• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Algorithm of the Adaptive Grid and Fuzzy Interacting Multiple Model

    2014-07-30 09:54:52YuanZhangChenGuoHaiHuShuboLiuandJunboChu
    關(guān)鍵詞:汽輪發(fā)電背壓水流量

    Yuan Zhang, Chen Guo, Hai Hu, Shubo Liu and Junbo Chu

    1. College of Information Science and Technology, Dalian Maritime University, Dalian 116026, China 2. Department of Missile, Dalian Naval Academy, Dalian 116018, China

    1 Introduction1

    The maneuvering target tracking algorithms can be divided into the single model algorithm and the multiple model algorithm. Because the target motion character often changes while the target is maneuvering, it is difficult to describe the motion state accurately by only using a single model. The multiple model algorithm appears in this situation. It was initially presented by Magill while studying the optimal adaptive estimation (Yin, 2008). The development of the multiple model algorithm has experienced three generations (Zhang, 2010; Liuet al.,2009). The features of the first generation include the models’ number in the model set being fixed, and each basic filter runs alone independent of the other filters. The models’ number of the second generation (including the interacting multiple model, IMM) algorithm is also fixed,but there is interaction among the models (Zhen and Lang,1998; Wu and Li, 2009; Wu and Cheng, 1994; Tanjan, 2011;Gaoet al., 2012; Yi and Lv, 2006; Gonget al., 2010). Both the model sets of the first two generations have fixed members at different times, so they are called fixed structure multiple model (FSMM) algorithms. The models’posterior probability of the standard IMM algorithm is calculated through the models’ priority probability and the Markov transition probability. Instead of using the normal interacting method, this paper details the use of an intelligent interacting method to solve the problem of the higher calculation complexity of the model interacting probability in the standard IMM algorithm.

    The FSMM algorithm has obvious defects. In reality, it’s usually not enough that the target maneuvering mode is only described by a few models, especially with multidimensional systems. But the increasing number of models will not only increase the amount of calculations,but will also not necessarily improve tracking performance.Too much detailed split model space may also damage the required model independence of Bayes reasoning. To solve the existing problems of the FSMM algorithm, the third generation multiple model algorithm, the variable structure multiple model (VSMM) algorithm (Leiet al., 2010; Zeng and Peng, 2012) appears, which has a variable model set. At the present time, there are not so many documents regarding the VSMM algorithm. The VSMM algorithm is composed of two parts: the model set adaptation (MSA) and the model set sequence’s condition estimation, in which the former is the most critical part. Three kinds of model set adaptation methods are presented: the model group switch (MGS) ( Liet al., 1999b), the likely-model set (LMS) ( Li and Zhang,2000) and the estimated mode augmentation (EMA). The corresponding realization methods of these three adaptive strategies based on the diagraph theory are as follows (Li and Jilkov, 2005): digraph switching (DS) (Huang, 2010;Huang and Peng, 2010; Xuet al., 2003), the adaptive digraph (AD) (Lu, 2010) and the adaptive grid (AG)( Chen,2008; Liet al., 1999a; Vahabianet al., 2004; Wanget al.,2003).

    This paper mainly studies a variable structure interacting multiple model algorithm for the maneuvering target tracking based on adaptive grid and fuzzy interaction, which is called the adaptive grid and fuzzy interacting multiple model (AGFIMM) algorithm. The two-dimensional simulation results demonstrate the validity and superiority of this algorithm.

    2 The establishing of the maneuvering target’s models

    The system equations are usually described as follows:

    When the target isn’t maneuvering, we can obtain the optimal estimation of the target’s position and velocity using the Kalman filter. And when the target is maneuvering,it can cause the mismatch between the model and the target’s motion mode because we cannot determine when and how the target begins maneuvering. As a result, the estimation is no longer optimal, which demands adjustment to the model through adjustingFkin Eq. (1), since the state transfer matrixFkis different in different models.

    For the turn motion model,Fkin Eq.(1) is as Eq. (3):

    In Eq.(3),Tis the sampling period, andjwis the turn rate.

    For the straight-line motion model, we havewj? 0,in this situation,Fkin Eq. (1) is as follows:

    The transitions between the straight-line motion model and the constant turn rate motion model can be realized through setting different turn rates for the turn motion model. So as a result, with the IMM algorithm, we can describe the different maneuvering forms using the combination of the straight-line motion model and the constant turn rate motion model.

    3 Algorithm of the adaptive grid and fuzzy interacting multiple model

    3.1 Steps of the algorithm

    The calculation steps of the AGFIMM algorithm are as follows:

    Step 1: Input interaction.

    where:

    For each model, the covariance matrix of the initial state vector after mixing is:

    Step 2: State vector updating of the matching model.

    If we adopt the Kalman filter, then the Kalman filter equations provide the state vector’s updating calculation for modelMj(k).

    a) The state vector’s prediction:

    b) The covariance matrix of the state vector’s prediction error:

    c) The innovation vector:

    d) The covariance matrix of the innovation vector:

    e) The filtering gain vector:

    f) The state vector’s estimation:

    g) The covariance matrix of the state vector’s estimation error:

    Step 3: Fuzzy inference of the model posterior probability( See 3.2 of this paper).

