• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Common Fixed Points for a Countable Family of Non-self Mappings in Cone Metric Spaces with the Convex Property

    2014-07-31 22:37:08PIAOYongjieLIChunhua

    PIAO Yong-jie,LI Chun-hua

    (College of Science,Yanbian University,Yanji 133002,China)

    Common Fixed Points for a Countable Family of Non-self Mappings in Cone Metric Spaces with the Convex Property

    PIAO Yong-jie,LI Chun-hua

    (College of Science,Yanbian University,Yanji 133002,China)

    A new common f i xed point result for a countable family of non-self mappings def i ned on a closed subset of a cone metric space with the convex property is obtained,and from which,a more general result is given.Our main results improve and generalize many known common f i xed point theorems.

    common f i xed point;the convex property;cone metric space

    §1.Introduction and Preliminaries

    Huang and Zhang[1]recently have introduced the concept of cone metric spaces,where the set of real number is replaced by an ordered Banach space,and they have established some fi xed point theorems for a contractive type mapping on a normal cone metric space. Subsequently,some other authors[27]have generalized the results of Huang and Zhang[1]and have studied the existence of common fi xed points of a fi nite family of self mappings satisfying a contractive type condition in the framework of normal or non-normal cone metric spaces.In [8],the authors discussed some common fi xed point problems of a pair of non-self mappings de fi ned on a nonempty closed subset of a non-normal cone metric space.On the other hand, the authors recently have discussed and obtained some unique existence theorems of common fi xed points for a countable family of mappings on 2-metric spaces or metrically convex metric spaces respectively,see[9-12].

    In this paper,we will give some common f i xed point theorems for a countable family of non-self mappings def i ned on a nonempty closed subset of a non-normal cone metric space with the convex property.

    Let E be a real Banach space.A subset P0of E is called a cone if and only if

    (i)P0is closed,nonempty and P0/={0};

    (ii)a,b∈?,a,b≥0 and x,y∈P0implies ax+by∈P0;

    (iii)P0∩(?P0)={0}.

    Given a cone P0?E,we def i ne a partial ordering≤on E with respective to P0by x≤y if and only if y?x∈P0.We will write x<y to indicate that x≤y but x/=y,while x?y will stand for y?x∈int P0(the interior of P0).

    The cone P0is called normal if there is a number L>0 such that for all x,y∈E,

    The least positive number satisfying the above is then called the normal constant of P0.

    Let X be a nonempty set.Suppose that the mapping d:X×X→E satisf i es

    (d1)0≤d(x,y)for all x,y∈X and d(x,y)=0 if and only if x=y;

    (d2)d(x,y)=d(y,x)for all x,y∈X;

    (d3)d(x,y)≤d(x,z)+d(z,y),for all x,z,y∈X.

    Then d is called a cone metric on X and(X,d)is called a cone metric space.

    Let(X,d)be a cone metric space.We say that{xn}?X is

    (e)Cauchy sequence if for every c∈E with 0?c,there is an N such that for all n,m>N, d(xm,xn)?c;

    (f)Convergent sequence if for every c∈E with 0?c,there is an N such that for all n>N such that d(xn,x)?c for some x∈E.In this case,we say that x is the limit of{xn}and

    A cone metric space X is said to be complete if every Cauchy sequence in X is convergent in X.

    A cone metric space X is said to have the convex property if for each nonempty closed subset C of X and each x∈C and y/∈C,there exists a point z∈?C such that

    A metric space is said to be metrically convex[1314],if for any x,y∈with x/=y,there exists a point z∈X such that d(x,z)+d(z,y)=d(x,y).

    Lemma 1[14]If K is a nonempty closed subset of a complete metrically convex space, then for any x∈K and y/∈K,there exists a point z∈?K such that

    The above Lemma 1 shows that a complete metrically convex space is the example of a cone metric spaces with the convex property.

    Lemma 2[8]Let(X,d)be a cone metric space.Then the following properties are often useful(particulary when dealing with cone metric spaces in which the cone needs not to be normal)

    (P1)If u≤v and v?w,then u?w;

    (P2)If 0≤u?c for each c∈intP0,then u=0;

    (P3)If x≤y+c for each c∈intP0,then x≤y;

    (P4)If 0≤x≤y and a∈? with a≥0,then 0≤ax≤ay;

    (P5)If 0≤xn≤ynfor each n∈? and limn→∞xn=x,limn→∞yn=y,then 0≤x≤y;

    (P6)If E is real Banach space with a cone P0and a≤λa where a∈P0and 0<λ<1, then a=0;

    (P7)If c∈intP0,0≤anand an→0,then there exists n0such that for all n>n0,we have an?c.

