• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Consensus problem of multi-agent systems under arbitrary topology

    2014-08-08 11:23:05DONGLijing董立靜CHAISenchun柴森春ZHANGBaihai張百海

    DONG Li-jing(董立靜), CHAI Sen-chun(柴森春), ZHANG Bai-hai(張百海)

    (School of Automation, Beijing Institute of Technology, Beijing 100081, China)

    Consensus problem of multi-agent systems under arbitrary topology

    DONG Li-jing(董立靜), CHAI Sen-chun(柴森春), ZHANG Bai-hai(張百海)

    (School of Automation, Beijing Institute of Technology, Beijing 100081, China)

    Consensus problem of second-order leader-following multi-agent systems under arbitrary topology is investigated in this paper. Arbitrary topology means the variable topology shifts continuously rather than switches among several different structures. For ensuring the consensus of leader-following multi-agent systems, some sufficient conditions and controller design principles are deduced both for a double-integrator case and a nonlinear case. Certainly, numerical simulations are carried out to prove the feasibility and effectiveness of theory derivation, which vividly illustrates that the following agents can successfully track the leader agent.

    nonlinear multi-agent system; consensus; arbitrary topology

    Since consensus of multi-agent systems (MAS) is a fundamental problem in the MAS research area, it has attracted increasing attention of researchers from various disciplines of engineering, biology and science. In multi-agent systems, consensus means to reach an agreement regarding a certain quantity of interest that depends on the states of all agents. A consensus algorithm is an interaction rule that specifies the information exchange between an agent and all of its neighbors in the network. Such problems have been formulated as consensus of leaderless problems or leader-following problems[1-3]. For a cooperative multi-agent system, leaderless consensus means that each agent updates its state based on local information of its neighbors such that all agents eventually reach an agreement on a common value, while leader-following consensus means that there exists a virtual leader which specifies an objective for all agents to follow.

    In the past few years, the multi-agent systems with integer dynamics[4-6]or invariant topology[1,4-5]have been widely studied by many researchers due to its simple construction and convenience to analyze. Certainly, there are some researchers spending effort on multi-agent system with nonlinear dynamics[1, 7]or switching topologies[2, 6, 8], and there have been some outcomes. In Ref.[1] a pinning control algorithm was proposed to achieve leader-following consensus in a network of agents with nonlinear second-order dynamics. Ref.[7] proposed an adaptive distributed controller with a disturbance estimator to solve the consensus problem under a fixed topology. By using a common Lyapunov function, Ref.[2] extended leader-following consensus control for multi-agent systems, which ensured strong mean square consensus, to the switching topology case. In Ref.[6], the sampled control protocols were induced from continuous-time linear consensus protocol by using periodic sampling technology and zero-order hold circuit. Nevertheless, since consensus problem of multi-agent systems associated with both nonlinear dynamics and variable topology, it is extremely difficult and complicated, people hardly discuss about it.

    However, considering the fact that almost all the physical plants contain nonlinearity and the communication topology may change from time to time, therefore, the velocity of each agent is time-varying and the communication radius is finite, consensus problem of multi-agent systems with nonlinear dynamics and variable topology is of vital necessity. However only a few researchers have paid attention on the consensus problem of multi-agent systems under arbitrary topology. In Ref.[9], H. Kim addresses the problem of consensus of multi-agent systems, consisting of a set of identical MIMO LTI systems, under a time-varying network that has a well-defined average (with uniform convergence to the average). A. Popov[10]proposed a sufficient scaled l1 stability condition for arbitrary topology. By employing some knowledge of complex dynamical network, the author has discussed the consensus problem of first-order leader-following multi-agent system under arbitrary topology in Ref.[11]. This paper will discuss the second-order multi-agent consensus problem under arbitrary topology situation. Based on the author’s work in Ref.[11], some sufficient conditions and controller design principles are given to ensure consensus of the second-order nonlinear multi-agent system under arbitrary topology.

    The paper is organized as follows. Some preliminaries of graph theory are briefly reviewed in section 1. Main results are presented in section 2. To illustrate the proposed theoretical results, numerical simulations are provided in section 3. And finally, conclusions are drawn in section 4.

    1 Problem description and preliminaries

    In this section, we describe the second-order multi-agent system model on which the consensus problemwas brought about. In addition, a brief summary of the relevant results in graph theory and control stability, by merging which we are able to analyze the consensus, is provided. Finally, the relevant notations are presented.

    1.1 Problem description

    The system to be considered in this paper is a leader-following multi-agent system. The second-order multi-agent system is composed of one virtual leader agent andNnonlinear coupled following agents, labeled from 1 toN. The virtual leader agent is described with the following dynamic:

    (1a)

    wherexr∈Rmandvr∈Rmare position and velocity states of the virtual leader respectively.f(t,xr,vr)∈misanonlinearcontinuousfunctiontodescribetheself-dynamicsoftheleaderagent.Thisisanactiveleaderwhenf(t,xr,vr)≠0, which means the velocity of leader is time-varying.Whenf(t,xr,vr)=0, the leader posses a constant velocity.

