李娟娟 李燕 湯志偉
光學(xué)相干斷層掃描在視網(wǎng)膜缺血再灌注動(dòng)物模型中的應(yīng)用及評(píng)價(jià)△
李娟娟 李燕 湯志偉
光學(xué)相干斷層掃描;缺血再灌注損傷;HE染色;視網(wǎng)膜厚度
目的觀察視網(wǎng)膜缺血再灌注損傷動(dòng)物模型構(gòu)建后不同時(shí)間視網(wǎng)膜組織光學(xué)相干斷層掃描(optical coherence tomography,OCT)影像學(xué)的變化及相應(yīng)組織病理學(xué)改變的特點(diǎn)。方法采用成年SD大鼠,通過(guò)前房灌注法建立視網(wǎng)膜缺血再灌注損傷的動(dòng)物模型,模型建立后0 h(正常對(duì)照組)、2 h、12 h、24 h、48 h、168 h分別行視網(wǎng)膜OCT檢查及HE染色檢查,并使用OCT測(cè)量大鼠視網(wǎng)膜厚度,進(jìn)行統(tǒng)計(jì)學(xué)分析。結(jié)果與正常對(duì)照組相比,缺血再灌注2 h組OCT顯示各層次結(jié)構(gòu)相對(duì)正常;缺血再灌注12 h、 24 h組視網(wǎng)膜神經(jīng)上皮層水腫、厚度增加,各層結(jié)構(gòu)的分界已不能清晰顯示,呈逐漸加重趨勢(shì);48 h組水腫達(dá)高峰,至168 h組,各層結(jié)構(gòu)顯示不清。缺血再灌注12 h、 24 h、48 h、168 h組視網(wǎng)膜厚度與正常對(duì)照組差異均有統(tǒng)計(jì)學(xué)意義(均為P<0.05),168 h組視網(wǎng)膜厚度明顯減少,萎縮明顯。HE染色檢查提示正常對(duì)照組各層視網(wǎng)膜組織排列整齊;缺血再灌注2 h組,視網(wǎng)膜輕度水腫,偶見(jiàn)視網(wǎng)膜神經(jīng)節(jié)細(xì)胞層和內(nèi)核層空泡變性;缺血再灌注12 h及24 h組視網(wǎng)膜神經(jīng)纖維層、神經(jīng)節(jié)細(xì)胞層均出現(xiàn)大量空泡,厚度增加;缺血再灌注48 h組水腫到達(dá)高峰;168 h組神經(jīng)節(jié)細(xì)胞層核濃縮,缺血再灌注明顯增加,細(xì)胞數(shù)量減少、視網(wǎng)膜變薄。結(jié)論OCT與傳統(tǒng)的組織病理學(xué)檢查相比較,雖然不能夠提供更為詳盡的組織學(xué)資料,但在活體組織中OCT可顯示缺血再灌注損傷發(fā)生后視網(wǎng)膜組織結(jié)構(gòu)整體的變化,無(wú)創(chuàng)簡(jiǎn)便,在動(dòng)物實(shí)驗(yàn)及臨床運(yùn)用上均有一定的價(jià)值。
[眼科新進(jìn)展,2014,34(7):616-619,623]
視網(wǎng)膜缺血病變包括視網(wǎng)膜血管阻塞、糖尿病視網(wǎng)膜病變、青光眼、眼外傷等,這類疾病導(dǎo)致視網(wǎng)膜血供中斷、視網(wǎng)膜各層組織缺氧,當(dāng)缺血因素解除、血流再灌注發(fā)生時(shí),帶來(lái)過(guò)量的氧自由基、并造成過(guò)度的炎癥反應(yīng),啟動(dòng)壞死、凋亡、自噬等多種途徑,造成視網(wǎng)膜神經(jīng)節(jié)細(xì)胞的損傷[1]。為了更好地研究視網(wǎng)膜缺血再灌注后的病理?yè)p傷機(jī)制,我們通過(guò)前房灌注法建立視網(wǎng)膜缺血再灌注損傷的動(dòng)物模型[2],并采用頻域光學(xué)相干斷層掃描技術(shù)(special domain optical coherence tomography,SD-OCT)結(jié)合視網(wǎng)膜病理組織技術(shù)對(duì)缺血再灌注損傷后不同時(shí)間段的視網(wǎng)膜形態(tài)學(xué)變化進(jìn)行動(dòng)態(tài)觀察,探討光學(xué)相干斷層掃描(optical coherence tomography,OCT)在視網(wǎng)膜缺血再灌注損傷疾病中的應(yīng)用價(jià)值。
