP 202.1 Document code: A Article ID: 1004- 0579(2014)02- 0210- 08

    E-mail: chaisc97@bit.edu.cn

    色老头精品视频在线观看| 成人午夜高清在线视频 | 久久久久国内视频| 色av中文字幕| 高潮久久久久久久久久久不卡| 亚洲国产欧美网| 欧美激情久久久久久爽电影| 亚洲电影在线观看av| 午夜a级毛片| 日韩欧美一区二区三区在线观看| 国产精品爽爽va在线观看网站 | 亚洲第一青青草原| 淫秽高清视频在线观看| 麻豆av在线久日| 禁无遮挡网站| 欧美色欧美亚洲另类二区| 亚洲国产精品久久男人天堂| 好看av亚洲va欧美ⅴa在| 国产精品99久久99久久久不卡| 身体一侧抽搐| 亚洲专区中文字幕在线| 午夜免费观看网址| 51午夜福利影视在线观看| 99riav亚洲国产免费| 在线看三级毛片| 亚洲av电影不卡..在线观看| 超碰成人久久| 午夜福利高清视频| 欧美激情 高清一区二区三区| 日韩视频一区二区在线观看| 波多野结衣高清作品| 俺也久久电影网| 97超级碰碰碰精品色视频在线观看| www.熟女人妻精品国产| 国产精品亚洲美女久久久| 亚洲第一电影网av| 最新在线观看一区二区三区| 别揉我奶头~嗯~啊~动态视频| 这个男人来自地球电影免费观看| 欧美日韩亚洲国产一区二区在线观看| 窝窝影院91人妻| 手机成人av网站| 午夜视频精品福利| 亚洲成人精品中文字幕电影| 久久精品国产亚洲av高清一级| 香蕉丝袜av| 成人午夜高清在线视频 | 亚洲成人久久爱视频| 国产又黄又爽又无遮挡在线| 美女国产高潮福利片在线看| 国产男靠女视频免费网站| 国产蜜桃级精品一区二区三区| 十八禁网站免费在线| 亚洲五月天丁香| 亚洲人成伊人成综合网2020| 一级毛片精品| 岛国在线观看网站| 亚洲成人精品中文字幕电影| 欧美日韩乱码在线| 老司机午夜十八禁免费视频| 黄色丝袜av网址大全| 久久久久免费精品人妻一区二区 | 日韩 欧美 亚洲 中文字幕| 在线天堂中文资源库| 99国产精品一区二区蜜桃av| 给我免费播放毛片高清在线观看| 99精品在免费线老司机午夜| 亚洲精品在线美女| 国产欧美日韩一区二区三| 国产av不卡久久| 日本 欧美在线| 在线看三级毛片| 国产精品一区二区免费欧美| 欧美乱色亚洲激情| 日韩精品免费视频一区二区三区| 精品免费久久久久久久清纯| 精品熟女少妇八av免费久了| 中文字幕最新亚洲高清| 日韩欧美 国产精品| 国产高清激情床上av| 免费高清在线观看日韩| 麻豆国产av国片精品| 国产99久久九九免费精品| 国产黄片美女视频| 久久人人精品亚洲av| 深夜精品福利| av超薄肉色丝袜交足视频| svipshipincom国产片| 国产亚洲精品综合一区在线观看 | 搞女人的毛片| 婷婷六月久久综合丁香| 狠狠狠狠99中文字幕| 午夜福利成人在线免费观看| 日韩国内少妇激情av| 国产又爽黄色视频| 国产亚洲欧美在线一区二区| 免费在线观看成人毛片| 黄色a级毛片大全视频| 曰老女人黄片| 悠悠久久av| 99精品欧美一区二区三区四区| 人成视频在线观看免费观看| 欧洲精品卡2卡3卡4卡5卡区| 色播在线永久视频| 一a级毛片在线观看| 免费高清在线观看日韩| 久久久久久亚洲精品国产蜜桃av| 欧美最黄视频在线播放免费| 亚洲国产毛片av蜜桃av| av在线天堂中文字幕| 真人一进一出gif抽搐免费| 国产亚洲欧美精品永久| 中文字幕高清在线视频| 日韩免费av在线播放| 欧美激情 高清一区二区三区| 亚洲欧美一区二区三区黑人| 