• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Generalized Crossed Products and L-R Smash Products of Multiplier Hopf Algebras

    2014-07-31 22:37:08ZHAOLihuiWANGCaihong

    ZHAO Li-hui,WANG Cai-hong

    (1.School of Mathematics and Statistics,Henan University of Science and Technology,Luoyang 471023, China;Department of Mathematics,Zhejiang University,Hangzhou 310027,China;2.College of Mathematics and Information Science,Henan Polytechnic University,Jiaozuo 454000,China)

    Generalized Crossed Products and L-R Smash Products of Multiplier Hopf Algebras

    ZHAO Li-hui1,WANG Cai-hong2

    (1.School of Mathematics and Statistics,Henan University of Science and Technology,Luoyang 471023, China;Department of Mathematics,Zhejiang University,Hangzhou 310027,China;2.College of Mathematics and Information Science,Henan Polytechnic University,Jiaozuo 454000,China)

    In this paper we generalize the notions of crossed products and L-R smash products in the context of multiplier Hopf algebras.We use comodule algebras to def i ne generalized diagonal crossed products,L-R smash products,two-sided smash products and two-sided crossed products and prove that they are all associative algebras.Then we show the isomorphic relations of them.

    multiplier Hopf algebra;diagonal crossed product;L-R smash product;twosided smash product;two-sided crossed product

    §1.Introduction

    Multiplier Hopf algebras were introduced by A Van Daele in[12]as natural generalizations of Hopf algebras.The motivating example is the dual of an inf i nite dimensional group algebra with the comultiplication def i ned as dual to the product in the group.Dif f erent from a Hopf algebra,the underlying algebra of a multiplier Hopf algebra is no longer assumed to have an identity and the comultiplication is modif i ed.It has been argued in several papers(see[7,13]) why such a generalization is important.

    Actions and coactions on algebras are an important part of the theory of Hopf algebras, and they have been extended to multiplier Hopf algebras.Using them one can construct many kinds of non-trivial algebra structures on tensor products.

    Diagonal crossed products over quasi-Hopf algebras were f i rst introduced by S Majid in[10] in the form of implicit Tannaka-Krein reconstruction procedure and studied later by F Hausser and F Nill in[9].The notion of L-R smash product was introduced and studied in a series of [1-4],based on the theory of deformation quantization.Applying the coactions of multiplier Hopf algebra,in this paper we def i ne more general versions of diagonal crossed products,LR smash products,two-sided smash products and two-sided crossed products and study their relations.

    In the following we recall some def i nitions of multiplier Hopf algebras.

    Let A be an algebra with or without identity.We denote by M(A)the multiplier algebra of A.If the product in A is non-degenerate,that is,if ab=0 for all b implies a=0 and ab=0 for all a implies b=0,then there is a natural embedding from A into M(A).And it is easy to see that if A has an identity then the product is automatically non-degenerate and A=M(A).

    A comultiplication on A is a homomorphism Δ:A→M(A?A)such that Δ(a)(1?b)and (a?1)Δ(b)are elements of A?A for all a,b∈A and Δ is coassociative in the following sense

    for all a,b,c∈A.

    A pair(A,Δ)in which A is an algebra with a non-degenerate product and Δ is a comultiplication on A,is called a multiplier Hopf algebra if the linear maps T1,T2:A?A→A?A, def i ned by

    are bijective.We say that(A,Δ)is regular if(A,Δ)is again a multiplier Hopf algebra where Δ0is the opposite comultiplication.In a regular multiplier Hopf algebra the antipode is invertible and from A to A instead of the multiplier algebra M(A),see[13].

    A vector space R is a left A-module if there is a bilinear map A?R→R de fi ned by a?x■→a·x satisfying(aa0)·x=a·(a0·x)for all a,a0∈A and x∈R.Moreover,if AR=R then the left A-module R is called unital.It is similar to de fi ne a(unital)right A-module. Throughout this paper we work with a multiplier Hopf algebra A and unital modules over a fi xed fi eld k.The Sweedler notation for regular multiplier Hopf algebras is used in several papers such as[7]and[14].So in this paper we will also use it if the comultiplication of a multiplier Hopf algebra is“well-covered”which∑ is a new concept introduced in[7].But here we will write the comultiplication Δ(a)(1b)=a1a2b for a,b∈A.

    §2.Generalized Crossed Products and L-R Smash Products

    We f i rstly give the def i nitions of a bimodule algebra and a bicomodule algebra.

    Def i nition 1Let A be a regular multiplier Hopf algebra.An algebra R is called an A-bimodule algebra,if for all a,b∈A,x,x0∈R the following conditions hold

    (1)R is a unital left A-module and unital right A-module such that(a·x)·b=a·(x·b);

    (2)a·(xx0)=∑(a1·x)(a2·x0)and(xx0)·a=∑(x·a1)(x0·a2).