    Step 4: Output interaction.

    The output vector (state vector’s estimation) and its covariance matrix are shown as Eqs.(16) and (17)respectively.

    Step 5: Adaptive grid adjustment of the model set (See 3.3 of this paper).

    The following focuses on the design of the fuzzy inference system of model posterior probability and the adaptive grid adjustment algorithm of the model set.

    3.2 Design of the fuzzy inference system of model posterior probability

    This paper uses the method of fuzzy inference, taking the weighted quadratic function of the measurement innovation as the input, and obtains the matching degree of each model in the model set which substitutes the model posterior probability calculation in the standard IMM algorithm. So there is no need to calculate the model priority probability or the Markov transition probability with the IMM algorithm, and thus reduces the complexity of the algorithm.

    3.2.1 Calculation of the model inference system’s input

    (1)理想整體發(fā)電效率隨負(fù)荷增加而單調(diào)增大。由于給水流量波動(dòng)導(dǎo)致的實(shí)時(shí)參數(shù)滯后,以及環(huán)境溫度對(duì)背壓和發(fā)電效率的影響,直接空冷機(jī)組的實(shí)際整體發(fā)電效率、汽輪發(fā)電機(jī)整體效率、汽輪機(jī)理想循環(huán)熱效率隨負(fù)荷增加并未表現(xiàn)出明顯單調(diào)遞增的規(guī)律。

    Taking modeljin the model set as the example,according to the model filtering results, we can not only get the target’s current state vector’s estimation and its error covariance matrix, but we can also get the measurement innovation vectorvjand its covariance matrixjSof modelj. The input of the fuzzy inference system is defined as follows:

    In the above formula,Ejis the normalized variance,subject to2cdistribution of 1 degree of freedom,andMis the model number of the model set.

    3.2.2 Calculation of the model matching degree

    The input variable of the fuzzy inference system isEj,with fuzzy subsets including S(small), M(medium) and B(big). We choose the Gauss function as the membership f unction ofthefuzzysubsets according to the character of the input functionEj,shown asFig. 1.The output variable is the model posterior probability

    jm. Similarly, we define the same fuzzy subsets as S(small),M(medium) and B(big), adopting the trigonometric function as the membership function in the output space of the fuzzy inference system, shown as Fig. 2.

    Fig.1 Membership function of the inputs

    Fig. 2 Membership function of the outputs

    Then according to the inference feature of the fuzzy inference system, some fuzzy rules of the models’ matching degree can be received as follows:

    Based on these fuzzy rules, we can obtain the normalized fuzzy matching degreemj?[0,1] of modeljat timekthrough the fuzzy inference system.

    3.3 Adaptive grid adjustment of the model set

    Based on the maneuvering target’s models described in section 2 of this paper, taking the continuous interval of the turn rate as the model set’s grid, the design of the adaptive grid adjustment algorithm is as follows. Supposing the current turn rate of the maneuvering target is in the continuous range [ -wmax,wmax], we construct an FIMM algorithm of three time-varying models, whose model set at timekisM(k)=? [-wmax,wmax],and

    Assuming this algorithm begins to initialize from, we adjust the turn rate through the adjustment of the grid center and the grid interval from timekto timek+1 .

    3.3.1 Adjustment of the grid center

    The adjustment of the grid center is shown as formula(19).

    3.3.2 Adjustment of the grid interval

    The adjustment of the grid interval is divided into three cases of non jump, left jump and right jump.

    a) Non jump.

    WhenmkC=, the adjustment strategy ofare shown as formulas (20) and (21).

    In the formulas,1tis the impossible model’s probability threshold,wdis the least grid interval.

    b) Left jump.

    When, the adjustment strategy ofare shown as formulas (22) and (23).

    wheret2is the important model’s probability threshold.

    c) Right jump.

    4 Simulation results and analysis

    In order to verify the performance of the AGFIMM algorithm, we compared it with the IMM3 and IMM7, and the IMMn(n=3,7) represents the standard IMM algorithms whose model sets are composed of 3 and 7 fixed models respectively.

    Assuming that the target’s motion is in theX-Yplane, and that the scenario is as follows (Zhanget al., 2011; Guoet al.,2011): The initial position is (3,000 m, ?1,000 m), the initial velocity is 59 m/s (the angle with thex-axis is 45°), and the simulation time is 200 s. The simulation trajectory consists of 5 segments. Segment 1, constant velocity motion; segment 2, turn right with a constant turn rate ofω=0.02 rad/s; segment 3, constant velocity motion; segment 4, turn left with a constant turn rate ofω=0.05 rad/s and segment 5, constant velocity motion.

