• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Material Selection for Hawsers for a Side-by-side Offloading System

    2014-07-30 09:56:48JiayuQianLipingSunandLinfengSong

    Jiayu Qian, Liping Sun and Linfeng Song

    Deep Water Engineering Research Center, Harbin Engineering University, Harbin 150001, China

    1 Introduction1

    Floating production, storage and offloading (FPSO) has become a popular solution for exploitation activities concerning ocean oil and gas resources throughout the world.As a part of the marine oil and gas development system, it generally comes with a shutter tanker and subsea production unit consisting of a complete production system. The FPSO offloading system is a type of transmission form, which transfers crude oil and natural gas from the FPSO to the shuttle tanker by a marine hose or offloading arm directly.

    The MingZhu FPSO side-by-side offloading system in the field BZ25-1 is presented here. Several types of ropes can be used to connect the FPSO to the tanker; four fenders are set between the vessels to prevent collisions. Especially, the FPSO is moored by a yoke system. Four different types of ropes with strong viscoelasticity characteristics, such as polyester and nylon, are analyzed in this work. The properties of the stress-strain relationship of the fiber ropes within the elastic range are mainly shown as nonlinear. Due to the strong nonlinearity of the axial stiffness, many scholars (Websteret al., 2012) have carried out the relevant research regarding the effects of the synthetic rope materials on the floating structure dynamics.

    Del Vecchio and Chaplin (1992) applied fiber rope in a deep water mooring system which indicated that high-strength material could reduce the line dynamic tension under wave excitation forces. A two-dimensional calculation was performed to estimate the stress-strain relationship of the fiber rope accurately by Liuet al. (1997). The exponential function can be expressed by the load-strain relationship of the fiber rope through model test analysis(Mc Kenna and Wong, 1979). The elastic modulus of the long-period formula (Fernandeset al., 1998) was utilized to calculate the fiber line tension; and Kimet al. (2003)applied it to the spar platform. The empirical formula(Bosman and Hooker, 1999) was applied to calculate the fiber line tension of a spar mooring system (Tahar and Kim,2008). Davieset al. (2008) studied the influence of the fiber stiffness on the deepwater mooring line response. Yuanet al.(2010) compared the performance of the mooring system for a spar platform with a linear and nonlinear elastic model to fit the stress-strain relationship of the fiber rope, respectively.The results of the spar platform with the nonlinear elastic model are different from the ones using the linear elastic model. Kimet al. (2011) applied a viscoelastic model considering multiple relaxation times and nonlinearity in dynamic stiffness into a spar platform. Taharet al. (2012)presented the global performance comparison between the dual stiffness method and the traditional method when using polyester mooring lines. The above research and the reference (Qianet al., 2013) indicate that it is important to use a nonlinear mathematical model of fiber ropes in terms of analyzing the dynamic responses of the floating structures.

    According to the researches mentioned above, the dynamic time-domain coupled method is discussed here to study the impact of using different types of hawser materials on the FPSO offloading system. The most suitable hawser material for the FPSO offloading system is chosen through comparing the relative motion of two vessels and the hawser line tension. To obtain the accurate hawser line tension, a polynomial function is applied here to simulate the nonlinear stress-strain relationship of the lines. Especially,as for the polyester rope, this paper uses lower and upper bound linear stiffness to calculate the line tension, and the results agree well with the results of the nonlinear stiffness.Then the polynomial fitting method used to calculate the nonlinear stiffness of the fiber ropes is verified.

    2 Mathematical formulations

    The 3D potential flow theory is used to calculate the hydrodynamic interaction coefficients of the multi-body in the limited frequency range. And then the coefficients including the added mass, damping and second-order transfer function matrix are prepared for solving the motion equations of the vessels in the time-domain simulation. To adopt the accurate dynamic response of the offloading system, a polynomial function is made in the application to fit the rope stiffness. Different types of fiber ropes have different stiffness characteristics. This paper focuses on selecting the most suitable fiber rope for FPSO offloading systems through a series of calculations.

    2.1 Equations of motion for mutual floating bodies

    Floating structures contend with wind force, hydrostatic restoring force, wave radiation/diffraction force, gravity,inertia force and flow force from wind, waves and currents.The assumption is made that there arenfloating bodies,considering the mutual interference between the floating bodies. According to Newton’s second law, the 6×ndegree of freedom time-domain coupled equation (Songet al., 2013)of the bodies under the environmental load is as follows:

    whereMmis the mass matrix of floating bodym,m=1,…,n;ukjis the added mass matrix of floating bodym, including itself and mutual interference;bkjis the impulse response function in the time-domain of the floating bodym,including itself and mutual interference;Ckjis the hydrostatic restoring force coefficient with the interaction of thekandjmotion modes of the floating body,k=1,…,6;ηjrepresents thejmotion mode of the floating body,j=1,…,6;Fmrepresents the floating bodymsubjected to an external load.

    2.2 Calculation of the nonlinear stiffness of fiber ropes

    Because the fiber rope belongs to the viscoelastic material, the global behavior of the stress-strain curve for the fiber rope was nonlinear. According to the guidance(Bridon, 2007), Fig. 1 plots the relationship between the load and extension of the four kinds of fiber ropes.

