李再會(huì), 唐發(fā)偉, 林仕良, 叢 峰, 謝 韜, 鄒光富
成都地質(zhì)礦產(chǎn)研究所,成都 610081
滇西含綠柱石偉晶巖鋯石U-Pb年代學(xué)及其地質(zhì)意義
李再會(huì), 唐發(fā)偉, 林仕良, 叢 峰, 謝 韜, 鄒光富
成都地質(zhì)礦產(chǎn)研究所,成都 610081
對(duì)騰沖-梁河地區(qū)含綠柱石偉晶巖進(jìn)行了鋯石LA-ICP-MS U-Pb定年和地球化學(xué)分析。結(jié)果表明:含綠柱石偉晶巖的形成時(shí)代為(48.1±0.8)Ma(MSWD=4.0),鋯石形態(tài)特征和微量元素特征顯示,偉晶巖鋯石受到熱液的改造。含綠柱石偉晶巖與55~52 Ma的白云母花崗巖在主量元素、微量元素及稀土元素方面表現(xiàn)出極其相似的特征,為鈣堿性系列,過(guò)鋁質(zhì)花崗巖,表現(xiàn)出強(qiáng)烈的Eu虧損,δEu為0.074~0.083,相對(duì)富集HREE,(La/Yb)N=1.61~1.92,總體表現(xiàn)出典型的“M”型稀土元素四分組效應(yīng)。含綠柱石偉晶巖是白云母花崗巖漿高度演化的結(jié)果,偉晶巖結(jié)晶溫度為581 ℃,代表了印度-歐亞板塊碰撞導(dǎo)致地殼加厚的構(gòu)造背景。
含綠柱石偉晶巖;地球化學(xué);鋯石U-Pb年代;稀土四分組效應(yīng);滇西
西南三江地區(qū)作為青藏高原的東延部分,不僅和喜馬拉雅造山帶一樣經(jīng)歷了新特提斯洋俯沖、印度板塊和歐亞板塊俯沖碰撞與隆升等一系列大規(guī)模的構(gòu)造運(yùn)動(dòng),而且以其獨(dú)特的構(gòu)造部位,被認(rèn)為是一個(gè)吸收新生代印度-歐亞大陸碰撞變形的調(diào)節(jié)帶[1]。作為一個(gè)包括元古宙至第四紀(jì)巖漿巖的火成巖省,騰沖花崗巖帶包含豐富的巖石類型,其中含稀有元素偉晶巖是重要的巖石類型之一[2-3]。偉晶巖作為一種獨(dú)立的礦床類型,不但在礦床學(xué)上占有不可忽視的地位,而且在示蹤大地構(gòu)造演化的過(guò)程中具有重要意義[4]。因此,通過(guò)對(duì)騰沖-梁河地區(qū)含綠柱石偉晶巖鋯石LA-ICP-MS定年、地球化學(xué)研究,探討偉晶巖的形成時(shí)代和成因,旨在為騰沖-梁河地塊新生代構(gòu)造背景研究提供一些新的證據(jù)。
西南三江作為典型的復(fù)合造山地區(qū),完好地記錄了超級(jí)大陸裂解→增生→碰撞的完整演化歷史和大陸動(dòng)力學(xué)過(guò)程[5]。其位于云南西南部的騰沖-保山地區(qū),包括騰沖地塊、保山地塊和其間的高黎貢山變質(zhì)帶,屬于緬泰馬微陸塊的北部[6]。在三疊紀(jì)期間,騰沖-梁河地塊(簡(jiǎn)稱騰-梁地塊)處于東部古特提斯主洋盆,即昌寧-孟連古特提斯洋封閉時(shí)的前陸部位。在新特提斯洋擴(kuò)張時(shí)期,其間又形成屬于班公湖-怒江洋盆的東延分支海槽。該海槽在早侏羅世閉合,并導(dǎo)致騰沖地塊和保山地塊的碰撞,其間形成高黎貢碰撞構(gòu)造帶[6]。以滬水-龍陵-瑞麗大斷裂為界,騰沖-保山地塊出露于地表的基底巖石類型有明顯的差別。東南部以公養(yǎng)河群為代表,時(shí)代可能是早古生代,其上為上寒武統(tǒng)-中生界碎屑巖、碳酸鹽巖和玄武巖構(gòu)成的沉積蓋層[7];西北部以高黎貢山群為代表,混合巖化顯著,時(shí)代可能是新元古代[8],上部主要為弱變形的石炭系-三疊系碳酸鹽巖與碎屑巖沉積,古近系-第四系陸相火山巖、河湖相碎屑沉積等構(gòu)成的沉積蓋層。該地區(qū)出露大量的中生代-新生代花崗巖類和混合巖化花崗巖。新生代火山作用強(qiáng)烈(圖1)。研究區(qū)位于騰-梁地塊內(nèi)。
高黎貢山地區(qū)偉晶巖分布廣泛[2-3],寶石級(jí)的礦物(綠柱石、碧璽、鋰電氣石、黃玉等)主要賦存在偉晶巖中[9]。 騰沖-梁河地區(qū)含綠柱石電氣石白云母?jìng)ゾr呈脈狀侵入白云母花崗巖中(圖2a)。白云母花崗巖的年齡為52~56 Ma[10-11]。白云母花崗巖為中?;◢徑Y(jié)構(gòu),礦物組成(體積分?jǐn)?shù))石英為25%~30%,鉀長(zhǎng)石為35%~40%,斜長(zhǎng)石為30%,黑云母為3%,白云母為1%,副礦物為磷灰石、鈦鐵礦、電氣石、石榴子石和鋯石等。電氣石白云母?jìng)ゾr脈寬十幾厘米至1 m,長(zhǎng)數(shù)百米。電氣石白云母?jìng)ゾr與白云母花崗巖圍巖界線呈突變。電氣石白云母?jìng)ゾr主要礦物為石英、長(zhǎng)石、白云母和少量電氣石。偉晶巖中見綠柱石(圖2b),其晶體長(zhǎng)3~4 cm。
圖1 西南三江大地構(gòu)造位置圖(a)及騰沖-梁河地區(qū)地質(zhì)圖(b)Fig. 1 Tectonic sketch map(a) and geological sketch map of Tengchong-Lianghe area(b),weastern Yunnan