    During the simulation, the model sets are{w=-1°/s,w= 0°/s,w= 1°/s}and {w=-3°/s,w=-2°/s,w=-1°/s,w=0°/s,w=1°/s,w=2°/s,w= 3°/s} respectively in the IMM3 and IMM7 algorithms,and the filtering algorithm is the standard IMM algorithm.The IMM model transition probability of the IMM3 algorithm isp=[0.7,0.2,0.1;0.2,0.7,0.1;0.1,0.2,0.7], and the IMM model transition probability of the IMM7 algorithm is, wherepii=0.9,i=1,7;pii-1=0.1,i=2,…,7;pii+1=0.1,i=1,…,6. The measurement noise is the Gauss noise of zero mean, and its standard deviation is

    The model set of the AGFIMM algorithm is composed of three models at any given time, and the model interaction probability is received from the fuzzy logic inference system. The impossible model’s probability thresholdt1=0.2,the important model’s probability thresholdt2=0.92, and the least grid intervaldw= 0.5°.

    We conducted the Monte Carlo simulation 100 times for each algorithm with a sampling periodT=1s. The position and velocity RMSE simulation results of the IMM3, IMM7 and AGFIMM algorithm are shown in Table 1. The position and velocity RMSE (root mean squared error) simulation curves of the IMM3 and AGFIMM algorithm are shown in Figs. 3-6.

    Table 1 100 times Monte Carlo simulation results of RMSE

    Fig. 3 The position RMSE curve of X direction

    Fig. 4 The position RMSE curve of Y direction

    Fig. 5 The velocity RMSE curve of X direction

    Fig. 6 The velocity RMSE curve of Y direction

    From Figs. 3-6 and Table 1, we can draw conclusions as follows:

    1) Although both AGFIMM and IMM3 algorithm use a model set composed of three models, the tracking precision of AGFIMM algorithm has been obviously improved compared with IMM3 algorithm.

    2) Although the tracking precision of AGFIMM is similar to IMM7’s ( the tracking precision of the former has been slightly increased compared with the latter), AGFIMM algorithm uses the model set composed of three models,while IMM7 algorithm uses a model set composed of seven models. The computational complexity of AGFIMM algorithm has been reduced compared with IMM7 algorithm.

    In conclusion, AGFIMM algorithm can significantly improve the tracking precision compared with FSMM algorithm, when the same number of models are used. In order to reach the same tracking precision of AGFIMM algorithm, FSMM algorithm must use 2~3 times’ number of models, and thus increase the complexity of calculation. In a word, AGFIMM algorithm needs less models, smaller computational complexity and improves the cost-efficiency ratio of the multiple model algorithm.

    5 Conclusions

    This paper mainly studies a variable structure interacting multiple model algorithm for the maneuvering target tracking based on adaptive grid and fuzzy interaction, which solves the existing problems of FSMM algorithm. In FSMM algorithm, when the model set has less models, it can not completely cover the target’s all kinds of maneuvering mode, which can cause the decrease in accuracy; When the model set has more models, it can cause the calculation burden and unnecessary competition among models, and thereby reduce the cost-efficiency ratio of the algorithm.

    The Monte Carlo simulation results indicate that AGFIMM algorithm presented in this paper can significantly reduce the number of models, effectively reduce the computational complexity, improve the tracking accuracy, and be suitable for engineering applications.

    Chen X (2008).The target tracking based on variable structure multiple model algorithm. M.S.degree thesis, Detection Technology and Automation Equipment, Nanjing Science and Technology Univercity, Nanjing, 13-14.(in Chinese)

    Gao L, Xing JP, Ma ZL, Sha JC, Meng XZ (2012). Improved IMM algorithm for nonlinear maneuvering target tracking.2012 International Workshop on Information and Electronics Engineering, Harbin, 4117-4123.

    Gong S, Wu HL, Tao C, Huang SG. (2010). Tracking maneuvering target on airport surface based on IMM-UKF algorithm.International Conference on Optoelectronics and Image Processing,Haiko, 671-675.

    Guo YF Zhang X, Lin XY (2011). Low altitude maneuvering target tracking with acoustic network based on DS-VSMM.Opto-Electronic Engineering, 38(8), 1-7. (in Chinese)

    Huang XY (2010).Highly maneuvering target tracking algorithm based on variable structure multiple-model algorithm. M.S.degree thesis, Pattern Recognition and Intelligent, Electron Science and Technology University of Hangzhou, Wu han, 36-37. (in Chinese)

    Huang XY, Peng DL (2010). A VSMM algorithm based on unscented digraph switching for maneuvering target tracking.Opto-Electronic Engineering, 37(12), 30-34.(in Chinese)

    Lei SW, Wu CL, Sun W (2010). A method of adaptive maneuvering target tracking based on VSMM.Modern Rada,32(6), 54-58.

    Li XR, Jilkov VP (2005). Survey of maneuvering target tracking.Part V: Multiple-model methods. IEEE Transactions on Aerospace and Electronic Systems, 41(4), 1297-1298.

    Li XR, Zhi XR, Zhang YM (1999a). Multiple-model estimation with variable structure. Part III: Model-group switching algorithm.IEEE Transactins on Aerospace and Electronic Systems, 35(1), 225-241.