    Nylon A and nylon B belong to the high-tenacity nylon multifilament fiber. Polyester M and polyester N represent worked and new braidlines, which are part of the high-tenacity polyester rope.

    There are no specific nonlinear stiffness values of these ropes. So it is necessary to use a mathematical formula to fit the load-extension curves of the ropes. This paper uses the polynomial function to fit the curves and then obtains the corresponding nonlinear stiffness values. The equations for calculating the fiber rope nonlinear stiffness are as follows:

    whereEAis the line elastic modulus;k1,k2andk3are the coefficients of the polynomial function and they are constants;εrepresents the line strain.

    Fig. 1 The load-extension relationship of the fiber ropes

    2.3 Environment condition

    The frequency range of the FPSO and tanker is chosen from 0.1 to 1.7 rad/s; the working depth is 17.4 m. The irregular waves are generated using the JONSWAP spectra;the significant wave height is 3.2 m, and the wave period is 7.9 s. The unsteady current velocity is 1.34 m/s. The one-hour average wind speed is 18 m/s. The incident angle of the wind, waves and current are all from the FPSO bow pointing stern. The dynamic response is recorded in the duration of three hours and the time interval is 0.1 s. The wind and current loads are directly proportional to the square of the corresponding speed, and the equation is as follows to calculate the environment loads on the hull:

    whereFjrepresents the wind force or current force in thejdirection;Vthe average wind speed or current speed, which exist at a certain distance from the static water;Cjthe wind or current coefficient in thejdirection, which accords with OCIMF (1994) specification; andAthe hull wind area or hull current area.

    3 Numerical models

    The FPSO offloading system consists of five parts,including the FPSO, offloading hawsers, shutter tanker, soft yoke system and fenders. The universal joints connect the soft yoke and mooring structure, and the tube unit is used here to simulate the yoke system. The stress-strain relationship of the hawser line is nonlinear. And the hawser line tension is zero when it is slack. Similarly, the stress-strain relationship of the fenders is also nonlinear.

    3.1 The model of the FPSO and tanker

    The yoke mooring system is used to position the FPSO with a mooring force of 410 tons. The working depth of the FPSO offloading system is 17.4 m. In order to prevent the FPSO and shuttle tanker from colliding, there are four fenders between the two vessels to absorb energy. The fenders are modeled as springs, which are kept on the water surface at all times. The diameter of the fender is 2.5 m and the length is 5.5 m. Each fender can absorb 211 kN·m when they are 60% shaped. The specific performance parameters of the fenders can be seen with the reference (Sunet al.,2011). The main parameters of the FPSO and shuttle tanker are shown in Table 1. The distribution of the surface mesh of the two vessels is shown in Fig. 2.

    Item FPSO Tanker Length overall/m 218.3 180 LBP/m 210 171.2 Breadth/m 32.8 32.2 Depth/m 18.2 14.2 Draft/m 11.7 5.43 Displacement/t 75 501.5 24 216.9 Gx /m 100.775 86.157 Gz /m 12.248 8.71 Wind area (frontal)/m2 541.2 604.4 Wind area (side)/m2 2 619 1 689.6

    Fig. 2 FPSO offloading system

    3.2 The hawser line

    There are ten hawser lines between the FPSO and shutter Tanker. Four lines are set in the bow and stern of the FPSO and shuttle tanker. And two lines are set across each other in the middle of the two vessels. To prevent the hawser line from being damaged, the pretension will be controlled within the range of 30% breaking strength (American Petroleum Institute, 2001; Wanget al., 2010) and applied to each hawser to provide the initial stiffness.

    The most suitable fiber rope will be chosen by analyzing the dynamic response of the FPSO offloading system when the hawser uses types of fiber ropes with different characteristics. The diameter of the fiber ropes is 120 mm.The wet weight and minimum breaking strength (MBS) of the polyester rope are 2.79 kg/m and 2 697 kN, respectively.The wet weight and minimum breaking strength of the nylon are 0.86 kg/m and 3 246 kN, respectively.

    The specific arrangement of the hawsers is shown in Fig. 3.Table 2 illustrates the positions of the hawser ropes in the FPSO and tanker.

    Table 2 The position of hawsers in the FPSO and tanker

    Fig. 3 The arrangement of hawser lines

    4 Simulation and discussion

    The hydrodynamic coefficients of the mutual influence between the FPSO and tanker can be acquired based on the 3D potential flow theory, and then the corresponding wave forces can be obtained. It may produce abnormal values in the hydrodynamic coupled analysis. This paper uses a rigid lid between the two vessels to suppress the abnormal values,which can be seen in these references (Buchneret al., 2001;Newman, 2004). In order to get a more accurate slow drift force, the near-field integral method is utilized here.

    4.1 The relative motion of the FPSO and shuttle tanker

    As for the four different types of fiber ropes, considering the interaction of the FPSO, soft yoke, tanker and the hawser lines, the dynamic response of the system can be required through time-domain simulation. This paper utilizes the root mean square (RMS) to estimate the relative motion amplitude of the two vessels. The relative motion results with different materials can be seen in Table 3. Figs. 4–6 present the relative surge, sway and heave motion of the FPSO and tanker, respectively.