    Example 1Let A be a multiplier Hopf algebra,E be a left A-module algebra and D be a right A-module algebra.Then E?D is an A-bimodule algebra such that

    for all a∈A,e∈E and d∈D.

    Before we def i ne a bicomodule algebra of a multiplier Hopf algebra,we need to recall the def i nition of a coaction in multiplier Hopf algebras[15].

    Def i nition 2Let A be a multiplier Hopf algebra,and R an algebra with a non-degenerate product.An injective homomorphism Γ:R→M(A?R)is a left coaction of A on R if the following conditions hold

    (i)Γ(R)(A?1)?A?R,(A?1)Γ(R)?A?R; (ii)(idA?Γ)Γ=(ΔA?idR)Γ.

    At the same time,R is called a left A-comodule algebra.

    Note 1(1)For any a∈A,x∈R,there exists an element e∈A such that ea=a and Γ(x)(a?1)=Γ(x)(e?1)(a?1).By the formula Γ(x)(e?1)∈A?R,we can write Γ(x)(e?1)=∑x?1?x0and

    Similarly,(a?1)Γ(x)=∑ax?1?x0.

    (2)The right hand side of condition(ii)makes sense,because ΔAis non-degenerate.Def i ning

    for all x,y∈R,a,b∈A,we have(idA?Γ)Γ(x)∈M(A?A?R).

    (3)The notations of a right coaction of A on R and a right A-comodule algebra can be def i ned which is denoted byˉΓ:R→M(R?A),ˉΓ(x)=∑x(0)?x(1).

    Def i nition 3Let A be a multiplier Hopf algebra and R an algebra.Assume that R is a left A-comodule algebra and also a right A-comodule algebra.Then R is an A-bicomodule algebra if

    for all x∈R,a,a0∈A.

    Example 2Let(A,Δ)be a multiplier Hopf algebra,Q be a left A-comodule algebra and P be a right A-comodule algebra.Then Q?P is an A-bicomodule algebra.

    ProofIf ΓQis the left coaction of Q andˉΓPis the right coaction of Q,we can construct the maps ΓQ?P:Q?P→M(A?(Q?P))andˉΓQ?P:Q?P→M((Q?P)?A)such that

    for all a∈A,q,q0∈Q and p,p0∈P.Therefore it is easy to see that

    and

    By the def i nition of a bicomodule algebra we prove the result.

    Using bimodule algebras and bicomodule algebras,we will show the def i nitions of generalized crossed products and L-R smash products in multiplier Hopf algebras.

    ?Generalized Diagonal Crossed Product

    Let(A,Δ)be a regular multiplier Hopf algebra,B be an A-bimodule algebra and C be an A-bicomodule algebra.We def i ne

    for all b,b0∈B and c,c0∈C.

    Note 2The above formula is well-def i ned since left and right modules of B are unital.

    Def i nition 4Let(A,Δ)be a regular multiplier Hopf algebra,B be an A-bimodule algebra and C be an A-bicomodule algebra.Then B?C with above multiplication is called a generalized diagonal crossed product which is denoted by B??C.Moreover,B??C is called a diagonal crossed product if C=A and the coactions are given by Δ.

    ?Generalized L-R Smash Product

    Let(A,Δ)be a multiplier Hopf algebra,B be an A-bimodule algebra and C be an A-bicomodule algebra.For any b,b0∈B and c,c0∈C we give the multiplication on B?C as

    Note 3(1)The above formula is well-def i ned since left and right modules of B are unital. (2)If(A,Δ)be a regular multiplier Hopf algebra and C=A in which the coactions are given by Δ,the above structure is exactly an ordinary L-R smash product of B?A.

    Def i nition 5Let(A,Δ)be a multiplier Hopf algebra,B be an A-bimodule algebra and C be an A-bicomodule algebra.Then B?C with above multiplication is called a generalized L-R smash product which is denoted by.If both B and C have an identity,then 1is an identity of.A generalized L-R smash product becomes a generalized smash product which is denoted byif the right A-module B or the right A-comodule C is trivial.

    ?Two-sided Generalized Smash Product

    Let(A,Δ)be a multiplier Hopf algebra.Suppose that E is a left A-module algebra,D is a right A-module algebra and C is an A-bicomodule algebra.For any e,e0∈E,d,d0∈D and c,c0∈C we def i ne a multiplication on ECD giving by

    Proposition 1The above multiplication on E?C?D is associative.

    ProofBy direct calculations we obtain

    for all e,e0∈E,d,d0∈D and c,c0∈C.