圖2 電氣石白云母?jìng)ゾr脈露頭及偉晶巖中綠柱石晶體Fig. 2 Photographs showing field outcrop of pegmatite and beryl crystal in pegmatite from the Tengchong-Lianghe area
主量元素化學(xué)分析在國(guó)土資源部西南礦產(chǎn)資源監(jiān)督檢測(cè)中心用X熒光光譜儀射線(儀器型號(hào)為AXIOS)完成,分析精度優(yōu)于5%;微量元素在中國(guó)科學(xué)院地球化學(xué)研究所礦床地球化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室用ICP-MS(儀器型號(hào)為ELEMENT)完成,分析精度優(yōu)于5%。
樣品的鋯石分離是在河北省區(qū)域地質(zhì)調(diào)查研究所完成。鋯石按常規(guī)方法分選, 最后在雙目鏡下挑純鋯。將鋯石樣品和標(biāo)樣一起放在玻璃板上用環(huán)氧樹脂固定,拋光到暴露出鋯石的中心面,用反光和透光照相,然后鍍金,拍攝陰極發(fā)光(CL)圖像。陰極發(fā)光照相在西北大學(xué)大陸動(dòng)力學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室的掃描電鏡+Gatan陰極發(fā)光MonoCL3上完成。LA-ICP-MS鋯石U-Pb測(cè)定在中國(guó)地質(zhì)大學(xué)(武漢)地質(zhì)過(guò)程與礦產(chǎn)資源國(guó)家重點(diǎn)實(shí)驗(yàn)室完成。使用的 ICP-MS 為 Elan 6100 DRC,激光剝蝕系統(tǒng)為德國(guó) Lamda Physik公司的GeoLas 200 M深紫外(DUV) 193 nm ArF準(zhǔn)分子激光剝蝕系統(tǒng)。激光束斑直徑為 32 μm,實(shí)驗(yàn)中采用He作為剝蝕物質(zhì)的載氣。U-Th-Pb同位素組成分析以標(biāo)準(zhǔn)鋯石91500作為外標(biāo),NIST610作為內(nèi)標(biāo),外標(biāo)校正方法為每隔4~5個(gè)樣品分析點(diǎn)測(cè)一次標(biāo)準(zhǔn)樣品,保證標(biāo)準(zhǔn)和樣品的儀器條件一致。詳細(xì)的儀器操作條件和數(shù)據(jù)處理方法見文獻(xiàn)[12-14]。對(duì)分析數(shù)據(jù)的離線處理采用軟件ICPMSSDataCal完成[12-13]。鋯石諧和圖用ISOPLOT程序[15]獲得。用實(shí)測(cè)204Pb進(jìn)行普通鉛校正[16]。因樣品年輕,故采用206Pb/238U年齡。單個(gè)點(diǎn)的同位素比值和年齡誤差均為1σ,206Pb/238U年齡的加權(quán)平均值誤差為95%的置信度。
含電氣石白云母?jìng)ゾr脈中鋯石呈無(wú)色透明,為自形柱狀-長(zhǎng)柱狀,顆粒長(zhǎng)徑為100~200 μm,長(zhǎng)寬比為1∶1~2∶1,顯示巖漿成因的特征。陰極發(fā)光圖像(CL)顯示,幾乎不顯示韻律環(huán)帶,鋯石內(nèi)部呈多孔狀、斑雜狀,陰極射線發(fā)光弱,不均勻(圖3),顯示熱液蝕變鋯石的特點(diǎn)[17]。鋯石稀土元素配分模式總體表現(xiàn)為左傾式(富集重稀土)的巖漿型特征[17](圖4),δCe為弱的正異常到弱的負(fù)異常(0.61~2.70),具明顯的Eu負(fù)異常(除3顆鋯石具δEu弱正異常)(表1,圖4)。鋯石的U和Th質(zhì)量分?jǐn)?shù)變化范圍較大,分別為(2 128~26 220)×10-6和(44.1~2 644.0)×10-6,其Th/U值為0.01~0.10(表2)。11個(gè)分析點(diǎn)都沿著諧和線或附近分布(圖5a),可得到一致性U-Pb諧和年齡。11顆鋯石給出的206Pb/238U年齡范圍為46.7~53.1 Ma,加權(quán)平均年齡為(48.1±0.8)Ma(MSWD=4.0)(圖5b),代表含綠柱石電氣石偉晶巖鋯石的結(jié)晶年齡。
表1 綠柱石電氣石偉晶巖鋯石LA-ICP-MS原位微量元素分析結(jié)果
注: “-”表示低于檢測(cè)限。
表2 騰沖-梁河地區(qū)綠柱石電氣石偉晶巖鋯石LA-ICP-MS U-Pb測(cè)年結(jié)果
圖3 偉晶巖(D5061)鋯石的CL圖像、分析點(diǎn)位Fig. 3 CL images of zircons with the analysed spots of pegmatite (D5061)from Tengchong-Lianghe area
圖4 偉晶巖鋯石的稀土元素球粒隕石標(biāo)準(zhǔn)化配分模式[18]Fig. 4 Chondrite-normalized REE patterns for the zircons of pegmatite from Tengchong-Lianghe area[18]
4.1 主量元素