    Li XR, Zhang YM, Zhi XR (1999b). Multiple-model estimation with variable structure. Part IV: Design and evaluation of model-group switching algorithm.IEEE Transactins on Aerospace and Electronic Systems, 35(1), 242-254.

    Li XR, Zhang YM (2000). Multiple-model estimation with variable structure. Part V: likely-model set algorithm.IEEE Transactins on Aerospace and Electronic Systems, 36(2), 448-466.

    Liu GF, Gu XF, Wang HN (2009). Design and comparison of two MM algorithms for strong maneuvering target tracking.Journal of System Simulation, 21(4), 965-968.

    Lu JY (2010).The Research on IMM tracking algorithm of high speed and high maneuvering target. M.S.degree thesis, Guidance,Guidanuce and Control, Nanjing Science and Technology Univercity, Nanjing, 43-44. (in Chinese)

    Tanjan H (2011). A switched IMM-extended Viterbi estimatorbased algorithm for maneuvering target tracking.Automatica,47, 92-98.

    Vahabian A, Sedigh AK, Akhbardeh A (2004). Optimal design of the variable structure IMM tracking filters using genetic algorithms.

    Proceeding of the 2004 IEEE International Conference on Control Applications, Taipei, 25-27.

    Wang XZ, Subhash C, Rob E (2003). Variable structure IMM using minimal sub-model-set switching.Proceedings of SPIE, 80-91.

    Wu PL, Li XX (2009). Passive multi-sensor maneuvering target tracking based on UKF-IMM algorithm.WASE International Conference on Information Engineering, Taiyuan, 135-138.

    Wu WR, Cheng PP (1994). A nonlinear IMM algorith for maneuvering target tracking.IEEE Transactions on Aerospace and Electronic Systems, 30, 875-885.

    Xu JH, Ji CX, Zhang YS, Chen K (2003). Digraph switching IMM algorithm based current statistical mode.Fire Control >amp; Command Control, 28(2), 52-56.

    Yi L, Lv M (2006). Research method for tracking high speed and highly maneuvering target.6th International Conference on ITS Telecommunications Proceedings, Chengdu, 1236-1239.

    Yin HB (2008).The research on radar maneuvering target tracking filter algorithm. M.S.degree thesis, Communication and Information System, Dalian Maritime University, Dalian,50-51.(in Chinese)

    Zeng D, Peng DL (2012). Adaptive variable structure multiple model algorithm for high maneuvering target tracking.

    Computer System Application, 21(10), 114-117.

    Zhang AQ, Wang WS, Zheng RG, Lv J (2011). Research on non-linear filter for naval vessel radar target tracking.Ship Science and Technology, 33(4), 98-101.

    Zhang M (2010).Variable structure multiple model estimation based on particle filter.M.S.degree thesis, Communication and Information System, University of Science and Technology of China, Hefei, 10-12. (in Chinese)

    Zhen D, Lang H (1998). A distributed IMM fusion algorithm for multi-platform tracking.Signal Processing, 64,167-176.

