汪媛媛, 李永祥
(西北師范大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,甘肅蘭州730070)
記C=C([-τ,0],R),則其按范數(shù)構(gòu)成 Banach 空間.令C+={φ∈C|φ(θ)≥0,θ∈[-τ,0]}.考慮四階時(shí)滯微分方程邊值問(wèn)題
正解的存在性,其中,f:I×C+?[0,+∞)連續(xù),I=[0,1],?(t)∈C([-τ,0],[0,+∞)),?(0)=0,對(duì)?t∈I,ut(θ)=u(t+θ),θ∈[-τ,0],
本文始終假設(shè):
兩端簡(jiǎn)單支撐的彎曲彈性梁的平衡狀態(tài)可用四階邊值問(wèn)題
來(lái)描述[1-2],其中,f:[0,1]×R×R?R連續(xù),關(guān)于邊值問(wèn)題(2)以及更廣泛的常微分方程邊值問(wèn)題解的存在性,已有許多研究工作[3-11].近年來(lái),伴隨著時(shí)滯微分方程理論的發(fā)展以及其在物理學(xué)、自動(dòng)控制理論、生物學(xué)、經(jīng)濟(jì)學(xué)、人口理論等多門學(xué)科中的廣泛應(yīng)用,時(shí)滯微分方程邊值問(wèn)題已逐漸成為一個(gè)研究的熱點(diǎn)[12-25].
對(duì)不含時(shí)滯的情形,即τ=0時(shí),問(wèn)題(1)退化為下面的常微分方程邊值問(wèn)題
其中,f:I×[0,+∞)?[0,+∞)連續(xù).問(wèn)題(3)已被許多作者研究[3-6],其中,文獻(xiàn)[3]給出了其正解的存在性定理.
對(duì)含有時(shí)滯項(xiàng)的情形,即τ≠0時(shí),宋利梅等在文獻(xiàn)[12]中討論了邊值問(wèn)題
正解的存在性,其中,f是定義在I×C+上的非負(fù)連續(xù)函數(shù),p(t)是定義在I上的非負(fù)可測(cè)函數(shù).他們運(yùn)用錐拉升與錐壓縮不動(dòng)點(diǎn)定理證明了問(wèn)題(4)正解的存在性.
本文考慮更一般的四階時(shí)滯微分方程邊值問(wèn)題(1).通過(guò)對(duì)不動(dòng)點(diǎn)指數(shù)的精確計(jì)算,證明了只要f0適當(dāng)小,f∞適當(dāng)大,或者f0適當(dāng)大,f∞適當(dāng)小時(shí),問(wèn)題(1)至少存在一個(gè)正解.
稱u(t)∈C4[-τ,1]為問(wèn)題(1)的一個(gè)解,如果u(t)滿足下面的條件:
定義線性算子T:C[-τ,1]?C[-τ,1]為
則算子T是方程(9)的解算子,且T把C[-τ,1]中的有界集映為C[-τ,1]中的有界集.由Gelfand公式得
其中,r(T)是算子T的譜半徑,顯然r(T)>0.設(shè)L=π4-aπ2-b,易見(jiàn)L是線性邊值問(wèn)題(9)對(duì)應(yīng)的最小特征值,因此r(T)=1/L.
引理3T是全連續(xù)算子.
證明T的連續(xù)性顯然,只需證明T的等度連續(xù)性即可.
由于G1和G2在[0,1]×[0,1]一致連續(xù),即對(duì)?ε>0,?η>0,?t1,t2∈[0,1],當(dāng)|t1-t2|<η時(shí)有
聯(lián)立以上兩式可得
又因?yàn)楫?dāng)t∈[-τ,0]時(shí),Au(t)=0;當(dāng)t∈(0,1)時(shí),Au(t)>0,從而可得A(K)?K.由T的全連續(xù)性可知A是全連續(xù)的.證畢.
引理 5[9]?γ∈(0,1),使得對(duì)?x∈K,當(dāng)t∈時(shí),有‖xt‖C≥γ‖x‖.