    Remark 1It follows from(P7)that the sequence xnconverges to x∈X if d(xn,x)→0 as n→∞and xnis a Cauchy sequence if d(xn,xm)→0 as n,m→∞.In the case when the cone is not necessarily normal,we have only one half of the statements of Lemma 1 and Lemma 4 from[1].

    The following is a particular form of the well-known result in[15].

    Lemma 3Let(X,d)be a cone metric space with a cone P0,{xn}a sequence in X and {an}a sequence in P0and an→0.If for any m>n>1,d(xn,xm)≤an,then{xn}is a Cauchy sequence.

    §2.Main Results

    Theorem 1Let K be a nonempty complete and closed subset of a cone metric space X with the convex property,{Ti:K→X}i∈?a family of non-self mappings satisfying that there exists λ∈(0,)such that for each x,y∈K and i,j∈? with i/=j,

    where

    If Ti(x)∈K for all x∈?K and i∈?,then{Ti}i∈?have a unique common fi xed point in K.

    ProofTake x0∈K.We will construct two sequences{xn}and{in the following manner.De fi ne=T1x0.If∈K,then put x1=∈/K,then by the convex property of X,there exists x1∈?K such that d(x0,x1)+d()=d().De fi ne=T2x1.If∈K,then put x2=∈/K,then by the convex property of X,there exists x2∈?K such that d(x1,x2)+d()=d().Continuing this way,we obtain{xn}and{x′n}

    where

    hence

    hence

    Case IIIf xn∈P and xn+1∈Q,then=Tn+1xn. Hence

    where

    un,n+1(xn?1,xn)

    hence

    hence

    where

    By Case II,we obtain that

    hence we obtain that

    By Case II again,we have

    hence

    But d(xn,xn+1)≤d(xn?1,+dn+1),hence we obtain that

    and therefore

    By Case II again,we have

    or

    and therefore for any n∈? with n≥2,

    or

    So,for any n∈? with n≥2,

    Let δ=h?1[d(x2,x1)+d(x1,x0)]and K=h12,then K<1,δ∈P0and for all m>n≥2,

    By the properties of P and Q,we can see that there are in fi nite elements xnk+1∈{xn}such that xnk+1∈P.

    For any fi xed n∈?,there exists an enough large k∈? such that nk+1>n and xnk+1∈P. And we can obtain the following

    where

    If un,nk+1(x?,xnk)=d(x?,xnk),then for any c∈intP0,there exists a large k0∈? such that for k≥k0,

    Hence

    and therefore,for any c∈intP,there exists a large k0∈? such that for k≥k0,

    Hence we get that d(Tnx?,x?)?c for all c∈intP,so by Lemma 2(P2),Tnx?=x?for all n∈?.This means that x?is a common f i xed point of{Tn}n∈?.

    Suppose that p and q are all common f i xed points of{Tn}n∈?,then

    If u1,2(p,q)=d(p,q),then d(p,q)≤λd(p,q),hence d(p,q)=0 by Lemma 2(P6)and therefore p=q;

    Hence x?is the unique common fi xed point of{Tn}n∈?.

    Remark 2If K=X itself is complete,then the boundary condition is super fl ous.In this case,we can easily know that xn=x′n,hence the convex structure of X is also super fl ous.

    Remark 3In fact,the condition“i/=j”in Theorem 1 can be replaced by the weaker condition“i<j”.

    Remark 4Many authors in the references and others obtained many common fi xed point theorems only for a fi nite family of mappings,but we fi rst introduced the concept of the convex property to discuss the existence of common fi xed point for a countable family of non-self-mappings on cone metric spaces in Theorem 1.Since we treat non-self-mappings,we need to consider the boundary condition of the given closed subset K of X in Theorem 1.The boundary condition in Theorem 1 is very weaker than that in[8]and very di ff erent from that in[8].So,we think that our technique is very di ff erent from the previous ones and our method is new.