    The following agents are assumed to have the second-order dynamics as

    i∈{1,2,…,N},

    (1b)

    wherexi∈Rmandvi∈Rmare position and velocity states of agentirespectively,f(t,xi,vi)∈Rmis a nonlinear continuous function to describe the self-dynamics of agenti,ui∈Rmare control input of agenti. Whenf(t,xi,vi)=0, the dynamics of multi-agent system will turn into double-integrator dynamics with a constant reference velocity.

    The objective of this paper is to design a control protocol which ensures the following agents effectively pursue the leader agent under arbitrary topology.

    1.2 Preliminaries

    To analyze the consensus problem of second-order leader-following multi-agent systems, some relevant theories in graph theory and control stability are recalled.

    A weighted graph denoted byG={v,ε,A} with a node setv={1,2,…,N},an edge setε?v×vand a weighted adjacency matrixA=(aij)N×Nwith nonnegative elements[12]. We consider that (i,j)∈εif and only if vertex (node)ican send its information to vertexj. If (i,i)∈ε, we say that vertexihas the self-loop. In this paper, it is assumed that no self-loop exists. The set of neighbors of vertexiis denoted byNi={j|j∈v,(j,i)∈ε}, whenj?Ni, which means there is no information flow from vertexjto vertexi, thenaij=0, otherwiseaij>0. The in-degree and out-degree of nodeiare, respectively, defined as[13]

    DenoteDdiag{degin(1),degin(2),…,degin(N)},thentheLaplacianmatrixLofthegraphGisdefinedasLD-A.

    Fromthegraphtheorypointofview,everyagentcanbetreatedasavertex.Thenthemulti-agentsystemcanbetreatedasadynamicgraphGwhenitisanalyzedintheory.

    Inthispaper, aij,theweightedvalueofagentjtoagenti,isconscioustime-varying,anditisdenotedasaij(t),whichmeansthetopologyofmulti-agentsystemisarbitraryalongwithtime.

    Definition 1 The leader-following multi-agent system (1) is said to achieve second-order consensus when following equation is satisfied.

    (2)

    Lemma 1[14]Let Abearealsymmetricn×n-matrixandλmax(A)≥λi(A)≥λmin(A)(i=1,2,…,n), then the following inequality equation on inner product is established.

    λmax(A)〈X,X〉≥〈AX,X〉≥λmin(A)〈X,X〉.

    1.3 Notations

    Some mathematical notations are used throughout this paper. DenoteIN∈RN×Nas anN-dimensional identity matrix, 1N=[1,1,…,1]T∈RNas a vector of all ones. LetATandA-1be the transpose and the inverse of matrix Arespectively.λmax(A) denotes the maximal eigenvalue of matrixAandλmin(A) denotes the minimal eigenvalue of matrixA. ‖·‖ denotes Euclidean norm.

    2 Main results

    This section presents control protocol design principle and the consensus proof of second-order leader-following multi- agent systems under arbitrary topology under two cases:

    Case Ⅰ:f=0 (double integrator dynamics)

    Case Ⅱ:f≠0 (nonlinear dynamics)

    In the two cases, the control protocol is adopted in the following format for each agent:

    (3)

    whereγ>0 andk>0 are parameters to be designed.bi(t) indicates the accessibility of the leader agent by the following agentiat timet.bi(t)>0 indicates the case that agentican get the position and velocity value of the leader at timet, andbi(t)=0 indicates the case that the information of leader agent is not accessible by the following agenti.

    (4)

    2.1 Consensus with double integrator dynamics

    In case off=0, the second-order multi-agent system is reduced into the following double-integrator system (5) with control protocol (3).

    (5)

    Andtheleaderagentisdescribedby

    (6)

    Combining the following agents (5) and the leader agent (6), disagreement equation can be deduced as

    (7)

    In this case, the following result about consensus problem of multi-agent system under arbitrary topology is established.

    Theorem 1 The second-order leader-following consensus of multi-agent system (5) under arbitrary topology is achieved if the following conditions are satisfied.

    (i)λmin((L(t)+B(t))?Im)>0

    (ii) The derivation d((L(t)+B(t))?Im)/dtexists andλmax(d((L(t)+B(t))?Im)/dt)<0.

    ProofIntheviewofLemma1,itisclearthat

    (8)

    By employing the Lyapunov function (4) and the above inequality (8), it follows that

    (9)

    Fork>0 andλmin((L(t)+B(t))?Im)>0, it is clear that the Lyapunov function defined in Eq.(4) is positive definite in this case.