    Def i nition 6Let(A,Δ)be a multiplier Hopf algebra.Suppose that E is a left A-module algebra,D is a right A-module algebra and C is an A-bicomodule algebra.Then E?C?Dwith the above multiplication is called a two-sided generalized smash product,which is denoted by ECD.Moreover,ECD is called a two-sided smash product if A is a regular multiplier Hopf algebra and C=A.If E,C and D all have an identity,1E1C1Dis an identity of ECD.

    ?Generalized Two-sided Crossed Product

    Let(A,Δ)be a multiplier Hopf algebra.Suppose that B is an A-bimodule algebra,P is a right A-comodule algebra and Q is a left A-comodule algebra.We def i ne a multiplication on PBQ giving by

    where p,p0∈P,q,q0∈Q and b,b0∈B.

    Proposition 2The above multiplication on P?B?Q is associative.

    ProofUsing the def i nition we obtain

    for all p,p0,p00∈P,q,q0,q00∈Q and b,b0,b00∈B.

    Def i nition 7Let(A,Δ)be a multiplier Hopf algebra.Suppose that B is an A-bimodule algebra,P is a right A-comodule algebra and Q is a left A-comodule algebra.Then P?B?Q with the above multiplication is called a generalized two-sided crossed product,which is denoted by P■B■Q.Similarly,1P■1B■1Qis an identity of P■B■Q if P,Q and B all have an identity.

    §3.Isomorphisms

    In this section we will consider the isomorphic relations between the generalized crossed products and L-R smash products which we def i ned in Section 2.

    Proposition 3Let(A,Δ)be a regular multiplier Hopf algebra.

    (1)If E is a left A-module algebra,D is a right A-module algebra and C is an A-bicomodule algebra,then??C~=as algebras.

    (2)If B is an A-bimodule algebra,P is a right A-comodule algebra and Q is a left A-comodule algebra,then B(QP)~=PBQ as algebras.

    ProofWe def i ne the linear maps

    for all e∈E,d∈D,c∈C and b∈B,q∈Q,p∈P.By the def i nitions of g and g0and the multiplications of crossed products we get

    for all e,e0∈E,d,d0∈D and c,c0∈C and

    for all b,b0∈B,q,q0∈Q and p,p0∈P.Furthermore,remark that the antipode of A is invertible since A is regular.Hence g and g0are invertible and the inverse maps are given respectively by

    So g and g0are algebra isomorphisms.

    Proposition 4Let(A,Δ)be a multiplier Hopf algebra.

    (1)If E is a left A-module algebra,D is a right A-module algebra and C is an A-bicomodule

    (2)If B is an A-bimodule algebra,P is a right A-comodule algebra and Q is a left A-

    ProofBy Example 1 and Example 2,E?D is an A-bimodule algebra and Q?P is

    where e∈E,d∈D,c∈C and b∈B,q∈Q,p∈P.It is clear that f and f0are bijective. Using the multiplications of generalized L-R smash products and two-sided crossed products respectively,we have

    for all e,e0∈E,d,d0∈D and c,c0∈C and

    for all b,b0∈B,q,q0∈Q and p,p0∈P.Therefore f and f0are algebra isomorphisms.

    By Proposition 3 and Proposition 4 we obtain the following properties.

    Corollary 2Let(A,Δ)be a regular multiplier Hopf algebra.

    (1)If E is a left A-module algebra,D is a right A-module algebra and C is an A-bicomodule

    (2)If B is an A-bimodule algebra,P is a right A-comodule algebra and Q is a left A-comodule algebra,then Bˉ■(Q?P)~=B??(Q?P)as algebras.

    Corollary 3Let(A,Δ)be a regular multiplier Hopf algebra.Suppose that E is a left A-module algebra,D is a right A-module algebra,P is a right A-comodule algebra and Q is a left A-comodule algebra.Then

    [1]BIELIAVSKY P,BONNEAU P,MAEDA Y.Universal deformation formulae,symplectic Lie groups and symmetric spaces[J].2003,Math QA/0308189.

    [2]BIELIAVSKY P,BONNEAU P,MAEDA Y.Universal deformation formulae for three-dimensional solvable Lie groups[J].2003,Math QA/0308188.

    [3]BONNEAU P,GERSTENHABER M,GEAQUINTO A,et al.Quantum groups and deformation quantization:explicit approaches and implicit aspects[J].J Math Phys,2004,45:3703-3741.

    [4]BONNEAU P,STERNHEIMER D.Topological Hopf Algebras,Quantum Qroups and Deformation Quantization,in“Hopf Algebras in Noncommutative Geometry and Physics”,Lecture Notes in Pure and Appl Math[C].New York:Marcel Dekker,2005,239:55-70.

    [5]DELVAUX L.Semi-direct products of multiplier Hopf algebras:smash products[J].Comm Alg,2002,30(12): 5961-5977.