女警被强在线播放| 麻豆一二三区av精品| 动漫黄色视频在线观看| 色综合亚洲欧美另类图片| 亚洲五月婷婷丁香| 天堂影院成人在线观看| 黑人巨大精品欧美一区二区mp4| 国产精品久久久av美女十八| 日本a在线网址| 成年人黄色毛片网站| 亚洲男人的天堂狠狠| 成人永久免费在线观看视频| 久热这里只有精品99| 国产黄色小视频在线观看| 狂野欧美激情性xxxx| 看黄色毛片网站| 亚洲成人久久性| av天堂在线播放| 香蕉av资源在线| 中文字幕另类日韩欧美亚洲嫩草| 国产亚洲欧美98| 中文字幕高清在线视频| 午夜影院日韩av| 亚洲激情在线av| 好男人在线观看高清免费视频 | 此物有八面人人有两片| 亚洲国产欧洲综合997久久, | 亚洲最大成人中文| 精品人妻1区二区| 亚洲成人久久性| 国产亚洲欧美在线一区二区| 午夜激情福利司机影院| 精品国内亚洲2022精品成人| 18禁观看日本| 亚洲国产看品久久| 俺也久久电影网| 午夜久久久久精精品| 久久久久国产精品人妻aⅴ院| 精品不卡国产一区二区三区| 久久久久久久久中文| 日日摸夜夜添夜夜添小说| 国产亚洲精品av在线| 亚洲 欧美 日韩 在线 免费| 亚洲第一青青草原| 真人一进一出gif抽搐免费| 黄色a级毛片大全视频| 久久久久国产精品人妻aⅴ院| 999久久久国产精品视频| 国产欧美日韩精品亚洲av| 成人手机av| 91大片在线观看| 国产午夜福利久久久久久| 不卡一级毛片| av在线天堂中文字幕| 欧美色欧美亚洲另类二区| 国产成人精品久久二区二区免费| 此物有八面人人有两片| 精品国产一区二区三区四区第35| 国产亚洲av嫩草精品影院| 91大片在线观看| 精品国产超薄肉色丝袜足j| 波多野结衣av一区二区av| 亚洲熟妇熟女久久| 狂野欧美激情性xxxx| 亚洲va日本ⅴa欧美va伊人久久| 国产亚洲精品第一综合不卡| 黄频高清免费视频| 精品日产1卡2卡| 999久久久精品免费观看国产| 宅男免费午夜| 欧美日韩福利视频一区二区| 亚洲av成人一区二区三| 精品人妻1区二区| 大型av网站在线播放| 熟女少妇亚洲综合色aaa.| 亚洲av五月六月丁香网| 1024香蕉在线观看| 久久草成人影院| 不卡av一区二区三区| 亚洲国产精品sss在线观看| 国产伦人伦偷精品视频| 国产v大片淫在线免费观看| 日韩中文字幕欧美一区二区| 亚洲,欧美精品.| 午夜免费激情av| 男女那种视频在线观看| 18禁观看日本| 亚洲精品国产精品久久久不卡| 亚洲欧美激情综合另类| 亚洲一区中文字幕在线| 色综合亚洲欧美另类图片| 99riav亚洲国产免费| 日韩欧美国产在线观看| 老汉色∧v一级毛片| 久久精品影院6| 人人妻人人澡人人看| 中文字幕高清在线视频| 国产不卡一卡二| 久久久久久国产a免费观看| www.精华液| 一级黄色大片毛片| 波多野结衣高清作品| 中文字幕人妻熟女乱码| 欧美 亚洲 国产 日韩一| 成人国产一区最新在线观看| 中文字幕另类日韩欧美亚洲嫩草| √禁漫天堂资源中文www| 变态另类成人亚洲欧美熟女| АⅤ资源中文在线天堂| 校园春色视频在线观看| 亚洲精品在线美女| 99国产综合亚洲精品| 国产av一区在线观看免费| 国产亚洲精品久久久久久毛片| 欧美黄色片欧美黄色片| 一进一出抽搐动态| 欧美精品啪啪一区二区三区| 久久香蕉国产精品| 十分钟在线观看高清视频www| 欧美绝顶高潮抽搐喷水| 国产精品久久久久久精品电影 | 黄片播放在线免费| 每晚都被弄得嗷嗷叫到高潮| 99国产综合亚洲精品| 两人在一起打扑克的视频| 中亚洲国语对白在线视频| 