1.1實(shí)驗(yàn)動(dòng)物選擇4~6周齡的SD雄性大鼠30只60眼(其中實(shí)驗(yàn)組25只,正常對(duì)照組5只),體質(zhì)量200~250 g,實(shí)驗(yàn)前檢查雙眼前節(jié)和眼底均正常。實(shí)驗(yàn)動(dòng)物及實(shí)驗(yàn)使用條件均符合《實(shí)驗(yàn)動(dòng)物管理?xiàng)l例》。實(shí)驗(yàn)組25只大鼠再隨機(jī)分為缺血再灌注2 h組、12 h組、24 h組、48 h組、168 h組,每組5只,分籠喂養(yǎng)。
1.2動(dòng)物模型建立腹腔內(nèi)注射15 g·L-1戊巴比妥鈉(15~20 mg·kg-1,昆明南天化工藥業(yè))行全身麻醉;眼部滴布比卡因行局部麻醉。將麻醉成功的大鼠采取俯臥位固定于自制的大鼠固定器上,使用復(fù)方托吡卡胺散大瞳孔,5號(hào)頭皮針與生理鹽水瓶連接,將頭皮針刺入前房固定針頭,緩慢升高生理鹽水瓶使液面高至150 cm,眼壓升高至110 mmHg(1 kPa=7.5 mmHg),持續(xù)60 min后逐漸降低輸液瓶高度至動(dòng)物眼球水平,拔出前房灌注針頭,恢復(fù)視網(wǎng)膜血供。眼壓升高后可見(jiàn)大鼠角膜逐漸水腫,虹膜顏色變淺,間接檢眼鏡眼底觀察可見(jiàn)視網(wǎng)膜血供減少,視網(wǎng)膜血管阻斷。拔出針頭后可見(jiàn)大鼠角膜逐漸恢復(fù)透明,虹膜顏色逐漸恢復(fù),視網(wǎng)膜逐漸恢復(fù)紅潤(rùn),實(shí)現(xiàn)再灌注。視網(wǎng)膜出現(xiàn)上述表現(xiàn)證明造模成功。
1.3大鼠視網(wǎng)膜OCT檢查分別于視網(wǎng)膜缺血再灌注動(dòng)物模型建立后0 h(即正常對(duì)照組)、2 h、12 h、24 h、48 h、168 h(每個(gè)時(shí)間段5只大鼠)對(duì)大鼠進(jìn)行腹腔麻醉,之后用復(fù)方托吡卡胺散瞳,將大鼠眼部固定于OCT掃描儀(Heidelberg HRA2,德國(guó))下頜架前合適位置,并使用顯微有齒鑷夾住結(jié)膜,調(diào)整瞳孔至合適位置,行視網(wǎng)膜SD-OCT掃描。掃描參數(shù)為:掃描長(zhǎng)度2~8 mm,掃描深度2~4 mm,掃描部位為視盤顳側(cè)、鼻側(cè)、上方、下方1個(gè)視盤直徑處視網(wǎng)膜。每只動(dòng)物重復(fù)掃描5次,選擇圖像質(zhì)量與位置較佳者進(jìn)行標(biāo)記保存,分析不同時(shí)間段缺血再灌注大鼠動(dòng)物模型中視網(wǎng)膜OCT影像學(xué)圖像變化特征。運(yùn)用OCT掃描儀測(cè)量上述四個(gè)部位視網(wǎng)膜厚度,每個(gè)點(diǎn)測(cè)量3次后取平均值,與正常大鼠視網(wǎng)膜進(jìn)行對(duì)照。
1.4大鼠視網(wǎng)膜病理切片檢查視網(wǎng)膜缺血再灌注2 h、12 h、24 h、48 h、168 h組于OCT檢查之后行腹腔注射過(guò)量麻醉藥物處死大鼠,摘除眼球、標(biāo)記方向。將眼球置于福爾馬林溶液內(nèi)固定48 h,去除角膜和晶狀體;依次梯度酒精脫水、二甲苯透明、浸蠟包埋。修整蠟塊,作平行于晶狀體前后表面經(jīng)線方向的切片,切片厚4~5 μm。去除含有視神經(jīng)的切片,每個(gè)標(biāo)本選擇兩個(gè)切片行常規(guī)HE染色。脫蠟、蘇木素染色、伊紅染色、梯度酒精脫水,二甲苯透明,中性樹(shù)膠封片。光學(xué)顯微鏡下觀察視網(wǎng)膜組織病理變化,重點(diǎn)觀察神經(jīng)節(jié)細(xì)胞的損傷情況。與正常對(duì)照組大鼠及上述OCT檢查結(jié)果進(jìn)行對(duì)比分析。