    The polyester N material reaches the smallest response amplitude in the vertical relative motion of the two vessels.Taking #5 fairlead as an example, the surge RMS of the polyester N material is 0.221 7, which is less than the numbers of the polyester M, nylon A and nylon B material by 69.0%, 23.0% and 6.6%, respectively. The results illustrate that the external load has a small effect on the line elongation,and it would be more beneficial to the vessel stability in the longitudinal direction. In the lateral direction, using polyester N and nylon B will allow for the smaller relative motion of sway of the two vessels than the polyester M and nylon A material. The results indicate that the stiffness characteristic of the fiber rope has a large effect on the relative sway motion of the vessels when the external load is greater than 11% MBS. Generally, polyester N has the smaller impact on the relative heave motion of the vessels because it has larger stiffness and a bigger curvature of the load-extension relationship. For example, the heave RMS value of polyester N is 0.245 9 in the #12 fairlead, which is less than the numbers of the polyester M, nylon A and nylon B material by 20.9%, 0.2% and 7.6%, respectively.

    Table 3 The relative motion results with different materials

    Fig. 4 Relative surge motion of vessels on the #5 fairlead

    Fig. 5 Relative sway motion of vessels on the #5 fairlead

    Fig. 6 Relative heave motion of vessels on the #5 fairlead

    4.2 The hawser line tension

    The tension with the polyester M, polyester N, nylon A and nylon B material can be acquired through time-domain simulation. The specific values are shown in Table 4. The stiffness characteristic of the hawsers has a larger effect on its own tension than on the relative motion of the FPSO and shuttle tanker. The max-tension of the hawsers using nylon B is the smallest among the four different types of fiber ropes. Take #5 fairlead as an example, the max-tension using nylon B is 191.3 kN, which is less than the numbers of the polyester M, polyester N and nylon A material by 250%,27.9% and 420%, respectively. The results indicate that the line tension can be reduced by the smaller stiffness and bigger curvature of the load-extension relationship for the fiber rope.

    As for the mean tension of the hawsers, it is common for the polyester N and nylon B material to get smaller tension values than the polyester M and nylon A. The discrepancy between the mean tension of polyester N and nylon B is less than 16.4%. In terms of the hawser lines’ tension, it can be found that there exists a critical value of the load. The curvature has a smaller effect on the mean tension of the hawsers when the external load is lower than 11% MBS.The mean tension of the hawsers will be reduced with the increasing curvature when the external load exceeds 11%MBS.

    Fairlead No.Tension Polyester N Polyester M Nylon B Nylon A 5Max 244.8681.7191.31009 Mean 61.8102.659.97113.3 7 Max 218.3609.8168.4 746.4 Mean 48.9585.1557.02 65.55 9Max 191.1469.5135.8679.7 Mean 114.2155.2106141.5 10Max 146.2271.8120.2276 Mean 86.05 70.83 92.98 78.65?12 Max 284 700.4 185.1 946.3 Mean 113.7 134.8 109.7 187 14 Max 255.1 629.8 173.8 861.9 Mean 99.48 118.4 104.2 138.2

    4.3 The reliability of the method

    In this subsection, the strain versus the MBS curves of the three ways is shown in Fig. 7, which is based on the research conducted by the American Bureau of Shipping(2011) and Royal Lankhorst Euronete (2011). Three curves represent the upper bound linear stiffness, lower bound linear stiffness and nonlinear stiffness, respectively.

    Taking the #5 fairlead as an example, the max-tension of the hawser is 913 kN, 281 kN and 677 kN when using the upper bound, lower bound linear stiffness and nonlinear stiffness, respectively. The max-tension is 681.7 kN when using the polynomial fitting function to simulate the line stiffness, which agrees well with 677 kN when using Lankhorst nonlinear stiffness. Then it can be validated that the method of fitting the nonlinear stiffness of the fiber ropes is reasonable and reliable.

    Fig. 7 Strain-MBS relationship of polyester rope

    5 Conclusions

    The method of polynomial fitting has proven to be an effective way to simulate the hawser lines’ nonlinear stiffness of the FPSO offloading system. Focusing on the effects of the yoke mooring system, hawser lines, fenders and the hydrodynamic interaction between the two vessels,we acquired the dynamic responses of the vessels and the hawser lines’ tension while using different types of hawser materials, which was based on the time-domain coupled calculation. The following conclusions can be drawn:

    1) The polynomial fitting method for calculating the nonlinear stiffness of fiber ropes has been proven to be more accurate than linear stiffness. Therefore the nonlinear stiffness model of the fiber rope should be used in the practical engineering calculation.

    2) The larger stiffness and curvature of the load-extension curve are beneficial to reduce the relative motion of the two vessels. Nonlinear stiffness has a small effect on the dynamic response of the FPSO and shuttle tanker.

    3) There exists a critical value of the external load, which results in the material of one rope having multiple tension characteristics. For the polyester and nylon rope, the critical value is 11% MBS. When the external load is below 11%MBS, the max-tension of the hawser lines can be improved by lowering the curvature of the load-extension relationship or decreasing line stiffness; when the external load is above 11% MBS, the mean tension of the hawser is reduced with the increasing curvature of the load-extension relationship.

    4) Comparing the dynamic response of the FPSO offloading system with the hawser lines’ tension, the nylon B is recommended to be the material for the hawser lines of the FPSO offloading system.