成人三级黄色视频| 此物有八面人人有两片| 亚洲精品久久成人aⅴ小说| www.999成人在线观看| 亚洲人成77777在线视频| 99久久无色码亚洲精品果冻| 在线观看日韩欧美| 亚洲avbb在线观看| 久久久久免费精品人妻一区二区 | 一夜夜www| 两性夫妻黄色片| 欧美中文综合在线视频| 50天的宝宝边吃奶边哭怎么回事| 麻豆成人av在线观看| 国产精品综合久久久久久久免费| 黄色视频不卡| 精品久久久久久久久久久久久 | 啪啪无遮挡十八禁网站| 亚洲专区字幕在线| 国产精品九九99| 99精品久久久久人妻精品| 成人一区二区视频在线观看| 国产成人欧美| 国产不卡一卡二| 亚洲黑人精品在线| 成人国语在线视频| 手机成人av网站| 国产一卡二卡三卡精品| 国产精品久久久久久人妻精品电影| 国内久久婷婷六月综合欲色啪| 久久香蕉精品热| 亚洲精品美女久久久久99蜜臀| 精品熟女少妇八av免费久了| 久久久久久久久免费视频了| 麻豆久久精品国产亚洲av| 国产精品爽爽va在线观看网站 | 日韩欧美国产在线观看| 日韩欧美国产一区二区入口| 亚洲av成人av| 国产av又大| 亚洲专区国产一区二区| 天堂动漫精品| 夜夜夜夜夜久久久久| 国产亚洲精品综合一区在线观看 | 久久久久久国产a免费观看| 亚洲成国产人片在线观看| 亚洲欧美精品综合一区二区三区| 亚洲男人天堂网一区| 嫁个100分男人电影在线观看| 欧美性长视频在线观看| 免费高清视频大片| 国内精品久久久久久久电影| 香蕉久久夜色| 亚洲av电影在线进入| 欧美大码av| 婷婷精品国产亚洲av在线| 国内毛片毛片毛片毛片毛片| 伦理电影免费视频| 亚洲av五月六月丁香网| or卡值多少钱| 中文字幕久久专区| 久久狼人影院| 一级作爱视频免费观看| 丁香六月欧美| 他把我摸到了高潮在线观看| 欧美日韩一级在线毛片| 国产区一区二久久| 欧美大码av| 欧美国产精品va在线观看不卡| 久久香蕉精品热| 久久久久亚洲av毛片大全| 久久人妻福利社区极品人妻图片| 亚洲男人的天堂狠狠| 每晚都被弄得嗷嗷叫到高潮| 黄色视频,在线免费观看| 夜夜夜夜夜久久久久| 成人av一区二区三区在线看| 免费人成视频x8x8入口观看| 91大片在线观看| 日韩高清综合在线| 国产亚洲av嫩草精品影院| 亚洲国产精品合色在线| av视频在线观看入口| 欧美日韩一级在线毛片| 国产爱豆传媒在线观看 | 波多野结衣高清作品| 精品无人区乱码1区二区| 777久久人妻少妇嫩草av网站| 天堂动漫精品| 国产日本99.免费观看| 亚洲全国av大片| 久久中文字幕一级| 久久伊人香网站| 国产不卡一卡二| 国产97色在线日韩免费| 黑人操中国人逼视频| 黄色视频不卡| 欧美中文日本在线观看视频| 一边摸一边做爽爽视频免费| 色在线成人网| 美女 人体艺术 gogo| 国产精品一区二区精品视频观看| 亚洲av电影在线进入| 欧美大码av| 自线自在国产av| 别揉我奶头~嗯~啊~动态视频| 国语自产精品视频在线第100页| 午夜免费成人在线视频| 69av精品久久久久久| 亚洲最大成人中文| 久久久国产精品麻豆| 99久久综合精品五月天人人| 精品国产亚洲在线| 午夜福利视频1000在线观看| 搞女人的毛片| 亚洲成人国产一区在线观看| 国产成人av教育| 亚洲人成网站在线播放欧美日韩| 嫩草影院精品99| 欧美国产日韩亚洲一区| 色哟哟哟哟哟哟| 欧美成人一区二区免费高清观看 | 亚洲精品粉嫩美女一区| 最近最新中文字幕大全电影3 | 国产激情欧美一区二区| 亚洲av成人av| 国产精品电影一区二区三区| 99在线人妻在线中文字幕| 