    Theorem 2Let K a nonempty complete and closed subset of a cone metric space(X,d) with the convex property,{Ti,j:X→X}i,j∈?a family ofmappings,{mi,j}i,j∈?a family of positive integral numbers such that there exists λ∈(0,)such that for each x,y∈X and i1,i2,j∈? with i1/=i2,

    where

    Furthermore,if(a)for each i,j∈?,(?K)?K,(b)for each i1,i2,μ,ν∈? withμ/=ν, Ti1,μTi2,ν=Ti2,νTi1,μ.Then{Ti,j}i,j∈?has a unique common fi xed point in K.

    where

    If ui,k,j(Ti,j(pj),Ti,j(pj))=0,then d(Ti,j(pj),Sk,j(Ti,j(pj)))≤λ0=0,hence d(Ti,j(pj), Sk,j(Ti,j(pj)))=0,i.e.,Ti,j(pj)=Sk,j(Ti,j(pj));

    Hence in any situation,we have that Ti,j(pj)is a fi xed point of Sk,jfor each k with k/=i. So Ti,j(pj)is a common fi xed point of{Si,j}i∈?.By uniqueness of common fi xed points of {Si,j}i∈?,we haveTi,j(pj)=pjfor each i∈?.Hence pjis a common fi xed point of{Ti,j}i∈?.

    If ujand vjare common fi xed points of{Ti,j}i∈?,then they are also common fi xed points of{Si,j}i∈?,hence ui=pj=vj.So j∈?,{Ti,j}i∈?has a unique common fi xed point pj.

    Finally,we will prove that{Ti,j}i,j∈?has a unique common fi xed point.Now,we prove that for eachμ,ν∈?,pμ=pν.In fact,for any i1,i2,μ,ν∈? withμ/=ν,since Ti1,μ(pμ)=pμand Ti2,ν(pν)=pν,Ti1,μ(Ti2,ν(pν))=Ti1,μ(pν),hence Ti2,ν(Ti1,μ(pν))=Ti1,μ(Ti2,ν(pν))=Ti1,μ(pν) by(b).This means that Ti1,μ(pν)is a fi xed point of Ti2,νfor each i2,i.e.,Ti1,μ(pν)is a common fi xed point of{Ti2,ν}i2∈?.But{Ti2,ν}i2∈?has a unique common fi xe point pν,hence Ti1,μ(pν)=pνfor each i1and therefore pνis a common fi xed point of{Ti1,μ}i1∈?.But {Ti1,μ}i1∈?has a unique common fi xed point pμ,hence pμ=pν.Let p?=pj,then p?is thecommon f i xed point of{Ti,j}i,j∈?.The uniqueness of common f i xed points of{Ti,j}i,j∈?is obvious.

    Remark 5In Theorem 2,the domain of{Ti,j}i,j∈?must be X.In fact,we can not be sure that Ti,j(pj)∈K even if pj∈K in the proof of Theorem 2.Hence we should not suppose that the domain of{Ti,j}i,j∈?is K.

    [1]HUANG Long-guo,ZHANG Xian.Cone metric spaces and f i xed point theorems of contractive mappings[J]. J Math Anal Appl,2007,332(2):1468-1476.

    [2]ABBAS M,JUNGCK G.Common f i xed point results for noncommuting mappings without continuity in cone metric spaces[J].J Math Anal Appl,2008,341(1):416-420.

    [3]ABBAS M,RHOADES B E.Fixed and periodic point results in cone metric spaces[J].Applied Math Letters, 2009,22(4):511-515.

    [4]RAJA P,VAEZPOUR S M.Some extensions of Banach’s contraction principle in complete cone metric spaces[J].Fixed point theory and Applications,2008,Article ID 768294,11 pages.

    [5]KADELBURG Z,RADENO′VIC S,ROSI′C B.Strict contractive conditions and common f i xed point theorems in cone metric spaces[J].Fixed point theory and Applications,2009,Article ID 173838,14 pages.

    [6]JUNGCK G,RADENO′VIC S,RADOJE′VIC S,et al.Common f i xed point theorems for weakly compatible pairs on cone metric spaces[J].Fixed point theory and Applications,2009,Article ID 643840,13 pages.

    [7]ILI′C D,RAKO?CEVI′C V.Quasi-contraction on a cone metric space[J].Applied Math Letters,2009,22(5): 728-731.

    [8]JANKO′VIC S,KADELBURG Z,RADENO′VIC S,et al.Assad-Kirk-Type f i xed point theorems for a pair of non-self mappings on cone metric spaces[J].Fixed point theory and Applications,2009,Article ID 7610386, 16 pages.

    [9]PIAO Yong-jie.Unique common f i xed point theorems for a family of non-self maps in metrically convex spaces[J].Mathematica Applicata,2009,22(4):852-857.

    [10]PIAO Yong-jie.Unique common f i xed point theorems for a family of quasi-contractive type maps in metrically convex spaces[J].Acta Mathematica Scientica,2010,30A(2):485-493(in Chinese).