    American Bureau of Shipping (2011).Guidance notes on the application of fiber ropes for offshore mooring. ABS Plaza,Houston, USA, 9-13.

    American Petroleum Institute (2001).Recommended practice for design, manufacture, installation, and maintenance of synthetic fiber ropes for offshore mooring. API, Washington, D.C., USA,11-13.

    Bosman RLM, Hooker J (1999). The elastic modulus characteristics of polyester mooring ropes.Annual Offshore Technology Conference, Houston, USA, OTC-10779.

    Bridon (2007).Specialist fiber rope solutions. 3A the Centre, High Street Polegate, East Sussex, BN26 6AQ, United Kingdom,10-13.

    Buchner B, Van DA, De Wilde J (2001). Numerical multiple-body simulation of side-by-side mooring to an FPSO.International Offshore and Polar Engineering Conference, Stavanger,Norway, 343-353.

    Davies P, Baron P, Salomon K, Bideaud C, Labbé JP, Stéphane T,Francois M, Francois G, Bunsell T, Moysan AG (2008).Influence of fiber stiffness on deepwater mooring line response.

    International Conference on Offshore Mechanics and Arctic Engineering, Rotterdam, Berlin, Germany, 179-187.

    Del Vecchio CJM, Chaplin CR (1992). Appraisal of lightweight moorings for deep water.The 24th Annual Offshore Technology Conference, Houston, USA, 189-199.

    Fernandes AC, Del Vecchio CJM, Castro GAV (1998). Mechanical properties of polyester mooring ropes.International Journal of Offshore and Polar Engineering, 9(3), 248-254.

    Kim JW, Kyoung JH, Sablok A, Lambrakos K (2011). A nonlinear viscoelastic model for polyester mooring line analysis.

    International Conference on Offshore Mechanics and Arctic Engineering, Rotterdam, Netherlands, 797-803.

    Kim MH, Ding Y, Zhang J (2003). Dynamic simulation of polyester mooring lines.International Symposium on Deepwater Mooring Systems Concepts, Design Analysis, and Materials, Houston, USA, 101-114.

    Liu Yingzhong, Miao Guoping, Li Yile (1997). A time domain computation method for dynamic behavior of mooring system.

    Journal of Shanghai Jiao Tong University, 31(11), 7-12. (in Chinese)

    Mc Kenna HA, Wong RK (1979). Synthetic fiber rope, properties and calculations relating to mooring systems.International Conference on Offshore Mechanics and Arctic Engineering,New York, USA, 189-198.

    Newman JN (2004). Progress in wave load computations on offshore structures. Invited lecture on theOcean, Offshore and Arctic Engineering Conference, Vancouver, Canada.

    Qian Jiayu, Sun Liping, Song Linfeng (2013). The effect of material nonlinearity on the dynamics of hull/mooring coupled system.International Conference on Offshore Mechanics and Arctic Engineering, Nantes, France, OMAE-10034.

    Oil Companies International Marine Forum (1994).Prediction of Wind and Current Loads on VLCCs. Oil Companies International Marine Forum, Bermuda, London, 15-19.

    Royal Lankhorst Euronete (2011).Ropes for deep water mooring.The Royal Lankhorst Euronete Group, Póvoa de Varzim,Portugal, 6-9.

    Song Linfeng, Sun Liping, Wang Dejun (2013). Coupling analysis of stinger-lay barge-pipeline of S-lay installation in deep water.

    Journal of Harbin Engineering University, 34(4), 415-420. (in Chinese)

    Sun Liping, He Qiang, Ai Shangmao (2011). Safety assessment for a side-by-side offloading mooring system.Journal of Marine Science and Application, 10(3), 315-320.

    Tahar A, Kim MH (2008). Coupled dynamic analysis of floating structures with polyester mooring lines.Journal of Ocean Engineering, 35(17-18), 1676-1685.

    Tahar A, Sidarta D, Ran A (2012). Dual stiffness approach for polyester mooring line analysis in time domain.International Conference on Offshore Mechanics and Arctic Engineering,Rio de Janeiro, Brazil, 513-521.

    Wang Hongwei, Luo Yong, Ma Gang, Hu Kaiye (2010). Research on fiber material mooring scheme of the deepwater semi-submersible drilling platform.JournalofShip Engineering, 32(3), 58-62. (in Chinese)

    Webster William C, Kim JW, Jing XN (2012). Rod dynamics with large stretch.International Conference on Offshore Mechanics and Arctic Engineering, Rio de Janeiro, Brazil, 345-354.

    Yuan Meng, Fan Ju, Miao Guoping, Zhu Renchuan (2010).Mooring performance of nonlinear elastic mooring lines.