    猜你喜歡
    汽輪發(fā)電背壓水流量
    基于LSTM的汽輪發(fā)電機(jī)線圈的早期異常檢測(cè)
    M701F4燃?xì)廨啓C(jī)TCA系統(tǒng)冷卻水流量異常分析
    青海電力(2022年1期)2022-03-18 12:08:36
    大型空冷汽輪發(fā)電機(jī)轉(zhuǎn)子三維流場(chǎng)計(jì)算
    國(guó)產(chǎn)納濾膜脫除硝酸鹽的試驗(yàn)研究
    基于重力方向影響的低壓渦輪葉片水流量測(cè)量數(shù)值計(jì)算
    基于AMEsim背壓補(bǔ)償對(duì)液壓缸低速運(yùn)行穩(wěn)定的研究
    汽輪機(jī)冷端優(yōu)化運(yùn)行和最佳背壓的研究與應(yīng)用
    蒸發(fā)冷卻汽輪發(fā)電機(jī)技術(shù)
    蒸發(fā)冷卻汽輪發(fā)電機(jī)技術(shù)
    三背壓凝汽器抽真空系統(tǒng)的配置及優(yōu)化
    欧美少妇被猛烈插入视频| 日韩欧美国产一区二区入口| 亚洲国产欧美一区二区综合| 精品国产国语对白av| 国产男女超爽视频在线观看| a级毛片黄视频| 别揉我奶头~嗯~啊~动态视频 | 国产1区2区3区精品| 嫁个100分男人电影在线观看| 韩国高清视频一区二区三区| 色精品久久人妻99蜜桃| 国产成人欧美| 99国产精品一区二区三区| 高清av免费在线| 男女免费视频国产| 91成人精品电影| 国产亚洲精品一区二区www | 天堂8中文在线网| 欧美日韩亚洲综合一区二区三区_| 美女中出高潮动态图| 真人做人爱边吃奶动态| 国产精品偷伦视频观看了| 黄色视频,在线免费观看| 狠狠精品人妻久久久久久综合| 亚洲精品久久午夜乱码| 国产成人av教育| 国产精品九九99| 一边摸一边抽搐一进一出视频| 免费av中文字幕在线| 免费看十八禁软件| 日本精品一区二区三区蜜桃| 少妇粗大呻吟视频| 一级a爱视频在线免费观看| 亚洲中文日韩欧美视频| 久久影院123| 精品久久久久久电影网| 18在线观看网站| www.av在线官网国产| 亚洲视频免费观看视频| 少妇精品久久久久久久| 国产无遮挡羞羞视频在线观看| 国产av国产精品国产| 色精品久久人妻99蜜桃| 精品福利观看| 高清在线国产一区| 精品久久蜜臀av无| 18在线观看网站| 免费观看av网站的网址| 国产主播在线观看一区二区| 成年av动漫网址| 亚洲熟女毛片儿| 飞空精品影院首页| 久久青草综合色| 女警被强在线播放| 亚洲国产精品一区二区三区在线| 亚洲,欧美精品.| 国产一区有黄有色的免费视频| 又紧又爽又黄一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 老熟女久久久| 欧美国产精品va在线观看不卡| 久久久国产一区二区| 99国产综合亚洲精品| 亚洲全国av大片| 热re99久久国产66热| 欧美一级毛片孕妇| 人成视频在线观看免费观看| 国产亚洲精品第一综合不卡| 黄色毛片三级朝国网站| 老鸭窝网址在线观看| 日韩一区二区三区影片| 国产欧美日韩一区二区精品| 亚洲av电影在线进入| 国产亚洲精品第一综合不卡| 无限看片的www在线观看| 久久久久精品国产欧美久久久 | 电影成人av| 精品一品国产午夜福利视频| 国产精品99久久99久久久不卡| 淫妇啪啪啪对白视频 | 欧美日韩亚洲国产一区二区在线观看 | 极品少妇高潮喷水抽搐| 无限看片的www在线观看| 夫妻午夜视频| 亚洲人成电影观看| 黄频高清免费视频| 亚洲男人天堂网一区| 欧美+亚洲+日韩+国产| 女性被躁到高潮视频| 50天的宝宝边吃奶边哭怎么回事| 黄色片一级片一级黄色片| 国产福利在线免费观看视频| 久久亚洲精品不卡| 97在线人人人人妻| 亚洲精品在线美女| 天堂俺去俺来也www色官网| 黑人猛操日本美女一级片| av片东京热男人的天堂| 黑丝袜美女国产一区| 国产精品九九99| 日本91视频免费播放| 国产亚洲av高清不卡| 国产精品熟女久久久久浪| 一级片'在线观看视频| 成年美女黄网站色视频大全免费| 精品少妇黑人巨大在线播放| 欧美97在线视频| 亚洲五月色婷婷综合| 欧美少妇被猛烈插入视频| 18禁黄网站禁片午夜丰满| 满18在线观看网站| 伊人亚洲综合成人网| 欧美精品人与动牲交sv欧美| 国产精品.