    [11]PIAO Yong-jie.Unique common f i xed point theorems for a family of self-maps with same type contractive condition in 2-metric spaces[J].Anal Theo Appl,2008,24(4):316-320.

    [12]PIAO Yong-jie.Unique common f i xed point theorems for a family of self-maps with same quasi-contractive type condition in 2-metric spaces[J].J of Nanjing Univ Math Biquart,2010,27(1):82-87(in Chinese).

    [13]ASSAD N A,KIRK W A.Fixed point theorems for set-valued mappings of contractive type[J].Pacif i c J Math,1972,43:553-562.

    [14]KHAN M S,PATHAK H K,KHAN M D.Some f i xed point theorems in metrically convex spaces[J].Georgain J Math,2000,7(3):523-530.

    [15]AZAM A,BEG I,ARSHAD M.Fixed point in topological space valued cone metric spaces[J].Fixed Point Theory and Applications,2010,Article ID 604084,9 pages.

    tion:47H05,47H10

    CLC number:O189.1,O177.91Document code:A

    1002–0462(2014)02–0221–10

    date:2012-07-19

    Supported by the National Natural Science Foundation of China(11361064)

    Biographies:PIAO Yong-jie(1962-),male(Chaoxianzu),native of Jiutai,Jilin,a professor of Yanbian University,Ph.D.,engages in nonlinear theory and space theory;LI Chun-hua(1975-),female(Chaoxianzu),native of Baishan,Jilin,a lecturer of Yanbian University,Ph.D.,engages in functional analysis and space theory.