    Journal of Shanghai Jiao Tong University, 44(6), 820-827. (in Chinese)

    日本色播在线视频| 国产深夜福利视频在线观看| 中文精品一卡2卡3卡4更新| 午夜日本视频在线| 亚洲久久久国产精品| 天天躁狠狠躁夜夜躁狠狠躁| 韩国av在线不卡| 爱豆传媒免费全集在线观看| 日韩熟女老妇一区二区性免费视频| 中文字幕亚洲精品专区| 九色亚洲精品在线播放| 成人国语在线视频| 1024视频免费在线观看| 你懂的网址亚洲精品在线观看| 免费在线观看视频国产中文字幕亚洲 | 岛国毛片在线播放| 下体分泌物呈黄色| 国产日韩一区二区三区精品不卡| 日韩伦理黄色片| 伊人亚洲综合成人网| 成年女人在线观看亚洲视频| 999精品在线视频| 亚洲国产最新在线播放| 国产成人av激情在线播放| 天天操日日干夜夜撸| 国产不卡av网站在线观看| 成年av动漫网址| 最近手机中文字幕大全| 久久久久久伊人网av| 国产极品天堂在线| 午夜福利网站1000一区二区三区| 色94色欧美一区二区| 欧美老熟妇乱子伦牲交| 日韩电影二区| 飞空精品影院首页| 亚洲成人一二三区av| 一本大道久久a久久精品| 国产成人免费观看mmmm| 亚洲精品自拍成人| 免费看不卡的av| 丝袜在线中文字幕| 春色校园在线视频观看| 久久97久久精品| 亚洲欧洲国产日韩| 久久亚洲国产成人精品v| 国产爽快片一区二区三区| 一级a爱视频在线免费观看| 欧美国产精品va在线观看不卡| 久久久久人妻精品一区果冻| 精品国产一区二区久久| 免费高清在线观看视频在线观看| 久久久国产欧美日韩av| 色婷婷av一区二区三区视频| av福利片在线| 免费观看在线日韩| 国产日韩欧美在线精品| 久久久久久人人人人人| 在现免费观看毛片| 高清不卡的av网站| 欧美精品av麻豆av| 一本色道久久久久久精品综合| 婷婷色综合大香蕉| 亚洲av中文av极速乱| 国产成人精品久久久久久| 女人久久www免费人成看片| 欧美+日韩+精品| 日本黄色日本黄色录像| 午夜影院在线不卡| 波多野结衣av一区二区av| 精品99又大又爽又粗少妇毛片| 99热全是精品| 午夜激情av网站| 美女国产高潮福利片在线看| 国产精品熟女久久久久浪| 日本爱情动作片www.在线观看| 精品午夜福利在线看| 亚洲一级一片aⅴ在线观看| 日韩av不卡免费在线播放| 国产高清不卡午夜福利| 亚洲成av片中文字幕在线观看 | 午夜精品国产一区二区电影| 久久精品国产a三级三级三级| 中文字幕亚洲精品专区| 美女视频免费永久观看网站| 久久精品国产亚洲av天美| 婷婷色av中文字幕| 精品亚洲成a人片在线观看| 免费黄网站久久成人精品| 丝袜脚勾引网站| 日韩免费高清中文字幕av| 色视频在线一区二区三区| 精品午夜福利在线看| 桃花免费在线播放| av片东京热男人的天堂| 成人国产av品久久久| 国产亚洲午夜精品一区二区久久| 精品一区二区免费观看| 一区二区av电影网| 久久这里只有精品19| 又大又黄又爽视频免费| 久久精品久久久久久噜噜老黄| 看非洲黑人一级黄片| 青草久久国产| 中文字幕人妻丝袜制服| 五月开心婷婷网| 欧美+日韩+精品| 1024香蕉在线观看| 两个人免费观看高清视频| 91成人精品电影| 在线观看人妻少妇| av线在线观看网站| 国产欧美日韩一区二区三区在线| 免费看av在线观看网站| 男人爽女人下面视频在线观看| 曰老女人黄片| 国产 精品1| 丝袜脚勾引网站| 午夜免费鲁丝| 色视频在线一区二区三区| 黑人欧美特级aaaaaa片| 夫妻午夜视频| 在线观看国产h片| 中文字幕最新亚洲高清| 国产激情久久老熟女| 国产男人的电影天堂91| 一级毛片 在线播放| 美女福利国产在线| 亚洲精品中文字幕在线视频| 久久久久久久国产电影| 如何舔出高潮| 中文字幕制服av| 另类亚洲欧美激情| 99国产综合亚洲精品| 欧美精品人与动牲交sv欧美| 日韩中字成人| 亚洲欧洲精品一区二区精品久久久 | 精品亚洲成国产av| 另类亚洲欧美激情| 老汉色av国产亚洲站长工具| 夫妻性生交免费视频一级片| 天堂中文最新版在线下载| 成年人免费黄色播放视频| 精品国产一区二区三区四区第35| 伊人久久大香线蕉亚洲五| 美女国产高潮福利片在线看| 老汉色∧v一级毛片| 热99久久久久精品小说推荐| 18禁国产床啪视频网站| 欧美老熟妇乱子伦牲交| 人人妻人人爽人人添夜夜欢视频| 国产精品二区激情视频| 天堂中文最新版在线下载| 