2.1大鼠視網(wǎng)膜缺血再灌注損傷模型建立情況實(shí)驗(yàn)組大鼠經(jīng)眼底間接檢眼鏡對(duì)虹膜和視網(wǎng)膜的觀察證實(shí)所有大鼠均實(shí)現(xiàn)了視網(wǎng)膜缺血再灌注(圖1-圖3),成功率達(dá)100%,無(wú)屈光介質(zhì)受損、感染、實(shí)驗(yàn)動(dòng)物死亡等并發(fā)癥的發(fā)生。
2.2各組大鼠視網(wǎng)膜OCT檢查結(jié)果分析正常對(duì)照組大鼠視網(wǎng)膜OCT圖像:可以較為清晰地顯示視網(wǎng)膜神經(jīng)上皮層及RPE細(xì)胞層,其中神經(jīng)上皮層中各層結(jié)構(gòu)清晰、形態(tài)正常(圖4A)。實(shí)驗(yàn)組大鼠視網(wǎng)膜OCT圖像:缺血再灌注2 h組OCT顯示各層次結(jié)構(gòu)較正常對(duì)照組清晰,但整個(gè)神經(jīng)上皮層的厚度增厚,以內(nèi)叢狀層及內(nèi)核層的增厚最為明顯,兩層之間的分界仍然清晰可見(jiàn)(圖4B)。缺血再灌注12 h組及24 h組,OCT顯示視網(wǎng)膜神經(jīng)上皮層繼續(xù)變得水腫、厚度增加,這兩組神經(jīng)上皮層間各層結(jié)構(gòu)的分界已不能清晰顯示(圖4C-圖4D)。缺血再灌注48 h組水腫達(dá)到高峰,至168 h時(shí),視網(wǎng)膜神經(jīng)上皮層的厚度明顯變薄,其間各層結(jié)構(gòu)仍然顯示不清(圖4E-圖4F)。
2.3視網(wǎng)膜厚度的統(tǒng)計(jì)學(xué)分析OCT所測(cè)各組大鼠視網(wǎng)膜厚度見(jiàn)表1??傮w變化規(guī)律為缺血再灌注2 h至24 h組視網(wǎng)膜厚度和正常對(duì)照組相比均增加,48 h組到達(dá)高峰,168 h組低于正常對(duì)照組。缺血再灌注2 h組與正常對(duì)照組視網(wǎng)膜厚度差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05);缺血再灌注12 h、24 h、48 h、168 h組與正常對(duì)照組視網(wǎng)膜厚度差異均有統(tǒng)計(jì)學(xué)意義(均為P<0.05)。
2.4各組大鼠視網(wǎng)膜組織病理檢查結(jié)果分析正常對(duì)照組大鼠視網(wǎng)膜HE染色結(jié)果顯示,大鼠視網(wǎng)膜結(jié)構(gòu)分為十層,各層視網(wǎng)膜組織排列整齊,主要分界清楚的三層細(xì)胞為:視網(wǎng)膜神經(jīng)節(jié)細(xì)胞、內(nèi)核層細(xì)胞、外核層細(xì)胞,其中視網(wǎng)膜神經(jīng)節(jié)細(xì)胞為最內(nèi)層的單層細(xì)胞,細(xì)胞核較大,染色較淡;內(nèi)核層和外核層形態(tài)較為相似,均為多層細(xì)胞構(gòu)成,細(xì)胞核小且圓、核染色較深(圖5A)。實(shí)驗(yàn)組大鼠視網(wǎng)膜HE染色結(jié)果顯示:與正常對(duì)照組相比,缺血再灌注2 h組大鼠視網(wǎng)膜輕度水腫,偶見(jiàn)視網(wǎng)膜神經(jīng)節(jié)細(xì)胞層和內(nèi)核層空泡變性、間質(zhì)疏松;總體而言結(jié)構(gòu)完整,未見(jiàn)顯著差異(圖5B)。缺血再灌注12 h及24 h組:視網(wǎng)膜神經(jīng)纖維層、神經(jīng)節(jié)細(xì)胞層出現(xiàn)大量空泡;內(nèi)外叢狀層明顯疏松、厚度增加,神經(jīng)節(jié)細(xì)胞數(shù)量減少;內(nèi)核層排列不規(guī)整,細(xì)胞間疏松排列(圖5C-圖5D)。