    [6]DELVAUX L.Twisted tensor product of multiplier Hopf(*-)algebras[J].J Alg,2003,269:285-316.

    [7]DRABANT B,VAN D A,ZHANG Yin-huo.Actions of multiplier hopf algebras[J].Comm Alg,1999,27(9): 4117-4127.

    [8]DRABANT B,VAN DAELE A.Pairing and quantum double of multiplier Hopf algebras[J].Algebras and Representation Theory,2001,4:109-132.

    [9]HAUSS F,NILL F.Diagonal crossed products by duals of quasi-quantum groups[J].Rev Math Phys,1999, 11:553-629.

    [10]MAJID S.Quantum double for quasi-Hopf algebras[J].Lett Math Phys,1998,45:1-9.

    [11]PANAITE F,OYSTAEYEN F V.L-R-smash product for(quasi)Hopf algebras[J].J Alg,2007,309(1): 168-191.

    [12]VAN DAELE A.Multiplier Hopf algebras[J].Transactions of the American Mathematical Society,1994, 342(2):323-366.

    [13]VAN D A.An algebraic framework for group duality[J].Advances in Mahtematics,1998,140:323-366.

    [14]VAN D A,WANG Shuang-hong.The Larson-Sweeldler theorem for multiplier Hopf algebras[J].J Alg,2006, 296:75-95.

    [15]VAN D A,ZHANG Yin-huo.Calois theory for multiplier Hopf algebras with integrals[J].Algebras and Representation Theory,1999,2:83-106.

    [16]ZHAO Li-hui,LU Di-ming,FANG Xiao-li.L-R smash products of multiplier Hopf algebras[J].Appl Math, 2008,23B(1):83-90.

    tion:16W30,16S40

    CLC number:O151.21Document code:A

    1002–0462(2014)02–0283–09

    date:2012-12-19

    Supported by the Scientif i c Research Foundation for Doctoral Scientists of Henan University of Science and Technology(09001303);Supported by the National Natural Science Foundation of China(11101128)

    Biographies:ZHAO Li-hui(1979-),female,native of Luoyang,Henan,a lecturer of Henan University of Science and Technology,Ph.D.,engages in noncommutative algebra;WANG Cai-hong(1980-),female,native of Zhengzhou,Henan,a lecturer of Henan Polytechnic University,Ph.D.,engages in noncommutative algebra.