国产极品粉嫩免费观看在线| √禁漫天堂资源中文www| 国产成人免费无遮挡视频| 精品国产超薄肉色丝袜足j| 熟妇人妻不卡中文字幕| 国产精品久久久av美女十八| 久久狼人影院| 国产精品不卡视频一区二区| 亚洲精品久久成人aⅴ小说| 久久精品国产鲁丝片午夜精品| 日韩制服丝袜自拍偷拍| 男人舔女人的私密视频| av电影中文网址| 亚洲欧美清纯卡通| 搡老乐熟女国产| 18禁裸乳无遮挡动漫免费视频| 99热网站在线观看| 最近最新中文字幕免费大全7| 少妇人妻 视频| 国产成人精品婷婷| 国产男女内射视频| 欧美日韩视频高清一区二区三区二| 国产精品久久久久久av不卡| 精品少妇一区二区三区视频日本电影 | 最近2019中文字幕mv第一页| 精品少妇久久久久久888优播| 久久久精品94久久精品| 日本av手机在线免费观看| 免费日韩欧美在线观看| 国产精品久久久久久精品古装| 亚洲成人一二三区av| av视频免费观看在线观看| 永久免费av网站大全| 亚洲天堂av无毛| 日韩不卡一区二区三区视频在线| 自拍欧美九色日韩亚洲蝌蚪91| 青青草视频在线视频观看| 久久精品国产综合久久久| 黄色毛片三级朝国网站| 日日摸夜夜添夜夜爱| 王馨瑶露胸无遮挡在线观看| 中文字幕精品免费在线观看视频| 国产片特级美女逼逼视频| 狂野欧美激情性bbbbbb| 精品99又大又爽又粗少妇毛片| 国产乱人偷精品视频| 男男h啪啪无遮挡| av线在线观看网站| 久久精品国产亚洲av涩爱| 国产免费现黄频在线看| 亚洲成av片中文字幕在线观看 | 免费少妇av软件| 99re6热这里在线精品视频| 国产免费福利视频在线观看| 国产一区二区在线观看av| 1024视频免费在线观看| 一级,二级,三级黄色视频| 成人黄色视频免费在线看| 精品国产一区二区久久| 亚洲熟女精品中文字幕| 波多野结衣一区麻豆| 最新中文字幕久久久久| 国产男人的电影天堂91| 最近最新中文字幕免费大全7| 久久久久久久久久久久大奶| 久久久亚洲精品成人影院| 男女啪啪激烈高潮av片| 欧美激情高清一区二区三区 | 精品一区二区三卡| 美女中出高潮动态图| 黄色配什么色好看| 香蕉丝袜av| 日本av免费视频播放| 久久久国产一区二区| av卡一久久| 下体分泌物呈黄色| 男人舔女人的私密视频| 国产成人一区二区在线| 99国产综合亚洲精品| 亚洲精品自拍成人| 久久久精品国产亚洲av高清涩受| 啦啦啦中文免费视频观看日本| 久久精品国产综合久久久| 伊人久久国产一区二区| 久久久久久久亚洲中文字幕| 亚洲国产精品国产精品| 久久毛片免费看一区二区三区| 欧美xxⅹ黑人| 久久精品人人爽人人爽视色| 午夜福利网站1000一区二区三区| 熟女电影av网| 国产精品国产三级专区第一集| 又粗又硬又长又爽又黄的视频| 欧美日韩视频高清一区二区三区二| 少妇人妻精品综合一区二区| 新久久久久国产一级毛片| 女性生殖器流出的白浆| 久久免费观看电影| 波多野结衣一区麻豆| 亚洲av.av天堂| 90打野战视频偷拍视频| 成年美女黄网站色视频大全免费| 亚洲精品日韩在线中文字幕| 日韩三级伦理在线观看| 啦啦啦中文免费视频观看日本| 青春草国产在线视频| 久久久久久久大尺度免费视频| 精品视频人人做人人爽| 狠狠婷婷综合久久久久久88av| 欧美xxⅹ黑人| 婷婷色麻豆天堂久久| 精品久久久久久电影网| 久久青草综合色| 亚洲五月色婷婷综合| 欧美精品高潮呻吟av久久| 国产高清不卡午夜福利| 国产极品天堂在线| 日本猛色少妇xxxxx猛交久久| 少妇猛男粗大的猛烈进出视频| 青春草国产在线视频| 亚洲第一av免费看| 欧美日韩综合久久久久久| 日本wwww免费看| 成人18禁高潮啪啪吃奶动态图| 亚洲 欧美一区二区三区| 欧美中文综合在线视频| 男女高潮啪啪啪动态图| 丰满迷人的少妇在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 一本色道久久久久久精品综合| 搡女人真爽免费视频火全软件| 亚洲熟女精品中文字幕| 久久99一区二区三区| 国产精品一国产av| 波多野结衣一区麻豆| 国产精品无大码| 日本免费在线观看一区| 成年美女黄网站色视频大全免费| 久久精品国产亚洲av高清一级| 这个男人来自地球电影免费观看 | 亚洲,欧美,日韩| 国产精品国产三级专区第一集| 久久久精品94久久精品| 九色亚洲精品在线播放| 精品视频人人做人人爽| 美女大奶头黄色视频| 中文字幕色久视频| 国产老妇伦熟女老妇高清| 