免费观看精品视频网站| 成人国产综合亚洲| 日日干狠狠操夜夜爽| 欧美乱色亚洲激情| 亚洲国产欧洲综合997久久, | 男女下面进入的视频免费午夜 | 久久国产亚洲av麻豆专区| 国产高清激情床上av| √禁漫天堂资源中文www| 国产一区在线观看成人免费| 久久久久国内视频| 久久香蕉精品热| 琪琪午夜伦伦电影理论片6080| 免费观看精品视频网站| 久久久久久大精品| 久久国产精品人妻蜜桃| 97人妻精品一区二区三区麻豆 | 亚洲在线自拍视频| 999精品在线视频| 欧美乱妇无乱码| 999久久久精品免费观看国产| 99久久无色码亚洲精品果冻| 91在线观看av| 在线免费观看的www视频| 久久午夜综合久久蜜桃| 无遮挡黄片免费观看| 国产欧美日韩一区二区精品| 波多野结衣巨乳人妻| 女性生殖器流出的白浆| 成人欧美大片| 午夜福利在线在线| x7x7x7水蜜桃| 韩国精品一区二区三区| 午夜激情福利司机影院| 老熟妇仑乱视频hdxx| 一个人观看的视频www高清免费观看 | 成年人黄色毛片网站| netflix在线观看网站| 亚洲无线在线观看| 女人爽到高潮嗷嗷叫在线视频| 亚洲激情在线av| 久久久久久亚洲精品国产蜜桃av| 精品不卡国产一区二区三区| 91国产中文字幕| 曰老女人黄片| 91av网站免费观看| 手机成人av网站| 欧美成人性av电影在线观看| 热re99久久国产66热| 亚洲av日韩精品久久久久久密| 日日夜夜操网爽| 国产免费av片在线观看野外av| 中文字幕精品亚洲无线码一区 | 黄色 视频免费看| 在线观看免费日韩欧美大片| 精品电影一区二区在线| 禁无遮挡网站| 中文字幕精品免费在线观看视频| 亚洲国产精品成人综合色| netflix在线观看网站| 久久精品影院6| 欧洲精品卡2卡3卡4卡5卡区| 黄片小视频在线播放| 熟女少妇亚洲综合色aaa.| 2021天堂中文幕一二区在线观 | 亚洲va日本ⅴa欧美va伊人久久| 人成视频在线观看免费观看| 欧美性长视频在线观看| 欧美日韩亚洲综合一区二区三区_| 99热这里只有精品一区 | 老汉色∧v一级毛片| 亚洲欧美一区二区三区黑人| 9191精品国产免费久久| 88av欧美| 亚洲av中文字字幕乱码综合 | 国产又色又爽无遮挡免费看| 级片在线观看| 久久精品影院6| 在线国产一区二区在线| av视频在线观看入口| 欧美日本视频| 99精品欧美一区二区三区四区| 免费一级毛片在线播放高清视频| 国产亚洲欧美在线一区二区| 在线观看免费午夜福利视频| 精品卡一卡二卡四卡免费| 亚洲av成人不卡在线观看播放网| 亚洲熟妇中文字幕五十中出| 在线观看日韩欧美| 亚洲av中文字字幕乱码综合 | 欧美亚洲日本最大视频资源| 欧美成人性av电影在线观看| 韩国av一区二区三区四区| 在线永久观看黄色视频| 禁无遮挡网站| 久久 成人 亚洲| av中文乱码字幕在线| 免费搜索国产男女视频| 久久热在线av| 丁香欧美五月| 女警被强在线播放| 手机成人av网站| 国产一卡二卡三卡精品| 精品久久久久久久久久久久久 | 男女之事视频高清在线观看| 99国产精品99久久久久| 久久国产精品男人的天堂亚洲| 色尼玛亚洲综合影院| 久久精品影院6| 久久草成人影院| 国产高清视频在线播放一区| 亚洲欧美激情综合另类| 草草在线视频免费看| 久久青草综合色| 精品国产乱码久久久久久男人| 亚洲欧美精品综合一区二区三区| 一级作爱视频免费观看| 波多野结衣av一区二区av| 在线播放国产精品三级| 久久久久久久午夜电影| 免费无遮挡裸体视频| 后天国语完整版免费观看| 最好的美女福利视频网| 