偉晶巖的w(SiO2)為77.21%~77.37%,w(Al2O3)為12.73%~12.80%(表3),全堿(w(K2O+Na2O))為8.01%~8.34%,w(TiO2)為0.06%~0.07%,w(P2O5)為0.005%,w(CaO)為0.41%~0.42%,在花崗巖TAS圖(圖6a)中,落入亞堿性系列花崗巖區(qū)。A/CNK為1.11~1.15,為過(guò)鋁質(zhì)花崗巖[20](圖6b)。53~52 Ma的白云母花崗巖與偉晶巖化學(xué)成分極為相似,w(SiO2)為75.71%~76.96%,w(Al2O3)為12.50%~12.98%,全堿含量(w(K2O+Na2O))為8.71%~8.92%,w(TiO2)為0.04%~0.07%,w(P2O5)為0.008%~0.010%,w(CaO)為0.07%~0.40%,A/CNK為1.02~1.13,為準(zhǔn)鋁質(zhì)-過(guò)鋁質(zhì)花崗巖。相反,58~61 Ma的鉀長(zhǎng)花崗巖與偉晶巖化學(xué)組成上有較大的差異,w(SiO2)為64.99%~72.05%,w(Al2O3)為14.17%~16.42%,全堿(w(K2O+Na2O))為5.87%~8.64%,w(TiO2)為0.24%~0.59%,w(P2O5)為0.052%~0.200%,w(CaO)為0.27%~4.06%。從主量元素組成方面,顯示偉晶巖與白云母花崗巖有密切的關(guān)系。
4.2 微量元素
偉晶巖w(∑REE)為(84.5~95.0)×10-6,表現(xiàn)出強(qiáng)烈的Eu虧損,δEu為0.074~0.083,相對(duì)富集HREE,(La/Yb)N=1.61~1.92[21],總體表現(xiàn)出典型的“M”型稀土元素四分組效應(yīng)(圖7a)。白云母花崗巖的w(∑REE)為(93.9~175.9)×10-6,稀土配分模式與偉晶巖很相似,表現(xiàn)出強(qiáng)烈的Eu虧損,δEu為0.036~0.090,相對(duì)富集HREE,(La/Yb)N=1.01~1.55,表現(xiàn)出“M”型稀土元素四分組效應(yīng)。偉晶巖經(jīng)歷了明顯的分離結(jié)晶作用,REE總量逐漸降低;而鉀長(zhǎng)花崗巖則表現(xiàn)出右傾的LREE富集型模式,(La/Yb)N=6.20~22.50,δEu為0.45~0.48。微量元素原始地幔標(biāo)準(zhǔn)圖(圖7b)中,偉晶巖與白云母花崗巖表現(xiàn)出相似的特征,虧損Ba、Sr、P、Ti,富集Rb、Th、K、Nb、Ta。鉀長(zhǎng)花崗巖則表現(xiàn)出虧損Nb、Ta。
圖5 含綠柱石偉晶巖鋯石的LA-ICP-MS U-Pb年齡諧和圖Fig .5 Zircon LA-ICP-MS U-Pb concordia diagram of pegmatite from Tengchong-Lianghe area
a圖:Pc.苦橄玄武巖;B.玄武巖;O1.玄武安山巖;O2.安山巖;O3.英安巖;R.流紋巖;S1.粗面玄武巖;S2.玄武質(zhì)粗面安山巖;S3.粗面安山巖;T.粗面巖、粗面英安巖;F.副長(zhǎng)石巖;U1.堿玄巖、碧玄巖;U2.響巖質(zhì)堿玄巖;U3.堿玄質(zhì)響巖;Ph.響巖;Ir.Irvine 分界線,其上方為堿性,下方為亞堿性。b圖:第1組.偉晶巖;第2組.鉀長(zhǎng)花崗巖;第3組.白云母花崗巖。圖6 騰沖-梁河偉晶巖及花崗巖TAS圖[19](a)及A/CNK-A/CN圖解(b)Fig. 6 Total alkali vs.SiO2 variation diagram[19](a)and A/CNK-A/CN diagram(b) for the pegmatites and granites
鉀長(zhǎng)花崗巖D4160D4310D4179D4142花崗偉晶巖D4289-1D4289-2D4289-3白云母花崗巖D4289LLS8LLS10SiO268.9668.6664.9972.0577.3377.3777.2176.9676.0375.71TiO20.240.450.590.250.070.060.060.070.040.06Al2O316.4215.0315.8814.1712.7512.8012.7312.5012.9412.98
表3(續(xù))
注:樣品LLS8、LLS10數(shù)據(jù)引自文獻(xiàn)[11];主量元素質(zhì)量分?jǐn)?shù)單位為%,微量元素質(zhì)量分?jǐn)?shù)單位為10-6。
圖7 騰沖-梁河地區(qū)偉晶巖稀土元素[18](a)和微量元素(b)配分模式圖[22]Fig. 7 Chondrite normalized REE patterns[18](a) and primitive normalized spider diagrams[22](b) for pegmatite from Tengchong-Lianghe area
5.1 偉晶巖中鋯石成因