    成人精品一区二区免费| www日本在线高清视频| 久久亚洲真实| 天天躁狠狠躁夜夜躁狠狠躁| 又黄又粗又硬又大视频| 日韩大码丰满熟妇| 免费看a级黄色片| 啦啦啦视频在线资源免费观看| tocl精华| 午夜福利乱码中文字幕| av天堂在线播放| 99久久精品国产亚洲精品| 精品国产乱码久久久久久男人| 天天影视国产精品| 国产精品1区2区在线观看. | 久久中文字幕人妻熟女| 亚洲专区中文字幕在线| 日日爽夜夜爽网站| 国产成人一区二区三区免费视频网站| 国产欧美亚洲国产| 久久久久久人人人人人| 亚洲欧美激情综合另类| 叶爱在线成人免费视频播放| 99国产极品粉嫩在线观看| 丁香六月欧美| 精品无人区乱码1区二区| 国产精品九九99| 久久久久久人人人人人| 看片在线看免费视频| 人人妻人人澡人人看| 国产有黄有色有爽视频| 久久久精品区二区三区| 成人18禁高潮啪啪吃奶动态图| 久久精品91无色码中文字幕| 人妻 亚洲 视频| 久久香蕉精品热| 国产成人精品久久二区二区免费| 两人在一起打扑克的视频| 国产精品二区激情视频| 两性午夜刺激爽爽歪歪视频在线观看 | 国产主播在线观看一区二区| 国产成人av激情在线播放| 国产免费现黄频在线看| 色婷婷久久久亚洲欧美| 久久精品国产99精品国产亚洲性色 | 日本欧美视频一区| 啦啦啦视频在线资源免费观看| 亚洲熟女精品中文字幕| 国产成人欧美| 首页视频小说图片口味搜索| 久久久久久久国产电影| 午夜久久久在线观看| 最近最新中文字幕大全免费视频| 亚洲av成人不卡在线观看播放网| 超碰成人久久| 亚洲一区二区三区不卡视频| 久久国产乱子伦精品免费另类| 女性被躁到高潮视频| 成人18禁高潮啪啪吃奶动态图| 国产伦人伦偷精品视频| 国产精品乱码一区二三区的特点 | 91成人精品电影| 欧美日韩瑟瑟在线播放| 看片在线看免费视频| 免费观看a级毛片全部| 欧美日韩亚洲综合一区二区三区_| 精品人妻1区二区| 咕卡用的链子| 很黄的视频免费| 欧美日韩乱码在线| 黄色女人牲交| 麻豆乱淫一区二区| 真人做人爱边吃奶动态| 日本vs欧美在线观看视频| 亚洲国产看品久久| av电影中文网址| 超色免费av| 亚洲第一av免费看| 男男h啪啪无遮挡| 桃红色精品国产亚洲av| 捣出白浆h1v1| 亚洲精品国产区一区二| 免费观看精品视频网站| 成人手机av| 99精品欧美一区二区三区四区| 免费不卡黄色视频| 亚洲黑人精品在线| 国产在线观看jvid| 成人特级黄色片久久久久久久| 亚洲精品久久午夜乱码| 国产男女内射视频| 成年女人毛片免费观看观看9 | 超碰97精品在线观看| 欧美最黄视频在线播放免费 | 精品少妇久久久久久888优播| 国产亚洲欧美98| 国产精品久久久久久人妻精品电影| 啦啦啦 在线观看视频| 老司机靠b影院| 日日爽夜夜爽网站| 9色porny在线观看| 精品久久久久久电影网| 欧美精品人与动牲交sv欧美| 亚洲精品美女久久久久99蜜臀| 九色亚洲精品在线播放| 免费在线观看日本一区| 欧美黄色淫秽网站| 波多野结衣一区麻豆| 人成视频在线观看免费观看| av有码第一页| 午夜精品国产一区二区电影| 日韩欧美在线二视频 | 又黄又粗又硬又大视频| 久久久久久久久免费视频了| 亚洲成国产人片在线观看| a级片在线免费高清观看视频| 亚洲国产欧美日韩在线播放| 搡老乐熟女国产| 国产亚洲欧美98| 老鸭窝网址在线观看| 日韩欧美一区二区三区在线观看 | 97人妻天天添夜夜摸| 欧美另类亚洲清纯唯美| 在线观看日韩欧美| 天天操日日干夜夜撸| av欧美777| 欧美日韩黄片免| 看黄色毛片网站| 亚洲精品国产一区二区精华液| 国产欧美亚洲国产| av线在线观看网站| 免费日韩欧美在线观看| 成人国语在线视频| 男女下面插进去视频免费观看| 亚洲精品国产精品久久久不卡| 日韩免费高清中文字幕av| 精品无人区乱码1区二区| 两个人免费观看高清视频| 国产日韩欧美亚洲二区| 身体一侧抽搐| 精品欧美一区二区三区在线| 免费看十八禁软件| 成年人免费黄色播放视频| 少妇被粗大的猛进出69影院| 999久久久精品免费观看国产| 高清欧美精品videossex| 久久人妻av系列| 亚洲综合色网址| 国产成人一区二区三区免费视频网站| 久久亚洲真实| 国产亚洲欧美在线一区二区| 日韩制服丝袜自拍偷拍| 国产亚洲精品久久久久久毛片 | 日韩三级视频一区二区三区| 久久天堂一区二区三区四区| 亚洲第一av免费看| 国产视频一区二区在线看| 久久久国产成人精品二区 | 一区二区日韩欧美中文字幕| 亚洲自偷自拍图片 自拍| 久久热在线av| 满18在线观看网站| 亚洲第一av免费看| 亚洲精品成人av观看孕妇| 国产精品国产高清国产av | 夫妻午夜视频| 成人黄色视频免费在线看| 久久天躁狠狠躁夜夜2o2o| 成人亚洲精品一区在线观看| 精品乱码久久久久久99久播| 久久狼人影院| 不卡一级毛片| 久久午夜综合久久蜜桃| www.