精品亚洲乱码少妇综合久久| 黑丝袜美女国产一区| 大片电影免费在线观看免费| 建设人人有责人人尽责人人享有的| 人妻一区二区av| 女人精品久久久久毛片| 丰满少妇做爰视频| 涩涩av久久男人的天堂| 人成视频在线观看免费观看| 日本猛色少妇xxxxx猛交久久| 国语对白做爰xxxⅹ性视频网站| 久久精品国产a三级三级三级| 老司机影院毛片| 美女国产视频在线观看| 精品少妇内射三级| 丁香六月天网| 中文字幕人妻丝袜制服| √禁漫天堂资源中文www| 热re99久久精品国产66热6| 成人亚洲欧美一区二区av| 亚洲美女视频黄频| 我要看黄色一级片免费的| 亚洲精品一区蜜桃| 国产精品一区二区在线观看99| 超色免费av| 男女国产视频网站| 午夜福利影视在线免费观看| 亚洲欧美色中文字幕在线| 精品国产一区二区三区久久久樱花| 欧美中文综合在线视频| 国产成人aa在线观看| 国产成人一区二区在线| 免费观看a级毛片全部| 国产1区2区3区精品| 新久久久久国产一级毛片| 女人久久www免费人成看片| 免费播放大片免费观看视频在线观看| 日本av手机在线免费观看| 老熟女久久久| 午夜福利在线免费观看网站| 免费播放大片免费观看视频在线观看| 亚洲av福利一区| 国产片特级美女逼逼视频| 国产精品不卡视频一区二区| av片东京热男人的天堂| 一二三四在线观看免费中文在| 老汉色av国产亚洲站长工具| 又粗又硬又长又爽又黄的视频| 日韩免费高清中文字幕av| 丝瓜视频免费看黄片| 制服丝袜香蕉在线| 色婷婷av一区二区三区视频| 啦啦啦视频在线资源免费观看| 韩国高清视频一区二区三区| 人妻 亚洲 视频| 高清黄色对白视频在线免费看| 日韩中文字幕视频在线看片| 2021少妇久久久久久久久久久| 天天躁夜夜躁狠狠躁躁| 五月开心婷婷网| 久久久国产一区二区| www.精华液| 9热在线视频观看99| 国产又爽黄色视频| 日本免费在线观看一区| 国产成人91sexporn| 亚洲国产欧美网| 伊人久久国产一区二区| 国产一区二区激情短视频 | 免费观看在线日韩| 在线观看三级黄色| 国产老妇伦熟女老妇高清| av在线老鸭窝| 波野结衣二区三区在线| 亚洲av男天堂| www日本在线高清视频| 日韩电影二区| av.在线天堂| 国产精品亚洲av一区麻豆 | 亚洲精品久久午夜乱码| 久久精品久久久久久久性| 在线精品无人区一区二区三| 两性夫妻黄色片| 成人漫画全彩无遮挡| a 毛片基地| 成年动漫av网址| 中文字幕人妻丝袜制服| 亚洲一级一片aⅴ在线观看| 色播在线永久视频| 男女午夜视频在线观看| 香蕉丝袜av| 熟女少妇亚洲综合色aaa.| a级毛片黄视频| 欧美在线黄色| 人成视频在线观看免费观看| 激情五月婷婷亚洲| 最近2019中文字幕mv第一页| 亚洲精品国产av蜜桃| 99re6热这里在线精品视频| 黄频高清免费视频| 美女主播在线视频| 亚洲精品国产色婷婷电影| 国产亚洲一区二区精品| 日本欧美视频一区| 肉色欧美久久久久久久蜜桃| 可以免费在线观看a视频的电影网站 | 久久99一区二区三区| 一本色道久久久久久精品综合| 下体分泌物呈黄色| 亚洲视频免费观看视频| 亚洲熟女精品中文字幕| 国产免费一区二区三区四区乱码| 午夜福利视频在线观看免费| 国产女主播在线喷水免费视频网站| 亚洲精品国产色婷婷电影| 婷婷成人精品国产| 黑丝袜美女国产一区| 日本猛色少妇xxxxx猛交久久| 一级a爱视频在线免费观看| 亚洲精华国产精华液的使用体验| 国产精品一国产av| 亚洲欧美一区二区三区久久| 国产又爽黄色视频| 亚洲人成电影观看| 国产1区2区3区精品| 老女人水多毛片| 中文天堂在线官网| 天美传媒精品一区二区| 精品亚洲成a人片在线观看| 美女大奶头黄色视频| 啦啦啦中文免费视频观看日本| av在线老鸭窝| 午夜日本视频在线| videossex国产| 少妇的逼水好多| 欧美日韩视频精品一区| 午夜福利视频精品| 美女中出高潮动态图| 2022亚洲国产成人精品| 中文字幕av电影在线播放| 999久久久国产精品视频| 色网站视频免费| 一边亲一边摸免费视频| 国产精品一二三区在线看| 国产精品久久久久久精品古装| 80岁老熟妇乱子伦牲交| 青草久久国产| 午夜老司机福利剧场| 少妇被粗大的猛进出69影院| 免费在线观看黄色视频的| 色婷婷久久久亚洲欧美| 亚洲精品美女久久久久99蜜臀 | 亚洲图色成人| 最近最新中文字幕大全免费视频 | 久久亚洲国产成人精品v| 日韩制服骚丝袜av| 国产精品免费视频内射| 