鋯石可在上地幔高溫高壓條件到近地表熱液條件的廣泛范圍內(nèi)形成,具有高度穩(wěn)定性[17]。已有的研究表明:巖漿鋯石Th/U值較高,大于0.1(一般為0.5~1.5);變質(zhì)鋯石Th/U值低,小于0.2[23-26]。但近年來(lái),發(fā)現(xiàn)在熱液條件下鋯石可發(fā)生蝕變作用,甚至可從熱液中結(jié)晶形成熱液鋯石(hydrothermal zircon)[17, 27-30]。 熱液改造的和熱液鋯石可用于確定流體加入事件及水/巖相互作用的特點(diǎn),因此,其微量元素,特別是稀土元素組成特點(diǎn)成為探討成巖或成礦地球化學(xué)過(guò)程的重要示蹤[17]。本文花崗偉晶巖鋯石具有典型的巖漿鋯石形態(tài)(完整的自形柱狀),具有明顯的δEu正異常,鋯石稀土元素球粒隕石標(biāo)準(zhǔn)化型式為左傾式(富集重稀土) 的巖漿型鋯石。鋯石卻具有極低的Th/U值(為0.01~0.10),和多孔狀構(gòu)造,鋯石稀土元素組成Ce正異常降低或消失,顯示出熱液鋯石的特點(diǎn)。(Sm/La)N-La及Ce/Ce*-(Sm/La)N圖解[29](圖8)上,偉晶巖鋯石分布于巖漿鋯石與熱液鋯石的過(guò)渡區(qū),這些特征顯示了熱液改造鋯石的特點(diǎn)。
5.2 偉晶巖的成因
偉晶巖通常被認(rèn)為形成于晚期巖漿和早期熱液過(guò)程的過(guò)渡階段[31]。H2O在偉晶巖的形成過(guò)程中起著關(guān)鍵的作用,偉晶巖漿中H2O的質(zhì)量分?jǐn)?shù)往往超過(guò)10%[32]。也有人認(rèn)為過(guò)冷卻在偉晶巖形成中起很重要的作用[33-34]。偉晶巖結(jié)晶過(guò)程中常常伴隨著熱液流體的階段性演化[35],不同階段形成的流體成分不盡相同。通過(guò)對(duì)偉晶巖中包裹體的研究,綠柱石是在早期熱液階段中結(jié)晶沉淀,溫度條件是520~620 ℃,壓力是3.5~5.0 kPa[35-37]。根據(jù)巖漿巖中鋯石的Ti質(zhì)量分?jǐn)?shù),通過(guò)公式:T(℃)zircon=(5 080±30)/[(6.01±0.03)-lg(w(Ti))]- 273,可以計(jì)算巖漿結(jié)晶溫度[38]。對(duì)本文偉晶巖鋯石溫度計(jì)算(表1),偉晶巖平均結(jié)晶溫度為581 ℃,為早期熱液階段[35-37],表明本文偉晶巖中綠柱石是在熱液階段的早期沉淀的,而且溫度相當(dāng)高。研究表明,在H2O飽和的酸性熔體中熔體不混溶過(guò)程對(duì)含Be礦物的形成具有重要作用[39],在演化的巖漿和熔體不混溶階段形成的富含H2O的偉晶巖巖漿中,Be的濃集程度可達(dá)到1 000倍以上。
圖8 含綠柱石偉晶巖中鋯石(Sm/La)N-w(La)(a)及Ce/Ce*-(Sm/La)N(b)圖解(底圖據(jù)文獻(xiàn)[29])Fig. 8 Discrimination plots for magmatic and hydrothermal zircon(base map modified after reference[29])
騰沖-梁河地區(qū)新生代巖漿作用廣泛,并具有多期的特點(diǎn),根據(jù)已有的年代學(xué)資料,包括66~58 Ma的鉀長(zhǎng)花崗巖[10, 40-41]、55~52 Ma的白云母花崗巖[10-11]、41~43 Ma的二長(zhǎng)花崗巖[11, 42]和24 Ma的花崗巖[43]。顯然,含綠柱石偉晶巖與41~43 Ma和24 Ma的巖漿作用無(wú)關(guān)。前文已經(jīng)論述,含綠柱石偉晶巖與52~55 Ma的白云母花崗巖在主量元素、微量元素、稀土元素組成和配分模式極為相似,而與 58~61 Ma的鉀長(zhǎng)花崗巖有較大的差別,說(shuō)明偉晶巖是55~52 Ma的白云母花崗巖漿高度演化的產(chǎn)物。白云母花崗巖的εNd(t)為-7.9~-3.7[44],εHf(t)為-12.35~-4.5[10],說(shuō)明其來(lái)源于地殼的部分熔融。
5.3 偉晶巖形成的大地構(gòu)造背景
Cerny等[45-46]將富含(Li、Rb、Cs 、Be、Ga、Sn)<(Nb、Ta、 B、 P、 F )等元素的偉晶巖稱為L(zhǎng)CT型偉晶巖。這種LCT型偉晶巖通常與同造山、造山晚期過(guò)鋁質(zhì)S型花崗巖密切相關(guān)[45, 47];與 Li-Be-Na-Cs 礦床相關(guān)的偉晶巖,以過(guò)鋁質(zhì)、富含B、 Be、Li、 P 、堿質(zhì)(Na、K),貧Fe、 Mg、 Ca以及礦物( 如磷灰石)顯示強(qiáng)烈的REE“四分組效應(yīng)”為特征[48]。這意味著它很可能是由沉積的泥質(zhì)巖深熔形成。而泥質(zhì)巖,尤其是與蒸發(fā)巖有關(guān)的黏土巖類,是最富集電氣石的,可提供大量的B[49-50]以及Na、 K、Li、 Cl、 F、P、Fe、 Mn等組分[51-52]。過(guò)鋁質(zhì)花崗巖主要位于2個(gè)大陸巖石圈匯聚使地殼加厚的部位[53],即大陸碰撞地殼加厚區(qū)。