熟女人妻精品国产| 欧美日韩亚洲国产一区二区在线观看 | 电影成人av| 国产男女超爽视频在线观看| 国产在线观看jvid| 757午夜福利合集在线观看| 亚洲精品国产一区二区精华液| 视频区图区小说| 最近最新免费中文字幕在线| 国产精品自产拍在线观看55亚洲 | 国产日韩欧美亚洲二区| 亚洲一区中文字幕在线| 黄色a级毛片大全视频| 久久午夜综合久久蜜桃| 精品一区二区三区av网在线观看| 黄色毛片三级朝国网站| 欧美另类亚洲清纯唯美| 亚洲精品中文字幕一二三四区| 视频区欧美日本亚洲| 99精品欧美一区二区三区四区| 国产不卡一卡二| 精品一区二区三卡| 欧美成人午夜精品| 丰满迷人的少妇在线观看| 男人操女人黄网站| 叶爱在线成人免费视频播放| 亚洲欧美色中文字幕在线| 亚洲一区中文字幕在线| 两个人看的免费小视频| 成熟少妇高潮喷水视频| 人人妻人人爽人人添夜夜欢视频| 一级a爱片免费观看的视频| 黄色丝袜av网址大全| 婷婷丁香在线五月| 首页视频小说图片口味搜索| aaaaa片日本免费| 亚洲黑人精品在线| 国产精品九九99| 午夜免费观看网址| 19禁男女啪啪无遮挡网站| 国产欧美日韩一区二区三区在线| 亚洲熟女毛片儿| av不卡在线播放| 日韩免费高清中文字幕av| 久久久久久免费高清国产稀缺| av免费在线观看网站| av天堂久久9| 国产精品电影一区二区三区 | 精品人妻1区二区| 中文亚洲av片在线观看爽 | 欧美性长视频在线观看| 成人18禁高潮啪啪吃奶动态图| av网站在线播放免费| av一本久久久久| 国产亚洲欧美98| 少妇的丰满在线观看| 精品国内亚洲2022精品成人 | 亚洲熟妇中文字幕五十中出 | 老司机深夜福利视频在线观看| 窝窝影院91人妻| 色综合婷婷激情| 成人特级黄色片久久久久久久| 超碰97精品在线观看| 国产精品乱码一区二三区的特点 | 91字幕亚洲| 好看av亚洲va欧美ⅴa在| 精品久久蜜臀av无| 日韩一卡2卡3卡4卡2021年| 一进一出抽搐动态| 老司机午夜十八禁免费视频| 久久这里只有精品19| 少妇的丰满在线观看| 高清av免费在线| 飞空精品影院首页| 别揉我奶头~嗯~啊~动态视频| 一区二区日韩欧美中文字幕| 黑丝袜美女国产一区| 成人黄色视频免费在线看| 久久午夜亚洲精品久久| 国产成人av激情在线播放| 淫妇啪啪啪对白视频| 最近最新中文字幕大全电影3 | 亚洲精品在线美女| 亚洲中文字幕日韩| 91精品国产国语对白视频| 国产精品一区二区免费欧美| 9191精品国产免费久久| 高清欧美精品videossex| 天天躁日日躁夜夜躁夜夜| 黄色成人免费大全| 亚洲国产欧美日韩在线播放| 乱人伦中国视频| 亚洲 国产 在线| 欧美日韩亚洲高清精品| 精品一区二区三区视频在线观看免费 | 男女高潮啪啪啪动态图| 精品第一国产精品| 国产成人啪精品午夜网站| 99热网站在线观看| 国产欧美日韩综合在线一区二区| 18禁裸乳无遮挡免费网站照片 | 俄罗斯特黄特色一大片| 人人妻人人爽人人添夜夜欢视频| 精品久久久久久,| 美女国产高潮福利片在线看| 不卡一级毛片| 亚洲第一av免费看| 国产精品二区激情视频| 99在线人妻在线中文字幕 | 人妻丰满熟妇av一区二区三区 | 色播在线永久视频| 亚洲自偷自拍图片 自拍| 91九色精品人成在线观看| 一级毛片女人18水好多| 最近最新中文字幕大全电影3 | 天堂中文最新版在线下载| 成人亚洲精品一区在线观看| 国产男女超爽视频在线观看| 国产精品一区二区在线观看99| 国产成人精品在线电影| 电影成人av| 国产亚洲欧美98| 亚洲欧洲精品一区二区精品久久久| 精品少妇久久久久久888优播| 精品第一国产精品| 国产人伦9x9x在线观看| 高清av免费在线| 国产高清国产精品国产三级| xxxhd国产人妻xxx| 国产在视频线精品| 免费日韩欧美在线观看| 韩国精品一区二区三区| 99精品欧美一区二区三区四区| 亚洲性夜色夜夜综合| 成人手机av| 