缺血再灌注48 h組:視網(wǎng)膜神經(jīng)纖維層、內(nèi)叢狀層空泡明顯,水腫到達(dá)高峰;視網(wǎng)膜神經(jīng)節(jié)細(xì)胞層開(kāi)始出現(xiàn)核濃縮,數(shù)量明顯減少;內(nèi)核層排列紊亂,細(xì)胞數(shù)量減少;外核層也開(kāi)始出現(xiàn)排列不規(guī)則、數(shù)量減少;視網(wǎng)膜可觀察到炎性細(xì)胞浸潤(rùn)(圖5E)。缺血再灌注168 h組:神經(jīng)纖維層水腫減輕、厚度變薄,神經(jīng)節(jié)細(xì)胞數(shù)十分稀少、散在分布,各層細(xì)胞核濃縮明顯增加,細(xì)胞排列紊亂,視網(wǎng)膜正常結(jié)構(gòu)層次基本消失(圖5F)。
Figure 1 Iris blood vessels in normal rats was reticular distributed,the vascular morphology was normal and distributed to the pupil.Figure 2 Most of the iris vessels following anterior chamber perfusion became occlusion,only a few larger vessels was seen and conjunctival tissue was pale.Figure 3 Iris vessels after reperfusion was reperfused,vascular was significant engorgement with hyperemia 圖1 正常實(shí)驗(yàn)組大鼠虹膜血管分布:可見(jiàn)虹膜血管呈網(wǎng)狀均勻分布,血管形態(tài)正常,向瞳孔區(qū)走形。圖2 前房灌注下虹膜血管:大部分虹膜血管閉塞,僅隱見(jiàn)數(shù)支較大血管,整個(gè)虹膜組織及球結(jié)膜組織蒼白。圖3 再灌注后虹膜血管:可見(jiàn)虹膜血管重新充盈,血管怒張,充血狀態(tài)明顯
Figure 4 OCT images of rat retinal in each group.A:Normal rat;B:2 hours after ischemia-reperfusion group;C:12 hours after ischemia-reperfusion group;D:24 hours after ischemia-reperfusion group;E:48 hours after ischemia-reperfusion group;F:168 hours after ischemia-reperfusion group 各組大鼠視網(wǎng)膜OCT圖像。A:正常對(duì)照組;B:缺血再灌注2 h組;C:缺血再灌注12 h組;D:缺血再灌注24 h組;E:缺血再灌注損傷48 h組;F:缺血再灌注損傷168 h組
表1 各組視網(wǎng)膜厚度Table 1 Retinal thickness in each group(±s,l/μm)
OCT是上世紀(jì)90年代發(fā)展起來(lái)的一種光學(xué)儀器,可提供分辨活體組織的斷層圖像,并可以依靠所知或推斷的組織反射來(lái)測(cè)量組織的厚度或距離[3]。OCT作為一種非侵入、非接觸、高分辨率的定性定量檢測(cè)方法,在視網(wǎng)膜疾病的評(píng)估方面有著特別的應(yīng)用價(jià)值[4],而目前文獻(xiàn)尚無(wú)運(yùn)用OCT技術(shù)檢測(cè)缺血再灌注損傷性視網(wǎng)膜疾病的報(bào)道。本研究通過(guò)前房灌注法建立視網(wǎng)膜缺血再灌注動(dòng)物損傷模型[5],在損傷后不同時(shí)間使用OCT測(cè)量視網(wǎng)膜厚度,同時(shí)使用傳統(tǒng)病理檢查技術(shù)對(duì)比分析視網(wǎng)膜組織病理變化。初步探討OCT技術(shù)在缺血再灌注損傷疾病中的應(yīng)用價(jià)值。