LCT型偉晶巖是典型的過(guò)鋁質(zhì)巖漿體系分異演化的產(chǎn)物,因此,可以合理地推斷騰沖-梁河地區(qū)含稀有金屬偉晶巖的形成與大陸碰撞構(gòu)造背景有密切關(guān)系。騰沖-梁河地區(qū)偉晶巖的形成時(shí)間為48.1 Ma,與印度-歐亞板塊碰撞事件相吻合。約65 Ma,印度與歐亞板塊開始碰撞[54-55],引起地殼加厚。加厚地殼部分熔融形成55~52 Ma的S型白云母花崗巖。隨著巖漿的不斷分離結(jié)晶,殘余巖漿中水和揮發(fā)分含量不斷增加,巖漿黏度大大降低,巖漿流動(dòng)性增大[32],偉晶巖漿沿著裂隙向上流動(dòng),形成了偉晶巖脈。偉晶巖的形成時(shí)代也間接證明了印度與歐亞板塊在48 Ma以前就發(fā)生了碰撞。
1)鋯石LA-ICP-MS U-Pb同位素定年結(jié)果表明,騰沖-梁河地區(qū)含綠柱石偉晶巖的形成年齡為(48.1±0.8)Ma(MSWD=4.0),鋯石形態(tài)特征及元素特征顯示,這些鋯石受到熱液改造。
2)含綠柱石偉晶巖與白云母花崗巖在主量元素、微量元素及稀土元素方面表現(xiàn)出極其相似的特征,為鈣堿性系列,過(guò)鋁質(zhì)花崗巖,表現(xiàn)出強(qiáng)烈的Eu虧損,δEu為0.074~0.083,相對(duì)富集HREE,(La/Yb)N=1.61~1.92,總體表現(xiàn)出典型的“M”型稀土元素四分組效應(yīng)。
3)騰沖-梁河地區(qū)含綠柱石偉晶巖是白云母花崗巖漿高度演化的殘余巖漿產(chǎn)物,偉晶巖結(jié)晶溫度為581 ℃。偉晶巖代表了印度-歐亞板塊碰撞導(dǎo)致地殼加厚的構(gòu)造背景。
[1] Dewey J F,Shackleton,Robert M,et al. The Tectonic Evolution of the Tibetan Plateau[J]. Philosophical Transactions of the Royal Society of London, Series A: Mathematical and Physical Sciences,1988,327:379-413.
[2] 柏萬(wàn)靈.滇西高黎貢山地區(qū)寶石偉晶巖[J]. 礦產(chǎn)與地質(zhì), 1994, 42 (8):282-296. Bo Wanling. Gem Pegmatites in the Gaoligongshan Area[J]. Mineral Resources and Geology,1994, 42 (8):282-296.
[3] 高子英,呂伯西,段建中,等.滇西花崗偉晶巖[J].云南地質(zhì),1993:12(4):367-372. Gao Ziying,Lü Boxi,Duan Jianzhong,et al. Granitic Pegmatites in West Yunnan[J]. Yunnan Geology,1993,12(4):367-372.
[4] 王登紅,鄒天人,徐志剛,等.偉晶巖礦床示蹤造山過(guò)程的研究進(jìn)展[J].地球科學(xué)進(jìn)展, 2004,19(4):614-620. Wang Denghong,Zou Tianren,Xu Zhigang,et al. Advance in the Study of Using Pegmatite Deposits as the Tracer of Orogenic Process[J]. Advance in Earth Sciences,2004,19(4):614-620.
[5] 鄧軍,楊立強(qiáng),王長(zhǎng)明.三江特提斯復(fù)合造山與成礦作用研究進(jìn)展[J].巖石學(xué)報(bào), 2011,27(9):2501-2509. Deng Jun,Yang Liqiang, Wang Changming.Research Advances of Superimposed Orogenesis and Metallogenesis in the Sanjiang Tethys[J]. Acta Petrologica Sinica, 2011,27(9):2501-2509.
[6] 鐘大賚.川滇西部古特提斯造山帶[M].北京:科學(xué)出版社, 1998:1-231. Zhong Dalai. Paleo-Tethyan Orogenic Beltin the Western Parts of the Sichuan and Yunnan Provinces[M]. Beijing:Science Press, 1998: 1-231.
[7] Chen Fukun,Li Xianghui,Wang Xiuli,et al. Zircon Age and Nd-Hf Isotopic Composition of the Yunnan Tethyan Belt, Southwestern China[J]. International Journal of Earth Sciences, 2007, 96(6): 1179-1194.