在线观看日韩欧美| 99精品久久久久人妻精品| 欧美乱妇无乱码| 在线观看免费日韩欧美大片| 亚洲人成电影观看| 久久精品亚洲av国产电影网| 成人免费观看视频高清| 天堂√8在线中文| av有码第一页| 日韩熟女老妇一区二区性免费视频| 亚洲熟妇中文字幕五十中出 | 91九色精品人成在线观看| 亚洲精品成人av观看孕妇| 老汉色∧v一级毛片| 亚洲三区欧美一区| 天堂俺去俺来也www色官网| 欧美性长视频在线观看| 老司机深夜福利视频在线观看| 午夜福利影视在线免费观看| 国产精品电影一区二区三区 | 亚洲精品在线美女| 乱人伦中国视频| 亚洲第一青青草原| 国产精品成人在线| 国产97色在线日韩免费| 久久久国产一区二区| 欧美国产精品一级二级三级| av天堂久久9| 国产成人av激情在线播放| 亚洲色图综合在线观看| 日日摸夜夜添夜夜添小说| 成人精品一区二区免费| 国产亚洲精品一区二区www | 一a级毛片在线观看| a级片在线免费高清观看视频| 美女高潮到喷水免费观看| 亚洲欧美一区二区三区黑人| 久久精品亚洲av国产电影网| 极品人妻少妇av视频| 欧美久久黑人一区二区| 精品高清国产在线一区| 亚洲专区字幕在线| 亚洲午夜精品一区,二区,三区| 97人妻天天添夜夜摸| 久久国产精品影院| 欧美日韩黄片免| 一进一出抽搐gif免费好疼 | 成熟少妇高潮喷水视频| 一级毛片高清免费大全| 国产精品一区二区精品视频观看| 精品国产超薄肉色丝袜足j| 久久婷婷成人综合色麻豆| 亚洲成人免费av在线播放| 亚洲av美国av| 久久国产精品大桥未久av| 国产成人精品久久二区二区91| 久久精品成人免费网站| 制服诱惑二区| x7x7x7水蜜桃| 欧美另类亚洲清纯唯美| 中文字幕av电影在线播放| 色婷婷久久久亚洲欧美| 欧美日韩精品网址| 999精品在线视频| 国产一区有黄有色的免费视频| 中文字幕人妻丝袜一区二区| 一区二区三区精品91| 成年人黄色毛片网站| 丰满人妻熟妇乱又伦精品不卡| 亚洲aⅴ乱码一区二区在线播放 | 亚洲免费av在线视频| 精品久久蜜臀av无| 国产高清videossex| 好看av亚洲va欧美ⅴa在| 激情视频va一区二区三区| 新久久久久国产一级毛片| 他把我摸到了高潮在线观看| 成人av一区二区三区在线看| 久热这里只有精品99| 十八禁人妻一区二区| av天堂久久9| 999精品在线视频| 伊人久久大香线蕉亚洲五| avwww免费| 亚洲人成77777在线视频| 中亚洲国语对白在线视频| 十分钟在线观看高清视频www| 黄色怎么调成土黄色| 成人永久免费在线观看视频| 一区二区三区激情视频| videosex国产| 久久久国产成人精品二区 | 在线永久观看黄色视频| 99精国产麻豆久久婷婷| 又大又爽又粗| 精品久久久久久电影网| 亚洲精品国产色婷婷电影| 亚洲成人手机| 黄色成人免费大全| 伊人久久大香线蕉亚洲五| av在线播放免费不卡| 成年人免费黄色播放视频| 亚洲一码二码三码区别大吗| 99精品久久久久人妻精品| 老司机午夜福利在线观看视频| 我的亚洲天堂| 亚洲国产中文字幕在线视频| 国产精品乱码一区二三区的特点 | av天堂在线播放| 一二三四社区在线视频社区8| 波多野结衣一区麻豆| 精品高清国产在线一区| 国产99久久九九免费精品| 午夜两性在线视频| 日韩熟女老妇一区二区性免费视频| 日本一区二区免费在线视频| 夫妻午夜视频| 一级毛片女人18水好多| 好看av亚洲va欧美ⅴa在| 亚洲欧美激情在线| 黄色片一级片一级黄色片| 久久久国产成人精品二区 | 欧美日本中文国产一区发布| 国产精品久久久久久人妻精品电影| 日本wwww免费看| 成人国语在线视频| 黄色丝袜av网址大全| av电影中文网址| 亚洲专区中文字幕在线| 亚洲熟妇熟女久久| 色婷婷av一区二区三区视频| 黑人操中国人逼视频| 每晚都被弄得嗷嗷叫到高潮| 99re在线观看精品视频| 久久香蕉国产精品| 久久久久久久午夜电影 | 妹子高潮喷水视频| 99在线人妻在线中文字幕 | 日本撒尿小便嘘嘘汇集6| e午夜精品久久久久久久| 九色亚洲精品在线播放| 十八禁网站免费在线| 国产国语露脸激情在线看| 国产精品电影一区二区三区 | 视频在线观看一区二区三区| 久久ye,这里只有精品| 国产精品国产高清国产av | 波多野结衣av一区二区av| 99re6热这里在线精品视频| 精品免费久久久久久久清纯 | aaaaa片日本免费| 国产成人av激情在线播放| 国产精品1区2区在线观看. | 国产精品 欧美亚洲| 日日爽夜夜爽网站| 精品少妇一区二区三区视频日本电影| 国产精品.