    香蕉久久夜色| 国产av不卡久久| 亚洲国产欧美人成| 久久亚洲真实| 亚洲男人的天堂狠狠| netflix在线观看网站| 麻豆久久精品国产亚洲av| 久久欧美精品欧美久久欧美| 一进一出抽搐gif免费好疼| 中文资源天堂在线| 国产综合懂色| 国产精品久久电影中文字幕| 精品欧美国产一区二区三| 亚洲av熟女| 国产精品女同一区二区软件 | 美女被艹到高潮喷水动态| xxx96com| 亚洲在线自拍视频| 午夜精品一区二区三区免费看| 精品午夜福利视频在线观看一区| 看片在线看免费视频| 欧美日韩黄片免| 色吧在线观看| 嫁个100分男人电影在线观看| svipshipincom国产片| 亚洲最大成人中文| 中文字幕人成人乱码亚洲影| 成人午夜高清在线视频| 精品久久久久久成人av| 欧美日韩精品网址| 色综合亚洲欧美另类图片| 丝袜美腿在线中文| 亚洲第一欧美日韩一区二区三区| 欧美日韩瑟瑟在线播放| 欧美bdsm另类| 天天躁日日操中文字幕| 成人18禁在线播放| 免费无遮挡裸体视频| 18禁黄网站禁片免费观看直播| 90打野战视频偷拍视频| 亚洲成人久久爱视频| 日日夜夜操网爽| 我的老师免费观看完整版| 日本精品一区二区三区蜜桃| 国产淫片久久久久久久久 | 日韩欧美在线乱码| 人人妻,人人澡人人爽秒播| 亚洲av日韩精品久久久久久密| 熟女人妻精品中文字幕| 国产色婷婷99| 国产精品综合久久久久久久免费| 床上黄色一级片| 美女cb高潮喷水在线观看| 亚洲天堂国产精品一区在线| 国产一级毛片七仙女欲春2| 岛国视频午夜一区免费看| 青草久久国产| 精品国内亚洲2022精品成人| 久久精品人妻少妇| 极品教师在线免费播放| 狂野欧美激情性xxxx| 搞女人的毛片| 国内揄拍国产精品人妻在线| 18禁裸乳无遮挡免费网站照片| 久久伊人香网站| 亚洲国产精品合色在线| 亚洲天堂国产精品一区在线| 三级男女做爰猛烈吃奶摸视频| 国产免费av片在线观看野外av| 一区二区三区免费毛片| 精品一区二区三区av网在线观看| 午夜福利高清视频| 天天添夜夜摸| 亚洲第一欧美日韩一区二区三区| 国产精品99久久99久久久不卡| 国产高清激情床上av| 国产精品 国内视频| 国产成人啪精品午夜网站| 国语自产精品视频在线第100页| 精品国产三级普通话版| 免费观看的影片在线观看| 亚洲在线自拍视频| 欧美+亚洲+日韩+国产| 最近视频中文字幕2019在线8| 国内精品久久久久久久电影| 亚洲va日本ⅴa欧美va伊人久久| 国产真人三级小视频在线观看| 最近最新中文字幕大全免费视频| 精品久久久久久久久久久久久| 手机成人av网站| 午夜福利在线观看免费完整高清在 | 精品乱码久久久久久99久播| 一进一出好大好爽视频| 久久久久久久午夜电影| 最近视频中文字幕2019在线8| 两个人视频免费观看高清| 身体一侧抽搐| 欧美绝顶高潮抽搐喷水| 欧美高清成人免费视频www| netflix在线观看网站| 免费观看精品视频网站| 午夜精品一区二区三区免费看| 内射极品少妇av片p| 国产淫片久久久久久久久 | 欧美+亚洲+日韩+国产| 神马国产精品三级电影在线观看| 精品人妻偷拍中文字幕| 美女免费视频网站| 日韩欧美三级三区| 麻豆国产97在线/欧美| 午夜福利在线观看免费完整高清在 | 婷婷六月久久综合丁香| 久久九九热精品免费| 免费观看精品视频网站| 亚洲美女黄片视频| 精品久久久久久久末码| 国产av麻豆久久久久久久| 神马国产精品三级电影在线观看| 国产精品久久久久久人妻精品电影| 少妇的丰满在线观看| 啦啦啦韩国在线观看视频| 免费看光身美女| 成人一区二区视频在线观看| 熟妇人妻久久中文字幕3abv| 黄色成人免费大全| 日韩欧美 国产精品| 国语自产精品视频在线第100页| 97人妻精品一区二区三区麻豆| 国产黄色小视频在线观看| 在线免费观看不下载黄p国产 | 老汉色av国产亚洲站长工具| 九九久久精品国产亚洲av麻豆| 久久久精品欧美日韩精品| 久久久色成人| 欧美乱妇无乱码| 18美女黄网站色大片免费观看| 色精品久久人妻99蜜桃| 久久精品91无色码中文字幕| 免费搜索国产男女视频| 男人的好看免费观看在线视频| 亚洲国产色片| 夜夜躁狠狠躁天天躁| 亚洲av五月六月丁香网| 国产高清激情床上av| 成年人黄色毛片网站| 一级毛片高清免费大全| 一区福利在线观看| 最近在线观看免费完整版| 99久久99久久久精品蜜桃| 国产一区在线观看成人免费| 亚洲成av人片免费观看| 