[8] 李再會(huì), 林仕良,叢峰,等. 滇西高黎貢山群變質(zhì)巖的鋯石年齡及其構(gòu)造意義[J]. 巖石學(xué)報(bào), 2012,28(5):1524-1541. Li Zaihui, Lin Shiliang, Cong Feng,et al. U-Pb Ages of Zircon from Metamorphic Rocks of the Gaoligongshan Group in Western Yunnan and Its Tectonic Significance[J]. Acta Petrologica Sinica, 2012,28(5):1524-1541.
[9] 孫克祥. 賦存于云南前寒武系中的寶石偉晶巖[J]. 云南地質(zhì), 1993,12(1):92-100. Sun Kexiang .Gem-Bearing Pegmatite in Pre-Cambrian Series of Yunnan[J] .Yunnan Geology,1993,12(1):92-100.
[10] Xu Yigang,Yang Qijun,Lan Jiangbo,et al.Temporal-Spatial Distribution and Tectonic Implications of the Batholiths in the Gaoligong-Tengliang-Yingjiang Area, Western Yunnan: Constraints from Zircon U-Pb Ages and Hf Isotopes[J]. Journal of Asian Earth Sciences, 2012, 53:151-175.
[11] 董方瀏, 侯增謙, 高永豐,等.滇西騰沖新生代花崗巖:成因類型與構(gòu)造意義[J].巖石學(xué)報(bào), 2006,22(4):927-937. Dong Fangliu, Hou Zengqian, Gao Yongfeng,et al.Cenozoic Granitoid in Tengchong,Western Yunnan:Genesis Type and Implication for Tectonics[J]. Acta Petrologica Sinica, 2006,22(4):927-937.
[12] Liu Yongsheng,Hu Zhaochu, Gao Shan, et al. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS Without Applying an Internal Standard[J].Chemical Geology, 2008,257(1/2): 34-43.
[13] Liu Yongsheng, Gao Shan, Hu Zhaochu, et al. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths[J]. Journal of Petrology, 2010, 51(1/2): 537-571.
[14] Yuan Honglin, Gao Shan, Liu Xiaoming, et al.Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J]. Geostandards and Geoanalytical Research, 2004,28(3): 353-370.
[15] Ludwig K. User’s Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel[J]. Berkeley Geochronology Center Special Publication, 2003,4(9): 1-71.
[16] Andersen T. Correction of Common Lead in U-Pb Analyses that Do Not Report204Pb[J]. Chemical Geology, 2002,192(1/2): 59-79.
[17] Zhao Zhenhua, Bao Zhiwei, Qiao Yulou. A Peculiar Composite M- and W-Type REE Tetrad Effect: Evidence from the Shuiquangou Alkaline Syenite Complex, Hebei Province, China[J]. Chinese Science Bulletin,2010,55(24):2684-2696.
[18] Sun S S,McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts; Implications for Mantle Composition and Processes[J]. Geological Society Special Publications, 1989,42: 313-345.
[19] Le Maitre R W, Streckeisen A, Zanettin B,et al. Igneous Rocks:A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks[M]. Cambridge: Cambridge University Press,2002.
[20] Maniar P D,Piccoli P M. Tectonic Discrimination of Granitoids[J]. Geological Society of America Bulletin, 1989,101(5): 635-643.
[21] McDonough W F,Sun S S. The Composition of the Earth[J]. Chemical Geology, 1995,120(3/4): 223-253.
[22] McDonough W F, Sun S S, Ringwood A E,et al. Potassium, Rubidium, and Cesium in the Earth and Moon and the Evolution of the Mantle of the Earth[J]. Geochimica et Cosmochimica Acta, 1992,56(3): 1001-1012.
[23] Hacker B R , Ratschbacher L,Webb L,et al. U/Pb Zircon Ages Constrain the Architecture of the Ultrahigh-Pressure Qinling-Dabie Orogen, China[J]. Earth and Planetary Science Letters, 1998,161(1/2/3/4): 215-230.
[24] Keay S,Steele D, Compston W. Identifying Granite Sources by SHRIMP U-Pb Zircon Geochronology: An Application to the Lachlan Foldbelt[J]. Contributions to Mineralogy and Petrology, 1999,137(4): 323-341.
[25] Robb L J, Armstrong R A , Waters D J. The History of Granulite-Facies Metamorphism and Crustal Growth from Single Zircon U-Pb Geochronology: Namaqualand, South Africa[J]. Journal of Petrology, 1999,40(12): 1747-1770.
[26] 陳道公, 李彬賢,夏群科,等.變質(zhì)巖中鋯石U-Pb計(jì)時(shí)問(wèn)題評(píng)述:兼論大別造山帶鋯石定年[J]. 巖石學(xué)報(bào), 2001,17(1):129-138. Chen Daogong, Li Binxian,Xia Qunke,et al. An Evaluation of Zircon U-Pb Dating for Metamorphic Rocks and Comments on Zircon Ages of Dabie Orogen[J]. Acta Petrologica Sinica,2001, 17(1):129-138.
[27] Fu Bin, Mernagh T P, Kita N T,et al. Distinguishing Magmatic Zircon from Hydrothermal Zircon: A Case Study from the Gidginbung Sigh-Sulphidation Au-Ag-(Cu) Deposit, SE Australia[J]. Chemical Geology, 2009, 259(3/4): 131-142.
[28] Geisler T, Schaltegger U, Tomaschek F. Re-Quilibration of Zircon in Aqueous Fluids and Melts[J]. Elements, 2007,3(1): 43-50.