久久久| 国产成人系列免费观看| 老司机深夜福利视频在线观看 | 我要看黄色一级片免费的| 欧美国产精品一级二级三级| 女性生殖器流出的白浆| 男人添女人高潮全过程视频| 巨乳人妻的诱惑在线观看| 亚洲三区欧美一区| 亚洲精品国产av成人精品| 久久人人爽av亚洲精品天堂| 久久久久视频综合| 久久九九热精品免费| 久久天躁狠狠躁夜夜2o2o| 久久久久久久久久久久大奶| 亚洲精品中文字幕在线视频| 欧美日韩av久久| 在线 av 中文字幕| 在线观看免费高清a一片| 免费一级毛片在线播放高清视频 | 亚洲欧美一区二区三区久久| 亚洲精品久久午夜乱码| 50天的宝宝边吃奶边哭怎么回事| 午夜成年电影在线免费观看| 日本wwww免费看| 欧美日韩一级在线毛片| 操出白浆在线播放| 免费高清在线观看视频在线观看| 人成视频在线观看免费观看| 1024视频免费在线观看| 最近最新中文字幕大全免费视频| 黑丝袜美女国产一区| 国产男女超爽视频在线观看| 国产91精品成人一区二区三区 | 在线观看www视频免费| 久久久精品区二区三区| 亚洲精品国产区一区二| 久久人人爽人人片av| 男人爽女人下面视频在线观看| 天天躁日日躁夜夜躁夜夜| 一本综合久久免费| 无限看片的www在线观看| 中文字幕精品免费在线观看视频| 色婷婷久久久亚洲欧美| 少妇猛男粗大的猛烈进出视频| 亚洲 欧美一区二区三区| 热re99久久国产66热| 黄色毛片三级朝国网站| 男男h啪啪无遮挡| 人人澡人人妻人| 一级毛片女人18水好多| 一级毛片精品| 脱女人内裤的视频| 狂野欧美激情性xxxx| 国产精品久久久久成人av| 亚洲精品日韩在线中文字幕| 国产免费现黄频在线看| 18禁裸乳无遮挡动漫免费视频| 欧美精品高潮呻吟av久久| 午夜成年电影在线免费观看| 窝窝影院91人妻| 国产91精品成人一区二区三区 | 亚洲,欧美精品.| 天堂8中文在线网| 亚洲精品一二三| 亚洲情色 制服丝袜| 精品国产一区二区三区久久久樱花| 欧美日韩国产mv在线观看视频| 男女床上黄色一级片免费看| av天堂久久9| 亚洲精品美女久久av网站| 午夜福利影视在线免费观看| 天堂中文最新版在线下载| 午夜激情av网站| 日本一区二区免费在线视频| 青春草视频在线免费观看| 亚洲色图综合在线观看| 国产免费福利视频在线观看| 久久久久久久大尺度免费视频| 国产高清videossex| 久久人妻熟女aⅴ| 美女午夜性视频免费| 99国产精品99久久久久| 久久免费观看电影| 纯流量卡能插随身wifi吗| 91老司机精品| 成年美女黄网站色视频大全免费| 国产精品99久久99久久久不卡| 麻豆av在线久日| 黄色 视频免费看| 午夜久久久在线观看| 性高湖久久久久久久久免费观看| 国产亚洲av高清不卡| 国产精品一区二区免费欧美 | 多毛熟女@视频| 51午夜福利影视在线观看| 国产主播在线观看一区二区| 亚洲精品在线美女| 午夜91福利影院| 一本—道久久a久久精品蜜桃钙片| 免费观看av网站的网址| 巨乳人妻的诱惑在线观看| 咕卡用的链子| 亚洲av男天堂| 大香蕉久久成人网| 在线看a的网站| 日本a在线网址| 母亲3免费完整高清在线观看| 免费观看av网站的网址| 国产精品九九99| 国产高清videossex| 久久久精品国产亚洲av高清涩受| 男女边摸边吃奶| 精品国产一区二区三区久久久樱花| 国产精品香港三级国产av潘金莲| 黑人巨大精品欧美一区二区蜜桃| 999精品在线视频| 亚洲成人免费电影在线观看| 精品久久久精品久久久| 大码成人一级视频| 国产欧美日韩综合在线一区二区| 美女大奶头黄色视频| 久久女婷五月综合色啪小说| 日韩精品免费视频一区二区三区| 老司机靠b影院| 国产无遮挡羞羞视频在线观看| 中文字幕精品免费在线观看视频| 亚洲情色 制服丝袜| 午夜成年电影在线免费观看| 99热国产这里只有精品6| 在线看a的网站| 视频区欧美日本亚洲| 日韩视频在线欧美| 国产一级毛片在线| 999精品在线视频| 亚洲午夜精品一区,二区,三区| 国产成人a∨麻豆精品| 两个人看的免费小视频| 男女高潮啪啪啪动态图| 自拍欧美九色日韩亚洲蝌蚪91| 日本wwww免费看| 国产极品粉嫩免费观看在线| 欧美日韩成人在线一区二区| 91麻豆av在线| 女人精品久久久久毛片| 欧美日韩福利视频一区二区| 国产精品成人在线| 十八禁人妻一区二区| 亚洲精华国产精华精| 男女之事视频高清在线观看| 国产精品av久久久久免费| 午夜福利免费观看在线| 国产三级黄色录像| 欧美日本中文国产一区发布| 久久毛片免费看一区二区三区| 久久国产精品男人的天堂亚洲| 亚洲精品国产av蜜桃| 精品少妇一区二区三区视频日本电影| 久久精品国产综合久久久| 久久综合国产亚洲精品| 免费久久久久久久精品成人欧美视频| 亚洲欧美成人综合另类久久久| 国产成人影院久久av| 国产成人精品久久二区二区91| 狠狠狠狠99中文字幕| 香蕉丝袜av| 免费观看人在逋| 一个人免费在线观看的高清视频 | 亚洲第一青青草原| 欧美黑人欧美精品刺激| 宅男免费午夜| 久热这里只有精品99| 