女性生殖器流出的白浆| 国产男女内射视频| 久久精品久久久久久久性| 你懂的网址亚洲精品在线观看| 久久久久视频综合| 热re99久久精品国产66热6| 久久久国产精品麻豆| 亚洲av福利一区| 人妻系列 视频| 黄色配什么色好看| 各种免费的搞黄视频| 一二三四在线观看免费中文在| 亚洲久久久国产精品| 亚洲av.av天堂| 水蜜桃什么品种好| 欧美人与善性xxx| 国产欧美日韩综合在线一区二区| 国产免费一区二区三区四区乱码| 国产成人午夜福利电影在线观看| 日本午夜av视频| 又黄又粗又硬又大视频| 18+在线观看网站| 国产极品粉嫩免费观看在线| 国产在视频线精品| 国产精品香港三级国产av潘金莲 | 青青草视频在线视频观看| 在线观看人妻少妇| 免费人妻精品一区二区三区视频| 亚洲欧美一区二区三区久久| 国产成人午夜福利电影在线观看| 亚洲国产av新网站| 国产 精品1| 国产白丝娇喘喷水9色精品| 在线观看三级黄色| 啦啦啦啦在线视频资源| 国产熟女欧美一区二区| 成人18禁高潮啪啪吃奶动态图| 丁香六月天网| 只有这里有精品99| 美国免费a级毛片| 18禁国产床啪视频网站| 99热网站在线观看| 亚洲欧美日韩另类电影网站| 国产免费现黄频在线看| 大码成人一级视频| 丝袜在线中文字幕| 亚洲国产精品一区二区三区在线| 国产成人av激情在线播放| 久久精品国产鲁丝片午夜精品| 两性夫妻黄色片| 亚洲欧美清纯卡通| 亚洲国产精品999| 日韩三级伦理在线观看| 久久精品久久久久久久性| 亚洲欧美一区二区三区黑人 | 涩涩av久久男人的天堂| 成人手机av| 五月天丁香电影| 女性生殖器流出的白浆| 伦理电影免费视频| 日韩视频在线欧美| 夫妻性生交免费视频一级片| 国产片内射在线| 麻豆乱淫一区二区| 性高湖久久久久久久久免费观看| 2018国产大陆天天弄谢| 国产亚洲av片在线观看秒播厂| 日本wwww免费看| 亚洲国产色片| 亚洲第一青青草原| 中文字幕色久视频| 97精品久久久久久久久久精品| 精品少妇黑人巨大在线播放| www.熟女人妻精品国产| 91成人精品电影| 美女主播在线视频| 侵犯人妻中文字幕一二三四区| 你懂的网址亚洲精品在线观看| 日韩成人av中文字幕在线观看| 国产又色又爽无遮挡免| 自拍欧美九色日韩亚洲蝌蚪91| 日韩制服丝袜自拍偷拍| 久久99蜜桃精品久久| 国产老妇伦熟女老妇高清| 波野结衣二区三区在线| 亚洲,一卡二卡三卡| 高清视频免费观看一区二区| 免费久久久久久久精品成人欧美视频| 在线观看一区二区三区激情| 99久久中文字幕三级久久日本| 黑人巨大精品欧美一区二区蜜桃| 亚洲熟女精品中文字幕| 在线观看www视频免费| 国产黄色免费在线视频| 免费黄色在线免费观看| 欧美精品一区二区大全| 人妻人人澡人人爽人人| 国产精品一区二区在线观看99| 男男h啪啪无遮挡| 在线天堂中文资源库| 天美传媒精品一区二区| 久久亚洲国产成人精品v| 久久影院123| 亚洲欧美成人精品一区二区| av天堂久久9| 黄色一级大片看看| 黄色毛片三级朝国网站| 考比视频在线观看| 免费av中文字幕在线| 精品人妻在线不人妻| 欧美国产精品一级二级三级| 日韩电影二区| 日韩av免费高清视频| 天天影视国产精品| 亚洲av福利一区| 国产成人精品一,二区| 18禁裸乳无遮挡动漫免费视频| 日本91视频免费播放| 99久久中文字幕三级久久日本| 国产日韩欧美亚洲二区| 性少妇av在线| 久久久国产欧美日韩av| 免费不卡的大黄色大毛片视频在线观看| 丝袜喷水一区| 亚洲成国产人片在线观看| 日本91视频免费播放| 日韩中文字幕视频在线看片| 亚洲国产看品久久| 国产一区亚洲一区在线观看| 国产精品麻豆人妻色哟哟久久| 中文字幕色久视频| 亚洲国产毛片av蜜桃av| 亚洲av福利一区| 一区二区日韩欧美中文字幕| 欧美国产精品一级二级三级| 亚洲欧美成人精品一区二区| 亚洲情色 制服丝袜| 伦精品一区二区三区| 天堂8中文在线网| 亚洲精品美女久久av网站| 国产综合精华液| 岛国毛片在线播放| 久久国产亚洲av麻豆专区| 色94色欧美一区二区| 亚洲国产欧美网| 欧美激情高清一区二区三区 | 91久久精品国产一区二区三区| 亚洲人成网站在线观看播放| 男女高潮啪啪啪动态图| 国产伦理片在线播放av一区| 中文字幕最新亚洲高清| 熟女av电影| 日本爱情动作片www.在线观看| 国产在线视频一区二区| 黄色毛片三级朝国网站| 国产免费现黄频在线看| 王馨瑶露胸无遮挡在线观看| 国产有黄有色有爽视频|