欧美+日韩+精品| 丰满的人妻完整版| 免费在线观看亚洲国产| 女同久久另类99精品国产91| 亚洲av电影在线进入| 欧美成人免费av一区二区三区| 欧美最新免费一区二区三区 | 久久久久久久午夜电影| 成年女人毛片免费观看观看9| 又黄又爽又免费观看的视频| 九色成人免费人妻av| 可以在线观看的亚洲视频| 熟妇人妻久久中文字幕3abv| 色吧在线观看| 首页视频小说图片口味搜索| 全区人妻精品视频| 欧美一区二区亚洲| av片东京热男人的天堂| 色视频www国产| 天堂av国产一区二区熟女人妻| 动漫黄色视频在线观看| av天堂在线播放| 亚洲熟妇熟女久久| 国产精品av视频在线免费观看| 成人午夜高清在线视频| 亚洲一区高清亚洲精品| 中文字幕av在线有码专区| 亚洲精品在线美女| 成人国产综合亚洲| 无遮挡黄片免费观看| 国产黄a三级三级三级人| 国产一区二区激情短视频| 久久久精品欧美日韩精品| 丰满乱子伦码专区| 一边摸一边抽搐一进一小说| 久久久久性生活片| 日韩欧美在线二视频| 成人欧美大片| 国产精品1区2区在线观看.| 日韩欧美国产一区二区入口| 精品久久久久久,| 哪里可以看免费的av片| 免费看美女性在线毛片视频| 麻豆国产av国片精品| 亚洲精品456在线播放app | 亚洲最大成人手机在线| 国产探花极品一区二区| 亚洲国产欧洲综合997久久,| 国产精品久久电影中文字幕| 午夜免费成人在线视频| 久久久色成人| 日韩国内少妇激情av| 99精品欧美一区二区三区四区| 日本黄色片子视频| 亚洲一区二区三区色噜噜| 国内毛片毛片毛片毛片毛片| 久久久精品大字幕| 最新中文字幕久久久久| 国产中年淑女户外野战色| 白带黄色成豆腐渣| 国产精品精品国产色婷婷| 高清在线国产一区| 日韩欧美精品v在线| 日本一二三区视频观看| 久久久久国产精品人妻aⅴ院| 五月玫瑰六月丁香| www国产在线视频色| 国产99白浆流出| 亚洲欧美一区二区三区黑人| 免费观看精品视频网站| www.色视频.com| 热99re8久久精品国产| 精品福利观看| 免费观看人在逋| 亚洲av成人精品一区久久| 久久人人精品亚洲av| 青草久久国产| 国产精品98久久久久久宅男小说| 免费看美女性在线毛片视频| 99久久精品一区二区三区| 最新中文字幕久久久久| 亚洲一区高清亚洲精品| 在线天堂最新版资源| 淫秽高清视频在线观看| 99热这里只有是精品50| 国产一区二区在线观看日韩 | 亚洲无线观看免费| 亚洲成人中文字幕在线播放| 99国产综合亚洲精品| 亚洲最大成人手机在线| 午夜福利成人在线免费观看| 欧美高清成人免费视频www| 日韩中文字幕欧美一区二区| www.色视频.com| 国产精品精品国产色婷婷| 18美女黄网站色大片免费观看| 最新在线观看一区二区三区| 成人一区二区视频在线观看| 亚洲成人免费电影在线观看| 亚洲美女黄片视频| 午夜福利免费观看在线| 午夜福利视频1000在线观看| 欧美另类亚洲清纯唯美| 国产亚洲精品av在线| 波野结衣二区三区在线 | 免费高清视频大片| 一级作爱视频免费观看| 久久国产精品人妻蜜桃| 动漫黄色视频在线观看| 色综合亚洲欧美另类图片| 欧美xxxx黑人xx丫x性爽| 欧美国产日韩亚洲一区| 久久久久国产精品人妻aⅴ院| www日本黄色视频网| 九九热线精品视视频播放| 桃红色精品国产亚洲av| 日韩欧美在线二视频| 内射极品少妇av片p| 亚洲精品在线观看二区| 欧美性猛交╳xxx乱大交人| 亚洲av不卡在线观看| 国产精品99久久99久久久不卡| 久久99热这里只有精品18| 最近最新中文字幕大全免费视频| bbb黄色大片| 亚洲人成网站在线播放欧美日韩| avwww免费| 免费搜索国产男女视频| 黄色视频,在线免费观看| 狂野欧美白嫩少妇大欣赏| 99国产精品一区二区蜜桃av| 夜夜夜夜夜久久久久| 亚洲在线观看片| 亚洲av成人精品一区久久| 免费人成视频x8x8入口观看| 十八禁人妻一区二区| www国产在线视频色| 久久久久久九九精品二区国产| 成人一区二区视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 欧美性猛交黑人性爽| 国产精品久久视频播放| 国产精品美女特级片免费视频播放器| 精品久久久久久成人av| 国内精品一区二区在线观看| 大型黄色视频在线免费观看| 在线免费观看的www视频| 亚洲五月天丁香| 99久久精品国产亚洲精品| 麻豆一二三区av精品| 国产高潮美女av| 