引理6[3]設(shè)A:K?K全連續(xù),如果μAu≠u,?u∈?Kr1,且0<μ≤1時(shí),i(A,Kr1,K)=1,其中,Kr1={u∈K|‖u‖C 引理7[3]設(shè)A:K?K全連續(xù),如果下列條件滿足: 則i(A,KR,K)=0,其中,KR={u∈K|‖u‖C 定理1f是定義在I×C+上的非負(fù)連續(xù)函數(shù),且f把I×C+中的有界集映為[0,+∞)中的有界集,如果下列條件之一滿足: 則邊值問(wèn)題(1)至少存在一個(gè)正解. 證明假設(shè)條件(H1)成立,則由?(t)≡0,得vt=0,t∈[0,1]. 由(H1)的第一個(gè)不等式,因?yàn)閒0<δL,則存在適當(dāng)?shù)膔0,滿足0 下證當(dāng)0<μ≤1時(shí),對(duì)?x∈?Kr0,有μAx≠x.反設(shè)?x0∈?Kr0,μ0∈(0,1],使得μ0Ax0=x0,則由A的定義,x0滿足 [1]Gupta C P.Existence and uniqueness results for the bending of an elastic beam equation at resonance[J].J Math Anal Appl,1988,135:208-225. [2]Gupta C P.Existence and uniqueness theorems for a bending of an elastic beam equation[J].Appl Anal,1988,26:289-304. [3]Li Y.Positive solutions of fourth-order boundary value problems with two parameters[J].J Math Anal Appl,2003,281:477-484. [4]李永祥.四階非線性邊值問(wèn)題解的存在性與上下解方法[J].數(shù)學(xué)物理學(xué)報(bào),2003,A23(2):245-252. [5]李永祥,楊和.用橢圓描述的四階邊值問(wèn)題的兩參數(shù)非共振條件[J].數(shù)學(xué)物理學(xué)報(bào),2010,A30(1):239-244. [6]黃永峰.一類帶參數(shù)的四階兩點(diǎn)邊值問(wèn)題正解的存在性[J].長(zhǎng)江大學(xué)學(xué)報(bào):自然科學(xué)版,2011,8(9):1-3. [7]王珍燕.帶2個(gè)參數(shù)四階邊值問(wèn)題的正解及多個(gè)正解的存在性[J].煙臺(tái)大學(xué)學(xué)報(bào):自然科學(xué)版,2012,25(1):9-15. [8]Ma R.Existence of positive solutions of a fourth-order boundary value problem[J].Appl Math Comput,2005,168:1219-1231. [9]Ma R.Positive solutions for boundary value problems of functional differential equations[J].Appl Math Comput,2007,193:66-72. [10]Pang C C,Dong W,Wei Z L.Multiple soluttions for fourth-order boundary value problem[J].J Math Anal Appl,2006,314:464-476. [11]Jiang D,Liu H,Xu X.Nonresonant singgular fourth-order boundary value problems[J].Appl Math Lett,2005,18:69-75. [12]宋利梅,翁佩萱.四階泛函微分方程邊值問(wèn)題正解的存在性[J].高校應(yīng)用數(shù)學(xué)學(xué)報(bào),2011,26(1):67-77. [13]宋常修,翁佩萱.四階非線性泛函微分方程邊值問(wèn)題的正解[J].華南理工大學(xué)學(xué)報(bào):自然科學(xué)版,2006,34(7):128-132. [14]夏青.一類二階時(shí)滯微分方程的邊值問(wèn)題[J].中國(guó)海洋大學(xué)學(xué)報(bào),2007,20:127-130. [15]王潔,劉斌.二階時(shí)滯微分方程邊值問(wèn)題正解的存在性[J].應(yīng)用數(shù)學(xué),2007,20:127-130. [16]王宏洲.二階時(shí)滯微分方程邊值問(wèn)題的上下解方法[J].數(shù)學(xué)學(xué)報(bào),2010,53(3):489-494. [17]Weng P.Monotone method for fourth-order boundary value problems of functional differential equations[J].Comput Math Appl,1993,37:1-9. [18]Weng P,Jiang D.Existence of positive solutions for boundary value problem of second-order FDE[J].Nonlinear Anal,2008,68:3646-3656. [19]Bai D,Xu Y.Positive solutions and eigenvalue intervals of nonlocal boundary value problems with delays[J].J Math Anal Appl,2007,334:1152-1166. [20]Gao C,Cuo Z.Existence of multiple periodic solutions foer a class of second-order delay differential equations[J].Nonlinear Anal,2009,10(5):3285-3297. [21]Berezansky L,Diblík J.Positive solutions of second-order delay differential equations with a damping term[J].Comput Math Appl,2010,60:1332-1342. [22]Li Y.A monotone iterative technique for solving the bending elastic beam equations[J].Appl Math Comput,2010,217:2200-2208. [23]Yang B,Ma R,Gao C.Positive periodic solutions of delayed differential equations[J].Appl Math Comput,2011,218(8):4538-4545. [24]Li Y.Positive periodic solutions of second-order differential equations with delays[J/OL].Abst Appl Anal,2012:2012,ID829783:13.http://www.hindawi.com/journals/aaa/2012/829783. [25]Li Q,Li Y.On the existence of positive periodic solutions for second-order functional differential equations with multiple delays[J/OL].Abst Appl Anal,2012:2012,ID929870:13.http://www.hindawi.com/journals/aaa/2012/929870. [26]郭大鈞,孫經(jīng)先.抽象空間常微分方程[M].濟(jì)南:山東科學(xué)技術(shù)出版社,1989. [27]郭大鈞.非線性泛函分析[M].濟(jì)南:山東科學(xué)技術(shù)出版社,2002:314-315.2 主要結(jié)果