午夜免费观看性视频| 亚洲国产毛片av蜜桃av| 丝袜喷水一区| 精品亚洲乱码少妇综合久久| 韩国精品一区二区三区| 999精品在线视频| 亚洲精品国产区一区二| 久久久久国产精品人妻一区二区| 国产精品熟女久久久久浪| 国产av国产精品国产| 国产99久久九九免费精品| 黄色怎么调成土黄色| 黄片播放在线免费| 日日夜夜操网爽| 美国免费a级毛片| av电影中文网址| 岛国在线观看网站| 国产精品久久久久成人av| 天天躁日日躁夜夜躁夜夜| 精品国产国语对白av| 美女福利国产在线| 日本av手机在线免费观看| 国产人伦9x9x在线观看| 多毛熟女@视频| 一本—道久久a久久精品蜜桃钙片| 一级片免费观看大全| 1024视频免费在线观看| 久久综合国产亚洲精品| 免费一级毛片在线播放高清视频 | 天天影视国产精品| 曰老女人黄片| 午夜两性在线视频| 欧美黄色片欧美黄色片| 精品免费久久久久久久清纯 | 男女午夜视频在线观看| 亚洲中文av在线| 在线av久久热| av不卡在线播放| 欧美97在线视频| 69精品国产乱码久久久| 国产老妇伦熟女老妇高清| 欧美老熟妇乱子伦牲交| 亚洲国产av新网站| 国产老妇伦熟女老妇高清| 欧美午夜高清在线| 亚洲激情五月婷婷啪啪| 久久午夜综合久久蜜桃| 亚洲专区国产一区二区| 亚洲国产看品久久| 老鸭窝网址在线观看| 一级片'在线观看视频| 下体分泌物呈黄色| 少妇被粗大的猛进出69影院| 18在线观看网站| 淫妇啪啪啪对白视频 | kizo精华| 午夜精品久久久久久毛片777| 国产免费视频播放在线视频| 午夜福利视频在线观看免费| 亚洲人成77777在线视频| 91麻豆av在线| 精品少妇一区二区三区视频日本电影| 亚洲国产精品999| 最近最新中文字幕大全免费视频| 法律面前人人平等表现在哪些方面 | 一级毛片电影观看| 久久精品亚洲熟妇少妇任你| 国产在线观看jvid| 日本a在线网址| 国产亚洲午夜精品一区二区久久| 亚洲欧美精品综合一区二区三区| 亚洲视频免费观看视频| 欧美日韩一级在线毛片| 黑人操中国人逼视频| 欧美在线黄色| 香蕉丝袜av| 国产激情久久老熟女| 国产亚洲av高清不卡| 精品人妻熟女毛片av久久网站| 人人妻人人澡人人看| 热re99久久国产66热| 天天影视国产精品| 欧美在线一区亚洲| 欧美国产精品一级二级三级| 超碰成人久久| 丝袜喷水一区| 免费观看av网站的网址| 18禁裸乳无遮挡动漫免费视频| 丁香六月欧美| 老司机靠b影院| 黄色视频不卡| 黄色片一级片一级黄色片| 丝袜美足系列| 老熟女久久久| 国产一区二区激情短视频 | 亚洲一区中文字幕在线| 国产精品国产av在线观看| 亚洲人成77777在线视频| 国产精品秋霞免费鲁丝片| 精品国产国语对白av| 精品国产一区二区三区四区第35| 后天国语完整版免费观看| 国精品久久久久久国模美| 亚洲少妇的诱惑av| 最近中文字幕2019免费版| 亚洲成国产人片在线观看| 欧美日韩av久久| 国产免费av片在线观看野外av| 欧美日韩一级在线毛片| 久久精品国产综合久久久| 午夜免费观看性视频| 国产精品 国内视频| 国产精品一区二区免费欧美 | 久久性视频一级片| 国产精品一区二区免费欧美 | 精品国产乱码久久久久久小说| 老司机亚洲免费影院| 国产淫语在线视频| a在线观看视频网站| 啦啦啦在线免费观看视频4| 少妇粗大呻吟视频| 亚洲精品国产精品久久久不卡| 亚洲色图 男人天堂 中文字幕| 国产亚洲精品一区二区www | 久久久久久亚洲精品国产蜜桃av| 国产精品熟女久久久久浪| avwww免费| 波多野结衣一区麻豆| 精品少妇内射三级| 乱人伦中国视频| 国产免费福利视频在线观看| 亚洲国产精品一区三区| 12—13女人毛片做爰片一| 亚洲av电影在线进入| 免费久久久久久久精品成人欧美视频| 国产亚洲一区二区精品| 国产在线免费精品| 欧美另类亚洲清纯唯美| 免费黄频网站在线观看国产| 亚洲人成电影免费在线| 久久久久网色| 黑丝袜美女国产一区| 久久人人爽av亚洲精品天堂| 巨乳人妻的诱惑在线观看| 91国产中文字幕| 窝窝影院91人妻| 美女中出高潮动态图| 制服诱惑二区| 真人做人爱边吃奶动态| 国产野战对白在线观看| 中亚洲国语对白在线视频| 中文字幕高清在线视频| 在线观看人妻少妇| 免费人妻精品一区二区三区视频| 91九色精品人成在线观看| 巨乳人妻的诱惑在线观看| 免费高清在线观看视频在线观看| 国产亚洲精品一区二区www | 99久久国产精品久久久| 亚洲欧美清纯卡通| 首页视频小说图片口味搜索| 午夜精品国产一区二区电影| 免费看十八禁软件| svipshipincom国产片| 国产高清视频在线播放一区 | 精品一区在线观看国产| 国产深夜福利视频在线观看| 