    The derivation of Lyapunov function (4) along the disagreement system (7) is deduced as

    (10)

    Itisclearthat

    (11)

    Substitute Eq.(11) into Lyapunov function’s derivation (10), consequently, Eq.(10) can obtained as

    (12)

    InviewofLemma1,itisclearthat

    (13)

    Accordingtotheaboveillustrations,wecanconcludethatconditions(i)and(ii)inTheorem1ensurethestabilityofthedisagreementsystem(7).FromDefinition1,thecontrolprotocol(3)solvestheconsensusproblemofsecond-ordermulti-agentsystem,inwhichthefollowingagents’dynamicmodelisEq.(5)andtheleaderagent’sdynamicmodelisEq.(6),underarbitrarytopologywithoutanyspecialrequestforcontrolparameterγandk. This completes the proof.

    2.2 Consensus with second-order nonlinear dynamics

    In the case off≠0, the second-order following agents’ dynamics Eq.(1b) become system (14) with control protocol (3). The leader, in this case, is an active agent described by Eq.(1a).

    (14)

    Assumption 1 For the nonlinear functionf, there exists a constantl>0 such that ‖f(t,xi(t),vi(t))-f(t,xr(t),vr(t))‖≤l(‖xi(t)-xr(t)‖+‖vi(t)-vr(t)‖) which indicates

    (15)

    Combining system (14) and the virtual leader (1a), the disagreement multi-agent system can be deduced.

    B(t))??).

    (16)

    In this case, the following consensus theorem of second-order leader-following system with nonlinear self-dynamic is established.

    Theorem 2 The second-order leader-following consensus of multi-agent system (14) is achieved if all the conditions in Theorem 1 hold and the control parametersγ,ksatisfy the following conditions.

    (i)k>-l/λmax(d(L(t)+B(t))?Im/dt)

    (ii)γk>3l/2λmin((L(t)+B(t))?Im).

    Proof Under the conditions in Theorem 2 and consider the proof of Theorem 1, it can be easily seen that

    (17)

    (18)

    3 Numericalexamples

    Inthissection,asecond-ordermulti-agentsystemwhichconsistsof1leaderagentand3followingagentsisemployedtoverifythefeasibilityandeffectivenessofthiswork.TwoapplicationsofTheorem1andTheorem2arecarriedout.Theleaderandfollowingagentsaredescribedas

    (19)

    1.5cos(2.5t)+ui(t),i∈{1,2,3},

    (20)

    wherex∈R3andv∈R3are position and velocity states of the agents in 3-dimensional respectively. The nonlinear continuous functionf(t,x,v) is embodied by

    -sin(x(t))-0.25v(t)+1.5cos(2.5t).

    As the topology of multi-agent system is arbitrary, Laplacian matrix of topology graph at timetis described by a time-varying matrix (L(t)+B(t))?I3.AndL(t)+B(t)isembodiedas

    (21)

    wherea11=(e2-1)th(t)+earctan(t),a12=(1-e)th(t)-2earctan(t),a13=earctan(t),a22=th(t)-2e2arctan(t),a23=2th(t)+e2arctan(t),a33=3(e-e2)th(t)+arctan(t).

    The leader’s initial position and velocity in 3-dimensional are

    xr(0)=[0 0 0],

    vr(0)=[0.03 0.02 -0.04].

    The position and velocity in 3-dimensional of the 3 following agents are initialized as

    x1(0)=[0.05 -0.04 0.01],

    x2(0)=[-0.05 0.03 -0.07],

    x3(0)=[0.03 -0.06 0.08],

    v1(0)=[0.05 -0.01 0.01],

    v2(0)=[-0.04 0.05 0.03],

    v3(0)=[-0.05 0.08 -0.01].

    3.1 Multi-agent system with double-integrator dynamics

    In this case, the nonlinear function in Eqs.(19) (20) is replaced by 0. Arbitrary topology and the above mentioned initial conditions are employed in this simulation. Fig.1 and Fig.2 present the position and velocity disagreement vectors of the leader and 3 following agents with double-integrator dynamics.

    -sin(x(t))-0.25v(t)+1.5cos(2.5t)

    Fig.1 Position errors of the multi-agent system with double-integrator dynamics

    Fig.2 Velocity errors of the multi-agent system with double-integrator dynamics

    From Fig.1 and Fig.2, it is obvious that the following agents can track the leader effectively in 150 steps under arbitrary topology. This is a good explanation of the theoretical derivation in section 2.1.

    3.2 Multi-agent system with nonlinear dynamics

    Fig.3 Position errors of the multi-agent system with nonlinear dynamics

    In this case, the multi-agent system is described exactly the same as Eqs.(19) (20) under the arbitrary topology and the above mentioned initial conditions. Fig.3 and Fig.4 present the position and velocity disagreement vectors of 3 following agents relative to the leader with nonlinear dynamics.

    Fig.4 Velocity errors of the multi-agent system with nonlinear dynamics

    From Fig.3 and Fig.4, we can see that the position disagreement and velocity disagreement of the following agents with leader converge to zero in 250 steps, which indicates that the following agents can track the active leader in finite time nicely. This is a good explanation to theoretical derivation in section 2.2.