[29] Hoskin P W O. Trace-Element Composition of Hydrothermal Zircon and the Alteration of Hadean Zircon from the Jack Hills, Australia[J]. Geochimica et Cosmochimica Acta, 2005,69(3): 63-648.
[30] Kerrich R, King R. Hydrothermal Zircon and Baddedeleyyite in Val d’Or Archean Mesothermal Gold Deposits: Characteristics, Compositions and Fluid-inclusion Properties, with Implications for Timing of Primary Gold Mineralization[J]. Can J Earth Sci, 1993, 30: 2334-352.
[31] Lottermoser B G,Lu J. Petrogenesis of Rare-Element Pegmatites in the Olary Block, South Australia:Part 1:Mineralogy and Chemical Evolution[J]. Mineralogy and Petrology, 1997,59(1): 1-19.
[32] Thomas R, Davidson P. Water in Granite and Pegmatite-Forming Melts[J]. Ore Geology Reviews, 2012,46: 32-46.
[33] Nabelek P I , Whittington A G , Sirbescu M L C. The Role of H2O in Rapid Emplacement and Crystallization of Granite Pegmatites: Resolving the Paradox of Large Crystals in Highly Undercooled Melts[J]. Contributions to Mineralogy and Petrology, 2009,160(3): 313-325.
[34] Sirbescu M L, Hartwick E, Student J. Rapid Crys-tallization of the Animikie Red Ace Pegmatite, Florence County, Northeastern Wisconsin: Inclusion Microthermometry and Conductive-Cooling Modeling[J]. Contributions to Mineralogy and Petrology, 2008,156(3): 289-305.
[35] Lu J,Lottermoser B G. Petrogenesis of Rare-Element Pegmatites in the Olary Block, South Australia:Part 2:Fluid Inclusion Study[J]. Mineralogy and Petrology, 1997,59(1): 21-41.
[36] Peretyazhko I. Conditions of Pocket Formation in the Oktyabrskaya Tourmaline-Rich Gem Pegmatite (the Malkhan Field, Central Transbaikalia, Russia)[J]. Chemical Geology, 2004,210(1/2/3/4): 91-111.
[37] Beurlen H , da Silva M R R , de Castro C. Fluid Inclusion Microthermometry in Be-Ta-(Li-Sn)-Bearing Pegmatites from the Borborema Province, Northeast Brazil[J]. Chemical Geology, 2001,173(1/2/3): 107-123.
[38] Watson E, Wark D, Thomas J. Crystallization Thermometers for Zircon and Rutile[J].Contributions to Mineralogy and Petrology,2006, 15(14): 413-433.
[39] Thomas R, Webster J D, Davidson P. Be-Daughter Minerals in Fluid and Melt Inclusions: Implications for the Enrichment of Be in Granite-Pegmatite Systems[J]. Contributions to Mineralogy and Petrology, 2010,161(3): 483-495.
[40] 叢峰, 林仕良,唐紅峰,等. 滇西騰沖-梁河地區(qū)花崗巖鋯石稀土元素組成和U-Pb同位素年齡[J]. 吉林大學(xué)學(xué)報(bào):地球科學(xué)版, 2010,40(3): 573-580. Cong Feng, Lin Shiliang, Tang Hongfeng,et al. Rare Earth Element Geochemistry and U-Pb Age of Zircons from Granites in Tengchong-Lianghe Area, Western Yunnan[J]. Journal of Jilin University:Earth Science Edition, 2010,40(3): 573-580.
[41] 謝韜,林仕良,叢峰,等. 滇西梁河地區(qū)鉀長(zhǎng)花崗巖鋯石LA-ICP-MS U-Pb定年及其地質(zhì)意義[J]. 大地構(gòu)造與成礦學(xué), 2010,34(3): 419-428. Xie Tao, Lin Shiliang, Cong Feng,et al. LA-ICP-MS Zircon U-Pb Dating for K-Feldspar Granites in Lianghe Region, Western Yunnan and Its Geological Significance[J]. Geotectonica et Metallogenia, 2010,34(3): 419-428.
[42] 李再會(huì), 王立全, 林仕良,等. 滇西高黎貢剪切帶內(nèi)花崗質(zhì)糜棱巖的鋯石U-Pb年齡及構(gòu)造意義[J] .地質(zhì)通報(bào), 2012,31(8):1287-1295. Li Zaihui, Wang Liquan, Lin Shiliang, et al. Zircon U-Pb Age and Its Tectonic Significance of Granitic Mylonite from the Gaoligong Shear Zone, Western Yunnan Province[J]. Geological Bulletin of China, 2012,31(8):1287-1295.
[43] 尹福光,張虎,黃勇,等. 泛亞鐵路滇西大理至瑞麗段基礎(chǔ)地質(zhì)綜合調(diào)查進(jìn)展[J]. 地質(zhì)通報(bào), 2012,31(2/3):218-226. Yin Fuguang, Zhang Hu,Huang Yong ,et al.Advances in the Basic Geological Survey Along Dali-Ruili Section of Fanya Railway,West Yunnan Province[J]. Geological Bulletin of China, 2012,31(2/3):218-226.
[44] 楊啟軍, 徐義剛,黃小龍,等. 滇西騰沖-梁河地區(qū)花崗巖的年代學(xué)、地球化學(xué)及其構(gòu)造意義[J]. 巖石學(xué)報(bào), 2009,25(5):1092-1104. Yang Qijun, Xu Yigang, Huang Xiaolong,et al. Geochronology and Geochemistry of Granites in the Tengliang Area, Western Yunnan:Tectonic Implication[J] .Acta Petrologica Sinica,2009,25(5):1092-1104.