香蕉av资源在线| а√天堂www在线а√下载| 国产97色在线日韩免费| 好看av亚洲va欧美ⅴa在| 少妇人妻一区二区三区视频| 亚洲人成电影免费在线| 麻豆成人av在线观看| 免费观看人在逋| 丁香六月欧美| 天堂√8在线中文| 国产av一区在线观看免费| 亚洲国产精品sss在线观看| 狂野欧美白嫩少妇大欣赏| 久久精品91蜜桃| 欧美zozozo另类| 9191精品国产免费久久| www.999成人在线观看| 亚洲第一电影网av| 草草在线视频免费看| 桃色一区二区三区在线观看| 国产精品久久久久久亚洲av鲁大| 18禁黄网站禁片午夜丰满| 成年女人看的毛片在线观看| 亚洲最大成人手机在线| 国产一区二区三区视频了| 在线观看午夜福利视频| 老熟妇乱子伦视频在线观看| 69人妻影院| 亚洲一区二区三区不卡视频| 九九热线精品视视频播放| 美女被艹到高潮喷水动态| 波多野结衣高清作品| 久久人妻av系列| www.色视频.com| 精品久久久久久成人av| 3wmmmm亚洲av在线观看| e午夜精品久久久久久久| 精品电影一区二区在线| 久9热在线精品视频| 黄色成人免费大全| 国产精品久久久久久人妻精品电影| 免费看光身美女| 香蕉丝袜av| 搡老熟女国产l中国老女人| 国产精品爽爽va在线观看网站| av专区在线播放| 长腿黑丝高跟| 国产色婷婷99| 琪琪午夜伦伦电影理论片6080| 欧美最黄视频在线播放免费| 亚洲国产欧美人成| 久久久精品大字幕| 亚洲18禁久久av| 黑人欧美特级aaaaaa片| 在线免费观看的www视频| 天堂影院成人在线观看| 精品国产三级普通话版| 成人高潮视频无遮挡免费网站| 欧美性感艳星| 中文字幕久久专区| 91av网一区二区| 99久久精品国产亚洲精品| 国产午夜福利久久久久久| 露出奶头的视频| 国产高清videossex| 精品国产超薄肉色丝袜足j| 国产午夜精品论理片| 老汉色∧v一级毛片| 亚洲av一区综合| 99热精品在线国产| av欧美777| 欧美午夜高清在线| 欧美激情在线99| 桃色一区二区三区在线观看| 国产欧美日韩精品一区二区| 日韩成人在线观看一区二区三区| 18禁在线播放成人免费| 人妻久久中文字幕网| 免费在线观看影片大全网站| 国产成年人精品一区二区| 99热6这里只有精品| 亚洲欧美日韩高清在线视频| 午夜福利高清视频| 欧美一区二区亚洲| 国产成人欧美在线观看| 一区二区三区高清视频在线| 一区福利在线观看| 深夜精品福利| 成人鲁丝片一二三区免费| 色综合婷婷激情| 在线a可以看的网站| 欧美性猛交╳xxx乱大交人| 午夜亚洲福利在线播放| 日本三级黄在线观看| 每晚都被弄得嗷嗷叫到高潮| 在线观看美女被高潮喷水网站 | 黄片小视频在线播放| 欧美成狂野欧美在线观看| 国产精品99久久久久久久久| 丰满的人妻完整版| 很黄的视频免费| 欧美日韩精品网址| 天堂√8在线中文| 日本黄色片子视频| 免费av不卡在线播放| 深夜精品福利| 性欧美人与动物交配| av天堂中文字幕网| 色综合亚洲欧美另类图片| 国产69精品久久久久777片| 亚洲成人免费电影在线观看| 亚洲aⅴ乱码一区二区在线播放| 看免费av毛片| 国产高清视频在线观看网站| 国产高清videossex| 国产精品久久久久久亚洲av鲁大| 无人区码免费观看不卡| 日本黄大片高清| 亚洲精品久久国产高清桃花| 欧美绝顶高潮抽搐喷水| 亚洲狠狠婷婷综合久久图片| av专区在线播放| 99精品欧美一区二区三区四区| 成人av在线播放网站| 亚洲中文字幕日韩| 夜夜爽天天搞| 日韩国内少妇激情av| 日韩欧美免费精品| 免费一级毛片在线播放高清视频| 一级a爱片免费观看的视频| 非洲黑人性xxxx精品又粗又长| 精品不卡国产一区二区三区| 久久精品91无色码中文字幕| 欧美日韩精品网址| 日日干狠狠操夜夜爽| 在线国产一区二区在线| 亚洲av中文字字幕乱码综合| 亚洲最大成人中文| 中文字幕熟女人妻在线| 亚洲欧美日韩高清在线视频| 欧美午夜高清在线| xxxwww97欧美| 中文字幕av成人在线电影| 欧美乱妇无乱码| 欧美最新免费一区二区三区 | 免费人成视频x8x8入口观看| 精品欧美国产一区二区三| 网址你懂的国产日韩在线| 我要搜黄色片| 两个人看的免费小视频| 丰满的人妻完整版| 久久伊人香网站| 91麻豆精品激情在线观看国产| 亚洲天堂国产精品一区在线| 国产亚洲精品久久久久久毛片| 欧美xxxx黑人xx丫x性爽| 国产亚洲精品综合一区在线观看| 