    By comparing the results in section 3.1 and section 3.2, the disagreement vectors of the multi-agent system with double-integrator dynamics converge faster than that with nonlinear dynamics.

    4 Conclusion

    This paper discusses the consensus problem of second-order multi-agent systems under arbitrary topology. Some sufficient conditions are obtained with the proposed control protocol and numerical simulations are employed to verify them. The multi-agent systems can reach consensus in both double-integrator case and nonlinear case. The response time of multi-agent system with double integrator dynamics is shorter. It is obvious that nonlinearity impedes the convergence rate, which tantalizingly hints that it is needed to design a more advanced controller in the future work.

    [1] Song Q, Cao J D, Yu W W. Second-order leader-following consensus of nonlinear multi-agent systems via pinning control[J]. Systems & Control Letters,2010, 59: 553-562.

    [2] Ni W, Cheng D. Leader-following consensus of multi-agent systems under fixed and switching topologies[J]. Systems & Control Letters, 2010,59(3C4): 209C217.

    [3] Ren W. Consensus tracking under directed interaction topologies: algorithms and experiments[J]. IEEE Trans Control Syst Technology, 2010,18(1) :230 -237.

    [4] Li S H, Dua H B, Lin X Z. Finite-time consensus algorithm for multiagent systems with double-integrator Dynamics[J]. Automatica,2011, 47:1706-1712.

    [5] Hua J P, Feng G. Distributed tracking control of leader-follower multiagent systems under noisy measurement[J]. Automatica,2010, 46: 1382-1387.

    [6] Xie G M, Liu H Y, Wang L, et al. Consensus in networked multi-agent systems via sampled control: switching topology case[C]∥2009 American Control Conference, 2009:4525-4530.

    [7] Sumizaki K, Liu L, Hara S. Adaptive consensus on a class of nonlinear multi-agent dynamical systems[C]∥SICE Annual Conference 2010 August 18-21,2010: 1141-1145.

    [8] Münz U, Papachristodoulou A, Allg?wer F. Consensus in multi-agent systems with coupling delays and switching topology[J]. IEEE Trans Automat Control,2011,56(12):2976-2982.

    [9] Kim H, Shim H, Back J, et al. Consensus of output-coupled linear multi-agent systems under fast switching network: averaging approach[J].Automatica, 2013, 49: 267-272.

    [10] Popov A, Werner H. Robust stability of a multi-agent system under arbitrary and time-varying communication topologies and communication delays[J]. IEEE Trans Automat Control, 2012,57(9): 2343-2347.

    [11] Dong L J, Chai S C, Zhang B H. Necessary and sufficient conditions for consensus of multi-agent systems with nonlinear dynamics and variable topology[C]∥2012 UKACC International Conference on Control, 2012:1052-1056.

    [12] Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays[J]. IEEE Trans Automat Control,2004, 49 (9) : 1520-1533.

    [13] Song Q, Cao J. On pinning synchronization of directed and undirected complex dynamical networks[J]. IEEE Trans Circuits Syst,2010, I57 (3) : 672-680.

    [14] Mirsky L. An introduction to linear algebra[M]. New York: Dover Publications, Inc.,1990.

    (Edited by Wang Yuxia)

    2013- 03- 01

    Supported by Scientific Research and Postgraduate Training Joint-Build Project (20120639002); the National Natural Science Foundation of Youth Science Fund (61104086)