[45] Cerny P, Goad B E,Hawthorne F C,et al. Fractionation Trends of the Nb- and Ta-Bearing Oxide Minerals in the Greer Lake Pegmatitic Granite and Its Pegmatite Aureole, Southeastern Manitoba[J]. American Mineralogist, 1986,71(3/4): 501-517.
[46] Cerny P, Ercit T S. The Classification of Granitic Pegmatites Revisited[J]. The Canadian Mineralogist, 2005,43(6): 2005-2026.
[47] Williams A E,McKibben M A. A Brine Interface in the Salton Sea Geothermal System, California: Fluid Geochemical and Isotopic Characteristics[J]. Geochimica et Cosmochimica Acta, 1989,53(8): 1905-1920.
[48] 張輝, 劉叢強(qiáng). 新疆阿爾泰可可托海3號(hào)偉晶巖脈磷灰石礦物中稀土元素“四分組效應(yīng)”及其意義[J]. 地球化學(xué), 2001,30(4):323-334. Zhang Hui,Liu Congqiang. Tetrad Effect of REE in Apatites from Pegmatite No 3,Altay,Xinjiang and Its Implications[J] .Geochimica,2001,30(4):323-334.
[49] Wu Y, Zheng Y. Genesis of Zircon and Its Con-straints on Interpretation of U-Pb Age[J]. Chinese Science Bulletin, 2004,49(15): 1554-1569.
[50] Grew E S. Borosilicates (Exclusive of Tourmaline) and Boron in Rock-Forming Minerals in Metamorphic Environments[J]. Reviews in Mineralogy and Geochemistry, 1996,33(1):387-502.
[51] Leeman W P,Sisson V B. Geochemistry of Boron and Its Implications for Crustal and Mantle Processes[J]. Reviews in Mineralogy and Geochemistry, 1996,33(1): 645-707.
[52] Slack J F , Palmer M R, Stevens B P J. Boron Isotope Evidence for the Involvement of Non-Marine Evaporites in the Origin of the Broken Hill Ore Deposit[J]. Nature, 1989, 342: 913-916.
[53] Barbarin B. A Review of the Relationships Between Granitoid Types, Their Origins and Their Geodynamic Environments[J]. Lithos, 1999,46(3): 605-626.
[54] Mo Xuanxue,Niu Yaoling,Dong Guochen ,et al. Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth: A Case Study of the Paleogene Linzizong Volcanic Succession in Southern Tibet[J]. Chemical Geology, 2008, 250(1/2/3/4): 49-67.
[55] Rowley D B. Age of Initiation of Collision Between India and Asia: A Review of Stratigraphic Data[J]. Earth and Planetary Science Letters, 1996,145(1/2/3/4): 1-13.
Zircon LA-ICPMS U-Pb Geochronology of the Beryl-Bearing Pegmatite and Its Geological Significance,Western Yunnan,Southwest China
Li Zaihui,Tang Fawei,Lin Shiliang,Cong Feng,Xie Tao,Zou Guangfu
ChengduInstituteofGeologyandMineralResources,Chengdu610081,China
Zircon LA-ICP-MS U-Pb dating and geochemical analyses were carried out for the beryl-bearing pegmatite of Tengchong-Lianghe area, western Yunnan. Dating results revealed that the beryl-bearing pegmatite were formed at (48.1±0.8) Ma (MSWD=4.0). Zircon morphology and trace element feature indicate that the zircons suffered from hydrothermal alteration. The beryl-bearing pegmatite shows similar characteristics with respect to major elements, trace elements and rare elements with muscovite granite which formed during 55-52 Ma. They are sub-alkaline series, peraluminous granite with strongly Eu depletion, relatively enriched HREE with (La/Yb)N=1.61-1.92 and showing typical M-type of REE tetrad effect. The genesis of beryl-bearing pegmatite is related to the evolution of muscovite granitoids and the crystallization temperature of beryl-bearing pegmatite is 581 ℃. It indicates the overthickened crust tectonic setting caused by India-Asia continental collision.
beryl-bearing pegmatite;geochemistry;zircon U-Pb dating;REE tetrad effect;western Yunnan
10.13278/j.cnki.jjuese.201402113.
2013-07-28
中國(guó)地質(zhì)調(diào)查局地質(zhì)大調(diào)查項(xiàng)目(1212010784007)
李再會(huì)(1967-),男,高級(jí)工程師,主要從事巖石學(xué)與區(qū)域地質(zhì)研究,E-mail:lizaihui00@163.com
唐發(fā)偉(1979-),男,工程師,主要從事地球化學(xué)研究,E-mail:37205958@qq.com。
10.13278/j.cnki.jjuese.201402113
P597
A
李再會(huì), 唐發(fā)偉, 林仕良,等.滇西含綠柱石偉晶巖鋯石U-Pb年代學(xué)及其地質(zhì)意義.吉林大學(xué)學(xué)報(bào):地球科學(xué)版,2014,44(2):554-565.
Li Zaihui,Tang Fawei,Lin Shiliang,et al.Zircon LA-ICPMS U-Pb Geochronology of the Beryl-Bearing Pegmatite and Its Geological Significance,Western Yunnan,Southwest China.Journal of Jilin University:Earth Science Edition,2014,44(2):554-565.doi:10.13278/j.cnki.jjuese.201402113.