香蕉av资源在线| 狂野欧美白嫩少妇大欣赏| 三级国产精品欧美在线观看| 欧美成狂野欧美在线观看| 日本成人三级电影网站| 国产三级黄色录像| 国产精品久久电影中文字幕| 男人舔奶头视频| 亚洲欧美日韩卡通动漫| 天堂网av新在线| 免费电影在线观看免费观看| 婷婷丁香在线五月| 在线a可以看的网站| 国产欧美日韩一区二区三| 尤物成人国产欧美一区二区三区| 一进一出好大好爽视频| 欧美一级毛片孕妇| 每晚都被弄得嗷嗷叫到高潮| 国产精品女同一区二区软件 | 一本精品99久久精品77| 精品人妻偷拍中文字幕| 久久九九热精品免费| h日本视频在线播放| 天天添夜夜摸| 亚洲在线观看片| 国产伦精品一区二区三区视频9 | 无人区码免费观看不卡| 夜夜看夜夜爽夜夜摸| 欧美黄色片欧美黄色片| 亚洲人成网站在线播| 神马国产精品三级电影在线观看| 欧美色欧美亚洲另类二区| 亚洲国产高清在线一区二区三| 男女之事视频高清在线观看| 国产激情偷乱视频一区二区| 99精品欧美一区二区三区四区| 成年女人毛片免费观看观看9| 免费无遮挡裸体视频| 综合色av麻豆| 国产v大片淫在线免费观看| 久久国产精品影院| 波多野结衣高清作品| 最近最新中文字幕大全电影3| 3wmmmm亚洲av在线观看| 在线观看日韩欧美| 精品一区二区三区人妻视频| 69av精品久久久久久| 亚洲久久久久久中文字幕| 一进一出抽搐gif免费好疼| 99riav亚洲国产免费| 757午夜福利合集在线观看| 欧美一区二区国产精品久久精品| 久久久久久久亚洲中文字幕 | 亚洲国产精品合色在线| 国产国拍精品亚洲av在线观看 | 在线十欧美十亚洲十日本专区| 岛国视频午夜一区免费看| 婷婷丁香在线五月| 亚洲色图av天堂| 舔av片在线| 窝窝影院91人妻| 欧美黑人欧美精品刺激| 国产精品 欧美亚洲| 国产野战对白在线观看| 成人性生交大片免费视频hd| 久久精品91蜜桃| 国产精品久久视频播放| 成人高潮视频无遮挡免费网站| 嫩草影院精品99| 99久久精品一区二区三区| 深夜精品福利| 一本精品99久久精品77| 亚洲片人在线观看| 欧美一级毛片孕妇| 2021天堂中文幕一二区在线观| 成人性生交大片免费视频hd| 成人特级黄色片久久久久久久| 免费搜索国产男女视频| 看黄色毛片网站| 成年女人永久免费观看视频| 男女那种视频在线观看| 九九久久精品国产亚洲av麻豆| 午夜福利成人在线免费观看| 少妇人妻一区二区三区视频| 亚洲欧美激情综合另类| 国产乱人视频| 欧美日韩福利视频一区二区| 人妻夜夜爽99麻豆av| 亚洲成av人片免费观看| 在线天堂最新版资源| 日韩高清综合在线| 国产老妇女一区| 一区二区三区免费毛片| 99视频精品全部免费 在线| 在线观看午夜福利视频| 香蕉久久夜色| 欧美在线一区亚洲| 久久香蕉精品热| 99在线视频只有这里精品首页| 一进一出抽搐gif免费好疼| 亚洲欧美激情综合另类| 久久久久久人人人人人| 亚洲成人久久爱视频| 国产亚洲精品av在线| 欧美性猛交╳xxx乱大交人| netflix在线观看网站| 中文字幕熟女人妻在线| 午夜免费男女啪啪视频观看 | 一本久久中文字幕| 精品国产超薄肉色丝袜足j| 日韩有码中文字幕| 国产av在哪里看| 蜜桃亚洲精品一区二区三区| 热99在线观看视频| 在线播放国产精品三级| 99精品欧美一区二区三区四区| 午夜免费男女啪啪视频观看 | 丰满乱子伦码专区| 可以在线观看毛片的网站| 亚洲国产欧洲综合997久久,| 九色国产91popny在线| 免费av毛片视频| 日本在线视频免费播放| 国产不卡一卡二| 国产精品久久久久久久久免 | 免费av观看视频| 90打野战视频偷拍视频| 亚洲中文日韩欧美视频| 国产一区二区激情短视频| 免费人成在线观看视频色| 天堂√8在线中文| 日韩大尺度精品在线看网址| 99热只有精品国产| 99热这里只有是精品50| 88av欧美| 人妻丰满熟妇av一区二区三区| 亚洲精品粉嫩美女一区| 亚洲无线观看免费| 免费搜索国产男女视频| 免费av不卡在线播放| 中国美女看黄片| 三级男女做爰猛烈吃奶摸视频| 日本 欧美在线| 久久国产精品影院| www.www免费av| 久久精品91蜜桃| 亚洲av免费高清在线观看| 国内精品美女久久久久久| 国产淫片久久久久久久久 | 亚洲天堂国产精品一区在线| 国产精品,欧美在线| 国产又黄又爽又无遮挡在线| 97超视频在线观看视频| 夜夜躁狠狠躁天天躁| 变态另类丝袜制服| 看片在线看免费视频|