    TP 202.1 Document code: A Article ID: 1004- 0579(2014)02- 0210- 08

    E-mail: chaisc97@bit.edu.cn

    自拍偷自拍亚洲精品老妇| 我要看日韩黄色一级片| 国产乱人视频| 成年女人看的毛片在线观看| 人妻夜夜爽99麻豆av| 国产黄色免费在线视频| 天天躁夜夜躁狠狠久久av| 精品国产乱码久久久久久小说| 国产成年人精品一区二区| 大码成人一级视频| 精品久久久久久久久亚洲| 亚洲av.av天堂| 久久99热这里只有精品18| 草草在线视频免费看| 99热网站在线观看| 久久久久久久久大av| 国产av不卡久久| 免费不卡的大黄色大毛片视频在线观看| 欧美精品国产亚洲| 久久久国产一区二区| 亚洲精品乱久久久久久| 久久久精品欧美日韩精品| 精品少妇久久久久久888优播| 91在线精品国自产拍蜜月| 日本wwww免费看| 色吧在线观看| 国产淫片久久久久久久久| 又黄又爽又刺激的免费视频.| 久久久久久久久久人人人人人人| 18禁裸乳无遮挡动漫免费视频 | 成人鲁丝片一二三区免费| 波多野结衣巨乳人妻| 交换朋友夫妻互换小说| 激情五月婷婷亚洲| 欧美丝袜亚洲另类| 一个人看视频在线观看www免费| 街头女战士在线观看网站| 激情 狠狠 欧美| 狂野欧美激情性bbbbbb| 久久亚洲国产成人精品v| 22中文网久久字幕| av在线天堂中文字幕| 精品久久久精品久久久| 超碰97精品在线观看| 久久这里有精品视频免费| 赤兔流量卡办理| 国内少妇人妻偷人精品xxx网站| 国产国拍精品亚洲av在线观看| 日本欧美国产在线视频| 少妇的逼水好多| 男女啪啪激烈高潮av片| 国产精品女同一区二区软件| 成年免费大片在线观看| 大香蕉久久网| 高清日韩中文字幕在线| 国语对白做爰xxxⅹ性视频网站| 欧美 日韩 精品 国产| 内射极品少妇av片p| av播播在线观看一区| 一级二级三级毛片免费看| 麻豆乱淫一区二区| 久久久久国产网址| 少妇被粗大猛烈的视频| 国产免费视频播放在线视频| 国产综合懂色| 天天躁夜夜躁狠狠久久av| 欧美另类一区| 超碰97精品在线观看| 搞女人的毛片| 精品久久久久久电影网| 精品一区二区三区视频在线| 欧美老熟妇乱子伦牲交| 26uuu在线亚洲综合色| 国产免费视频播放在线视频| 国产日韩欧美在线精品| 亚洲欧美精品自产自拍| 久久ye,这里只有精品| 亚洲精品第二区| 97超碰精品成人国产| 亚洲av中文av极速乱| 男女国产视频网站| 在线亚洲精品国产二区图片欧美 | 国产精品嫩草影院av在线观看| 欧美一级a爱片免费观看看| 国产精品一区二区性色av| 少妇的逼好多水| 日韩 亚洲 欧美在线| 国产精品国产av在线观看| 亚洲精品久久久久久婷婷小说| 久久久久久久午夜电影| 久久99热6这里只有精品| 国产探花极品一区二区| 高清日韩中文字幕在线| 国产片特级美女逼逼视频| 青春草视频在线免费观看| 91久久精品电影网| 校园人妻丝袜中文字幕| tube8黄色片| 国产高潮美女av| 欧美另类一区| 国产爽快片一区二区三区| 欧美最新免费一区二区三区| 国产精品人妻久久久影院| 国产精品嫩草影院av在线观看| 日韩一区二区视频免费看| 亚洲精品乱码久久久久久按摩| 成人特级av手机在线观看| 国产亚洲一区二区精品| 欧美区成人在线视频| 亚洲av免费在线观看| 久久久久网色| 内射极品少妇av片p| 99热国产这里只有精品6| 国产免费一区二区三区四区乱码| 波多野结衣巨乳人妻| 街头女战士在线观看网站| 久久97久久精品| 丝瓜视频免费看黄片| 国产有黄有色有爽视频| 在线观看国产h片| 又爽又黄无遮挡网站| 国产毛片a区久久久久| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美清纯卡通| 日韩成人伦理影院| 国产成人91sexporn| 国产精品嫩草影院av在线观看| 欧美变态另类bdsm刘玥| 欧美日韩精品成人综合77777| av卡一久久| 久久久久久久亚洲中文字幕| 精品人妻偷拍中文字幕| 午夜福利视频精品| 亚洲av中文字字幕乱码综合| 亚洲欧美成人综合另类久久久| 插阴视频在线观看视频| 国产伦理片在线播放av一区| 一级毛片 在线播放| 久久久久九九精品影院| 国产精品伦人一区二区| 久久久久久久大尺度免费视频| 别揉我奶头 嗯啊视频| 80岁老熟妇乱子伦牲交| 三级男女做爰猛烈吃奶摸视频| 婷婷色麻豆天堂久久| 国内揄拍国产精品人妻在线| av又黄又爽大尺度在线免费看| 国产一区二区亚洲精品在线观看| 91久久精品国产一区二区成人| 久久国内精品自在自线图片| 成年av动漫网址| 日韩欧美一区视频在线观看 | 日韩 亚洲 欧美在线| 精品99又大又爽又粗少妇毛片| 在线播放无遮挡| 久久久久久久久久久免费av| 一本色道久久久久久精品综合| 精品人妻熟女av久视频| .