国产av一区在线观看免费| 88av欧美| 日本一本二区三区精品| 久久99热这里只有精品18| 校园春色视频在线观看| 91成人精品电影| 在线观看免费午夜福利视频| 亚洲国产高清在线一区二区三 | 别揉我奶头~嗯~啊~动态视频| 一边摸一边做爽爽视频免费| 一个人免费在线观看的高清视频| 亚洲自偷自拍图片 自拍| 久久天躁狠狠躁夜夜2o2o| 老熟妇仑乱视频hdxx| 欧美黄色淫秽网站| 亚洲激情在线av| 在线国产一区二区在线| av超薄肉色丝袜交足视频| 久久久久久人人人人人| 成人亚洲精品av一区二区| 亚洲成人国产一区在线观看| 99久久99久久久精品蜜桃| 欧美zozozo另类| 久久婷婷成人综合色麻豆| 性欧美人与动物交配| 久久中文看片网| 中文资源天堂在线| 国产成人影院久久av| 国产精品影院久久| 老司机福利观看| 长腿黑丝高跟| 色老头精品视频在线观看| 好男人在线观看高清免费视频 | 制服人妻中文乱码| 亚洲性夜色夜夜综合| 一级a爱视频在线免费观看| 国产国语露脸激情在线看| 一区福利在线观看| 一级毛片高清免费大全| 人成视频在线观看免费观看| 国产爱豆传媒在线观看 | 国产精品1区2区在线观看.| 日韩有码中文字幕| 男人舔女人下体高潮全视频| 看片在线看免费视频| 男女视频在线观看网站免费 | 露出奶头的视频| 又紧又爽又黄一区二区| 日本撒尿小便嘘嘘汇集6| 男女做爰动态图高潮gif福利片| 麻豆一二三区av精品| 色精品久久人妻99蜜桃| 国产精品久久久久久亚洲av鲁大| 日韩欧美国产在线观看| 黑丝袜美女国产一区| 亚洲五月色婷婷综合| 免费在线观看成人毛片| 日韩欧美三级三区| 老司机深夜福利视频在线观看| 欧美乱妇无乱码| www日本黄色视频网| 成人一区二区视频在线观看| 国产精品久久久久久人妻精品电影| 日韩免费av在线播放| 亚洲国产精品久久男人天堂| 淫秽高清视频在线观看| 国产亚洲av高清不卡| 在线av久久热| 国产av不卡久久| 曰老女人黄片| 美女 人体艺术 gogo| 他把我摸到了高潮在线观看| 国产伦在线观看视频一区| 亚洲成av人片免费观看| 精品国产一区二区三区四区第35| 中文字幕av电影在线播放| 中亚洲国语对白在线视频| 亚洲 欧美 日韩 在线 免费| 日韩有码中文字幕| av天堂在线播放| 首页视频小说图片口味搜索| 亚洲第一av免费看| 成人亚洲精品av一区二区| 免费电影在线观看免费观看| 黄色a级毛片大全视频| 在线天堂中文资源库| 中文字幕高清在线视频| 19禁男女啪啪无遮挡网站| 亚洲av中文字字幕乱码综合 | 亚洲 欧美一区二区三区| 久久久久久国产a免费观看| netflix在线观看网站| 午夜亚洲福利在线播放| 亚洲自偷自拍图片 自拍| 国产成人精品无人区| 两性午夜刺激爽爽歪歪视频在线观看 | 大型黄色视频在线免费观看| 无人区码免费观看不卡| 亚洲自拍偷在线| 国产成人啪精品午夜网站| 国产一卡二卡三卡精品| 人妻丰满熟妇av一区二区三区| 国产亚洲欧美在线一区二区| 91九色精品人成在线观看| 两个人视频免费观看高清| 国产精品国产高清国产av| a级毛片在线看网站| 亚洲 欧美 日韩 在线 免费| 99久久国产精品久久久| 搡老岳熟女国产| 一本精品99久久精品77| 动漫黄色视频在线观看| 日韩欧美一区二区三区在线观看| 中文字幕最新亚洲高清| 日韩三级视频一区二区三区| 国产亚洲精品一区二区www| 丝袜美腿诱惑在线| 久久精品亚洲精品国产色婷小说| 免费人成视频x8x8入口观看| 亚洲熟女毛片儿| 国产国语露脸激情在线看| 亚洲国产精品sss在线观看|