天堂俺去俺来也www色官网| 精品国产超薄肉色丝袜足j| 99re6热这里在线精品视频| 女人精品久久久久毛片| 久久久久网色| 一本一本久久a久久精品综合妖精| 一区二区av电影网| 一边摸一边做爽爽视频免费| 国产伦人伦偷精品视频| 亚洲 欧美一区二区三区| 精品一区二区三卡| 后天国语完整版免费观看| 一二三四在线观看免费中文在| 免费观看人在逋| 亚洲中文日韩欧美视频| 在线精品无人区一区二区三| 黑人猛操日本美女一级片| 男女无遮挡免费网站观看| 欧美一级毛片孕妇| 欧美 日韩 精品 国产| 国产精品自产拍在线观看55亚洲 | 亚洲 国产 在线| 99国产精品一区二区蜜桃av | av有码第一页| 亚洲欧洲日产国产| 国产高清视频在线播放一区 | av电影中文网址| 久久av网站| 亚洲免费av在线视频| 韩国高清视频一区二区三区| 满18在线观看网站| 啦啦啦在线免费观看视频4| 久久久精品免费免费高清| 99热网站在线观看| 一区二区三区激情视频| 午夜福利免费观看在线| 久久热在线av| 男女无遮挡免费网站观看| 热99re8久久精品国产| 亚洲成人免费电影在线观看| 狠狠婷婷综合久久久久久88av| 午夜免费鲁丝| 午夜免费观看性视频| 一本色道久久久久久精品综合| 妹子高潮喷水视频| 男女边摸边吃奶| 一本大道久久a久久精品| 深夜精品福利| www.熟女人妻精品国产| 巨乳人妻的诱惑在线观看| 热99re8久久精品国产| 欧美亚洲日本最大视频资源| 日韩人妻精品一区2区三区| 亚洲精品国产av成人精品| 亚洲精品国产精品久久久不卡| 久久热在线av| 久久久精品免费免费高清| 免费久久久久久久精品成人欧美视频| av线在线观看网站| 青草久久国产| 精品福利观看| 大陆偷拍与自拍| 日本av手机在线免费观看| 两个人免费观看高清视频| 亚洲成国产人片在线观看| 国产欧美日韩一区二区三区在线| 亚洲精品自拍成人| 曰老女人黄片| 日本a在线网址| 精品少妇内射三级| 一本一本久久a久久精品综合妖精| 日本猛色少妇xxxxx猛交久久| 女人高潮潮喷娇喘18禁视频| 18禁黄网站禁片午夜丰满| 美女视频免费永久观看网站| 亚洲精品久久久久久婷婷小说| 热99国产精品久久久久久7| 天天添夜夜摸| 亚洲 欧美一区二区三区| 国产精品国产av在线观看| 日韩中文字幕视频在线看片| av线在线观看网站| 精品国产乱码久久久久久小说| 啦啦啦啦在线视频资源| 99国产精品一区二区蜜桃av | 午夜视频精品福利| 亚洲七黄色美女视频| 国产精品久久久久久精品电影小说| 亚洲国产精品一区二区三区在线| 在线 av 中文字幕| 中国美女看黄片| 97人妻天天添夜夜摸| 久久久久久久久久久久大奶| 欧美激情久久久久久爽电影 | 丝袜美足系列| 少妇被粗大的猛进出69影院| 老司机午夜福利在线观看视频 | 亚洲av成人一区二区三| 亚洲精品国产精品久久久不卡| 人人澡人人妻人| 亚洲成人国产一区在线观看| 久久久久精品国产欧美久久久 | 成年人免费黄色播放视频| 人人澡人人妻人| a级片在线免费高清观看视频| 婷婷丁香在线五月| 老熟女久久久| 免费在线观看黄色视频的| 免费在线观看影片大全网站| 免费人妻精品一区二区三区视频| av免费在线观看网站| 啪啪无遮挡十八禁网站| 亚洲专区字幕在线| 老司机影院毛片| 美女福利国产在线| 亚洲精品美女久久av网站| 丰满迷人的少妇在线观看| 少妇被粗大的猛进出69影院| 多毛熟女@视频| av视频免费观看在线观看| 国产亚洲午夜精品一区二区久久| 国产淫语在线视频| 2018国产大陆天天弄谢| 999久久久国产精品视频| 中文字幕人妻熟女乱码| 国产一级毛片在线| 两性夫妻黄色片| 啦啦啦啦在线视频资源| 超色免费av| 热re99久久精品国产66热6| 免费人妻精品一区二区三区视频| 国产亚洲av高清不卡| av网站免费在线观看视频| 在线十欧美十亚洲十日本专区| 性色av乱码一区二区三区2| 不卡av一区二区三区| 叶爱在线成人免费视频播放| 精品久久久精品久久久| 成在线人永久免费视频| 午夜福利视频精品| 久久中文字幕一级| 久久久久网色| 桃红色精品国产亚洲av| 一级a爱视频在线免费观看| 电影成人av| 侵犯人妻中文字幕一二三四区| 久久久久国内视频| 亚洲精品第二区| 亚洲精品日韩在线中文字幕| 国产精品国产三级国产专区5o| 嫁个100分男人电影在线观看| 久久国产精品影院| 一级,二级,三级黄色视频| av免费在线观看网站| 中国美女看黄片| 亚洲成人免费电影在线观看| 91国产中文字幕| 国产高清视频在线播放一区 | 欧美日韩av久久| 亚洲激情五月婷婷啪啪| 日韩中文字幕欧美一区二区| 久久性视频一级片| 狠狠精品人妻久久久久久综合|