国产精品久久| 2018国产大陆天天弄谢| 中文字幕免费在线视频6| 亚洲欧美精品自产自拍| 亚洲精品久久午夜乱码| 丝袜喷水一区| av国产免费在线观看| 欧美成人一区二区免费高清观看| 国产成人一区二区在线| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲国产色片| 三级经典国产精品| 国产成人精品婷婷| 国产91av在线免费观看| 两个人的视频大全免费| 视频中文字幕在线观看| 夜夜爽夜夜爽视频| 少妇丰满av| 男人和女人高潮做爰伦理| 亚洲无线观看免费| 五月玫瑰六月丁香| 国产欧美日韩一区二区三区在线 | 国产精品一区www在线观看| av黄色大香蕉| 街头女战士在线观看网站| 日日摸夜夜添夜夜爱| 欧美97在线视频| 免费看a级黄色片| 91精品伊人久久大香线蕉| 国产色婷婷99| 26uuu在线亚洲综合色| 久久久久网色| www.av在线官网国产| 国产成年人精品一区二区| 国产69精品久久久久777片| 亚洲成人av在线免费| 男女国产视频网站| 亚洲av成人精品一区久久| av在线观看视频网站免费| 大片免费播放器 马上看| av专区在线播放| 精华霜和精华液先用哪个| 男人和女人高潮做爰伦理| 国产精品99久久久久久久久| 国产亚洲91精品色在线| 亚洲精品中文字幕在线视频 | 身体一侧抽搐| 国产精品无大码| 国产精品女同一区二区软件| 国产 精品1| 国产大屁股一区二区在线视频| 黄色一级大片看看| 精品久久久久久久久亚洲| 黄色怎么调成土黄色| 特大巨黑吊av在线直播| 国产白丝娇喘喷水9色精品| 亚洲激情五月婷婷啪啪| 夫妻午夜视频| 一本久久精品| 可以在线观看毛片的网站| 亚洲av国产av综合av卡| 国产精品三级大全| 亚洲精品成人av观看孕妇| 国产毛片a区久久久久| 久久久久久伊人网av| 色婷婷久久久亚洲欧美| 午夜精品一区二区三区免费看| 肉色欧美久久久久久久蜜桃 | 国产乱人偷精品视频| 国产成人精品福利久久| 日本wwww免费看| 国产精品久久久久久av不卡| 精品人妻一区二区三区麻豆| 国产又色又爽无遮挡免| 男女啪啪激烈高潮av片| 激情五月婷婷亚洲| 丝袜脚勾引网站| 老女人水多毛片| 高清午夜精品一区二区三区| 搡女人真爽免费视频火全软件| 亚洲欧美日韩卡通动漫| 日本黄色片子视频| 熟女av电影| 成人毛片60女人毛片免费| 97超视频在线观看视频| 在线 av 中文字幕| 又黄又爽又刺激的免费视频.| 成人毛片60女人毛片免费| 一级毛片电影观看| 久久精品国产亚洲网站| 纵有疾风起免费观看全集完整版| 日韩免费高清中文字幕av| 亚洲性久久影院| 久久久国产一区二区| 高清毛片免费看| 国产极品天堂在线| 人妻少妇偷人精品九色| 亚洲欧美精品自产自拍| 一区二区三区乱码不卡18| 亚洲,欧美,日韩| 国产亚洲91精品色在线| 国产色爽女视频免费观看| 婷婷色综合大香蕉| 热re99久久精品国产66热6| 寂寞人妻少妇视频99o| 欧美激情在线99| 亚洲精华国产精华液的使用体验| 高清av免费在线| 久久精品国产亚洲av天美| 2022亚洲国产成人精品| 欧美xxxx性猛交bbbb| 亚洲国产高清在线一区二区三| 精品少妇久久久久久888优播| 99久久精品一区二区三区| 高清日韩中文字幕在线| 亚洲精品一区蜜桃| 亚洲美女视频黄频| 欧美日韩亚洲高清精品| 国产一区二区三区av在线| 在线免费十八禁| 99精国产麻豆久久婷婷| 久久6这里有精品| 91精品一卡2卡3卡4卡| 欧美精品国产亚洲| 亚洲在线观看片| 久久99热这里只有精品18| 国产精品久久久久久精品古装| 国产爱豆传媒在线观看| 亚洲国产精品成人久久小说| 99久久精品一区二区三区| 永久免费av网站大全| 丝袜喷水一区| 最近中文字幕2019免费版| 只有这里有精品99| 久久精品综合一区二区三区| 日本欧美国产在线视频| 精品人妻一区二区三区麻豆| 成人免费观看视频高清| 亚洲国产av新网站| 国产成人免费无遮挡视频| 老女人水多毛片| 国产亚洲5aaaaa淫片| 