久久久| 成熟少妇高潮喷水视频| 精品福利观看| 人人妻,人人澡人人爽秒播| 免费人成视频x8x8入口观看| 人人妻人人添人人爽欧美一区卜| 男女午夜视频在线观看| 1024视频免费在线观看| 免费观看精品视频网站| 色在线成人网| 久久精品成人免费网站| 亚洲中文日韩欧美视频| 亚洲片人在线观看| 国产极品粉嫩免费观看在线| 国产精品乱码一区二三区的特点 | 岛国毛片在线播放| 国产亚洲精品久久久久5区| 欧美另类亚洲清纯唯美| 欧美精品亚洲一区二区| 久久精品熟女亚洲av麻豆精品| 久久人妻熟女aⅴ| 精品久久蜜臀av无| 咕卡用的链子| 亚洲成人国产一区在线观看| 极品人妻少妇av视频| 中文字幕精品免费在线观看视频| 午夜福利视频在线观看免费| 国产欧美日韩精品亚洲av| 制服诱惑二区| 老司机深夜福利视频在线观看| 欧美av亚洲av综合av国产av| 日韩三级视频一区二区三区| 精品久久蜜臀av无| 身体一侧抽搐| 夜夜爽天天搞| 美女扒开内裤让男人捅视频| 国产99白浆流出| 日韩视频一区二区在线观看| 最近最新中文字幕大全电影3 | 亚洲精品成人av观看孕妇| 国产主播在线观看一区二区| 俄罗斯特黄特色一大片| 午夜老司机福利片| 日日摸夜夜添夜夜添小说| 亚洲精品在线美女| 男女床上黄色一级片免费看| 女人被狂操c到高潮| 国产精品久久久av美女十八| 男女下面插进去视频免费观看| 老司机福利观看| 亚洲自偷自拍图片 自拍| 嫩草影视91久久| 亚洲av第一区精品v没综合| 国产aⅴ精品一区二区三区波| 日本黄色视频三级网站网址 | 久久精品国产综合久久久| 一区福利在线观看| 精品午夜福利视频在线观看一区| 午夜福利影视在线免费观看| 免费黄频网站在线观看国产| 国产亚洲精品久久久久5区| 国产精品亚洲av一区麻豆| 欧美 亚洲 国产 日韩一| 日本欧美视频一区| 99国产综合亚洲精品| 女人精品久久久久毛片| 国产激情欧美一区二区| 亚洲专区中文字幕在线| 俄罗斯特黄特色一大片| 国产有黄有色有爽视频| 亚洲成国产人片在线观看| 亚洲午夜精品一区,二区,三区| 午夜福利,免费看| 夫妻午夜视频| 自线自在国产av| 99精品久久久久人妻精品| 久热爱精品视频在线9| 在线永久观看黄色视频| 香蕉丝袜av| 99热国产这里只有精品6| 国精品久久久久久国模美| 亚洲全国av大片| 国产av精品麻豆| 精品欧美一区二区三区在线| 精品福利观看| 亚洲成人免费av在线播放| 国产午夜精品久久久久久| 操美女的视频在线观看| 国产精品98久久久久久宅男小说| 久久久久精品人妻al黑| 亚洲精品国产色婷婷电影| 丝瓜视频免费看黄片| 51午夜福利影视在线观看| 多毛熟女@视频| 麻豆成人av在线观看| 亚洲av成人av| 很黄的视频免费| 国产成人欧美| 超色免费av| 9热在线视频观看99| 99re6热这里在线精品视频| bbb黄色大片| 纯流量卡能插随身wifi吗| 99riav亚洲国产免费| 激情在线观看视频在线高清 | 啪啪无遮挡十八禁网站| 9热在线视频观看99| 亚洲av美国av| 亚洲免费av在线视频| 人人妻,人人澡人人爽秒播| 欧美人与性动交α欧美精品济南到| 久久精品亚洲精品国产色婷小说| 极品教师在线免费播放| 欧美最黄视频在线播放免费 | 亚洲全国av大片| 一边摸一边抽搐一进一小说 | 18禁国产床啪视频网站| 日韩有码中文字幕| 日韩免费高清中文字幕av| av欧美777| 久久久国产成人精品二区 | 天堂√8在线中文| 老司机午夜十八禁免费视频| 丝袜美足系列| 丁香欧美五月| 亚洲成a人片在线一区二区| 久热这里只有精品99| 两人在一起打扑克的视频| 日韩免费av在线播放| 久久中文字幕一级| 午夜激情av网站| 满18在线观看网站| 99久久99久久久精品蜜桃| 亚洲精品久久成人aⅴ小说| 女人精品久久久久毛片| 久久香蕉精品热| 黄色视频,在线免费观看| 成人三级做爰电影| 婷婷成人精品国产| 高清黄色对白视频在线免费看| 91老司机精品| 久久国产乱子伦精品免费另类| 黑丝袜美女国产一区| av片东京热男人的天堂| 久热爱精品视频在线9| 国产精品九九99| 在线观看免费午夜福利视频| 精品高清国产在线一区| 人人妻人人澡人人爽人人夜夜| 精品国内亚洲2022精品成人 | 色老头精品视频在线观看|