丝袜美腿在线中文| 夜夜爽夜夜爽视频| 亚洲自拍偷在线| 国产免费福利视频在线观看| 国产黄频视频在线观看| 久久久久久国产a免费观看| 国产中年淑女户外野战色| 日韩国内少妇激情av| 久久久久精品久久久久真实原创| 99九九线精品视频在线观看视频| 国产亚洲一区二区精品| 天天一区二区日本电影三级| 国产极品天堂在线| 国产综合精华液| 国产大屁股一区二区在线视频| 中文天堂在线官网| 一级a做视频免费观看| 乱系列少妇在线播放| 国产色婷婷99| 三级经典国产精品| 爱豆传媒免费全集在线观看| 少妇熟女欧美另类| 国产伦在线观看视频一区| 日韩精品有码人妻一区| 亚洲精品国产av成人精品| 赤兔流量卡办理| 最新中文字幕久久久久| 国产亚洲精品久久久com| 国产成人freesex在线| 偷拍熟女少妇极品色| 免费av观看视频| 麻豆国产97在线/欧美| 国产精品麻豆人妻色哟哟久久| 九九久久精品国产亚洲av麻豆| 欧美成人精品欧美一级黄| 黄片无遮挡物在线观看| 国产精品久久久久久精品古装| 国产极品天堂在线| 天堂俺去俺来也www色官网| 日韩人妻高清精品专区| 国产人妻一区二区三区在| 亚洲第一区二区三区不卡| 久久久久九九精品影院| 国产成人精品久久久久久| 亚洲精品国产av成人精品| 成人亚洲欧美一区二区av| 一个人观看的视频www高清免费观看| 日韩,欧美,国产一区二区三区| 欧美一区二区亚洲| 亚洲在久久综合| 亚洲av一区综合| 国产毛片在线视频| 久久精品久久精品一区二区三区| 特级一级黄色大片| 久久99热这里只频精品6学生| 中国美白少妇内射xxxbb| 激情五月婷婷亚洲| 尾随美女入室| 69人妻影院| 日本熟妇午夜| 69av精品久久久久久| 十八禁网站网址无遮挡 | 26uuu在线亚洲综合色| 国产v大片淫在线免费观看| 深夜a级毛片| 欧美丝袜亚洲另类| 汤姆久久久久久久影院中文字幕| 国产成人aa在线观看| 精品人妻偷拍中文字幕| 国产精品国产三级国产专区5o| 亚洲av国产av综合av卡| 热re99久久精品国产66热6| 街头女战士在线观看网站| 亚洲人与动物交配视频| 国产高清不卡午夜福利| 亚洲精品日韩av片在线观看| 人妻夜夜爽99麻豆av| 久久久成人免费电影| 久久精品久久精品一区二区三区| 国产免费又黄又爽又色| 一区二区三区精品91| 亚洲高清免费不卡视频| 秋霞伦理黄片| 深夜a级毛片| 亚洲国产精品成人久久小说| 99re6热这里在线精品视频| 国产一区亚洲一区在线观看| 亚洲成人一二三区av| 国产免费一级a男人的天堂| 欧美zozozo另类| 国产午夜精品一二区理论片| 久久99热这里只有精品18| 韩国av在线不卡| 亚洲国产高清在线一区二区三| 黄色怎么调成土黄色| 精品久久久噜噜| 久久久久精品久久久久真实原创| 色婷婷久久久亚洲欧美| 永久免费av网站大全| 熟女人妻精品中文字幕| 2021天堂中文幕一二区在线观| 三级国产精品片| 国产精品福利在线免费观看| 如何舔出高潮| 久久99热这里只有精品18| 赤兔流量卡办理| 亚洲最大成人av| 欧美激情国产日韩精品一区| 一二三四中文在线观看免费高清| av天堂中文字幕网| 性色avwww在线观看| 永久网站在线| 最近2019中文字幕mv第一页| 自拍偷自拍亚洲精品老妇| 亚洲精品456在线播放app| 黄片wwwwww| 国产在线一区二区三区精| 亚洲一级一片aⅴ在线观看| 日韩视频在线欧美| 亚洲精品国产成人久久av| 中文资源天堂在线| 亚洲色图综合在线观看| 99视频精品全部免费 在线| 亚洲四区av| 中文天堂在线官网| 日本黄色片子视频| 亚洲美女视频黄频| 欧美一级a爱片免费观看看| 国国产精品蜜臀av免费| 欧美+日韩+精品| 色播亚洲综合网| 熟女电影av网| 狂野欧美白嫩少妇大欣赏| 街头女战士在线观看网站| 亚洲精品国产av蜜桃| 亚洲av男天堂| 精品视频人人做人人爽| 成人漫画全彩无遮挡| 免费看光身美女| 欧美成人a在线观看| 一级毛片黄色毛片免费观看视频| 在线 av 中文字幕| 久久99蜜桃精品久久| 欧美成人精品欧美一级黄| 精品一区二区免费观看| 成人欧美大片| 日本爱情动作片www.在线观看| 国产精品一区二区在线观看99| 2021少妇久久久久久久久久久| 久久久亚洲精品成人影院| 亚洲成人一二三区av| 国产伦精品一区二区三区视频9| 18禁在线无遮挡免费观看视频| 99视频精品全部免费 在线| 在线 av 中文字幕| 亚洲精品,欧美精品| 亚洲久久久久久中文字幕| 亚州av有码| 人妻 亚洲 视频| 免费大片18禁| 欧美日韩综合久久久久久| 插阴视频在线观看视频| 欧美日韩综合久久久久久| 一级毛片电影观看| 久久综合国产亚洲精品| 青春草视频在线免费观看| 日韩大片免费观看网站| 国产日韩欧美亚洲二区| 亚洲自拍偷在线| 国产精品久久久久久av不卡| 国产白丝娇喘喷水9色精品| 偷拍熟女少妇极品色| 中国美白少妇内射xxxbb| 日韩av免费高清视频| 黄色欧美视频在线观看| 在线观看三级黄色| 天堂网av新在线| 少妇人妻久久综合中文| 国产欧美日韩一区二区三区在线 | 久久久久久伊人网av| 久久精品国产亚洲av天美| 精品国产三级普通话版| 国产精品一二三区在线看| 男人舔奶头视频| 国产精品一区www在线观看| 我的老师免费观看完整版| 国语对白做爰xxxⅹ性视频网站| 久久久久久久久久久免费av| 91久久精品国产一区二区成人| 国产欧美亚洲国产| 免费观看性生交大片5| 国产欧美亚洲国产| 色播亚洲综合网| 九九在线视频观看精品| 男男h啪啪无遮挡| 尾随美女入室| 国产精品女同一区二区软件| 久久久欧美国产精品| 亚洲欧洲日产国产| 欧美潮喷喷水| 久久精品综合一区二区三区| 久热这里只有精品99| 久久精品综合一区二区三区| 亚洲av中文字字幕乱码综合| 亚洲国产欧美人成| 国产伦精品一区二区三区四那| 高清av免费在线| 欧美潮喷喷水| 欧美另类一区| 午夜免费男女啪啪视频观看| 亚洲精品国产成人久久av| 熟女av电影| 天美传媒精品一区二区| 日韩国内少妇激情av| 久久精品久久精品一区二区三区| 在线播放无遮挡| 亚洲国产欧美在线一区| 国产色爽女视频免费观看| 亚洲精品色激情综合| 亚洲丝袜综合中文字幕| 亚洲精品国产色婷婷电影| av专区在线播放| 亚洲av福利一区| 日韩视频在线欧美| 国产av不卡久久| 赤兔流量卡办理| 国产高清国产精品国产三级 | 亚洲精品一二三| 亚洲最大成人av| 亚洲,欧美,日韩| 亚洲精品国产色婷婷电影| kizo精华| 深爱激情五月婷婷| 在线精品无人区一区二区三 | 欧美日韩国产mv在线观看视频 | 男女边摸边吃奶| 亚洲欧美日韩另类电影网站 | 全区人妻精品视频| 久久久色成人| av在线蜜桃| 少妇人妻精品综合一区二区| 欧美亚洲 丝袜 人妻 在线| 免费看日本二区| 日韩伦理黄色片| 国产在线一区二区三区精| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成人高潮视频无遮挡免费网站| 亚洲国产精品成人综合色| 成人亚洲欧美一区二区av| 午夜福利视频1000在线观看| 亚洲精品,欧美精品| 丝袜喷水一区| 国产黄片视频在线免费观看| 边亲边吃奶的免费视频| 高清毛片免费看| 噜噜噜噜噜久久久久久91| 国产有黄有色有爽视频| 成人二区视频| 少妇的逼好多水| h日本视频在线播放| 秋霞在线观看毛片| 高清日韩中文字幕在线| 欧美激情国产日韩精品一区| 在线 av 中文字幕| 在线观看一区二区三区| 欧美变态另类bdsm刘玥| 性色avwww在线观看| 国产真实伦视频高清在线观看| 亚洲在线观看片| 一二三四中文在线观看免费高清| 亚洲激情五月婷婷啪啪| 在线观看人妻少妇| 嫩草影院新地址| 亚洲精品aⅴ在线观看| 日本三级黄在线观看| 亚洲av电影在线观看一区二区三区 | 亚洲一级一片aⅴ在线观看| 国产探花极品一区二区| 黄色视频在线播放观看不卡| 亚洲伊人久久精品综合| 亚洲国产精品999| 一本一本综合久久| 日韩不卡一区二区三区视频在线| 日韩在线高清观看一区二区三区| 一本久久精品| 欧美日韩精品成人综合77777| 精品久久久久久久人妻蜜臀av| 性色avwww在线观看| 97人妻精品一区二区三区麻豆| 午夜免费观看性视频| 国产成人免费无遮挡视频| 久久久午夜欧美精品| 国产成人a区在线观看| 色播亚洲综合网| 只有这里有精品99| 大又大粗又爽又黄少妇毛片口| 亚洲精品影视一区二区三区av| 日本与韩国留学比较| 午夜精品一区二区三区免费看| 91精品伊人久久大香线蕉| 国产精品国产三级专区第一集| 国产一级毛片在线| 高清av免费在线| 久久久久久久久久人人人人人人| 亚洲成人一二三区av| 亚洲欧洲日产国产| 在线天堂最新版资源| 亚洲国产成人一精品久久久| 国产精品爽爽va在线观看网站| 午夜福利在线观看免费完整高清在| 免费看av在线观看网站| 午夜激情久久久久久久| 人人妻人人澡人人爽人人夜夜| 女人被狂操c到高潮| 亚洲国产欧美人成|