Figure 5 Optical microscopy images of rat retina(HE,×200).A:Normal rat;B:2 hours after ischemia-reperfusion group;C:12 hours after ischemia-reperfusion group;D:24 hours after ischemia-reperfusion group;E:48 hours after ischemia-reperfusion group;F:168 hours after ischemia-reperfusion group 各組大鼠視網(wǎng)膜光學(xué)顯微鏡圖像(HE,×200)。A:正常對(duì)照組;B:缺血再灌注 2 h組;C:缺血再灌注 12 h組;D:缺血再灌注 24 h組;E:缺血再灌注 48 h組;F:缺血再灌注 168 h組
視網(wǎng)膜缺血再灌注損傷不同時(shí)間OCT掃描結(jié)果顯示:正常對(duì)照組大鼠視網(wǎng)膜OCT圖像可以較為清晰地顯示視網(wǎng)膜的神經(jīng)上皮層、RPE細(xì)胞層,神經(jīng)上皮層結(jié)構(gòu)清晰、形態(tài)正常[6]。缺血再灌注2 h組OCT顯示各層次結(jié)構(gòu)相對(duì)正常對(duì)照組而言基本可以分辨清楚,但整個(gè)神經(jīng)上皮層的厚度輕微增厚,以內(nèi)叢狀層及內(nèi)核層的增厚較為明顯,兩層之間的分界仍然清晰可見(jiàn);結(jié)合該時(shí)間組大鼠視網(wǎng)膜病理切片觀察到的結(jié)果,缺血再灌注損傷發(fā)生后2 h,內(nèi)叢狀層及內(nèi)核層開(kāi)始出現(xiàn)空泡樣變,間質(zhì)疏松。以上研究證實(shí)在缺血再灌注損傷早期,即開(kāi)始出現(xiàn)視網(wǎng)膜組織的病理?yè)p害,組織結(jié)構(gòu)以水腫為主要表現(xiàn),損傷部位主要發(fā)生在視網(wǎng)膜內(nèi)層[7]。
隨著病變的進(jìn)展,缺血再灌注損傷發(fā)生后12 h及24 h,OCT顯示視網(wǎng)膜神經(jīng)上皮層繼續(xù)變得水腫、厚度增加,神經(jīng)上皮層間各層結(jié)構(gòu)的分界已不能清晰顯示;結(jié)合這兩個(gè)時(shí)間點(diǎn)的組織病理切片結(jié)果發(fā)現(xiàn),視網(wǎng)膜神經(jīng)纖維層、神經(jīng)節(jié)細(xì)胞層均出現(xiàn)大量空泡,內(nèi)外叢狀層明顯疏松、厚度增加,48 h時(shí)視網(wǎng)膜厚度繼續(xù)增加,而結(jié)構(gòu)也不能清晰顯示的原因可能是由于此時(shí)多種途徑產(chǎn)生的大量氧自由基誘導(dǎo)出一系列鏈?zhǔn)椒磻?yīng),通過(guò)破壞細(xì)胞膜屏障、改變細(xì)胞膜滲透性、降低酶活性等多種途徑對(duì)視網(wǎng)膜組織和細(xì)胞造成結(jié)構(gòu)和功能的顯著改變,氧自由基的積蓄、炎癥反應(yīng)的程度都達(dá)到缺血再灌注損傷過(guò)程的最高點(diǎn)[8-9]。因此我們認(rèn)為,缺血再灌注發(fā)生24 h是損害作用產(chǎn)生的高峰期,這一研究結(jié)果將用于下部分干預(yù)實(shí)驗(yàn)中。
當(dāng)病變進(jìn)入48 h后,OCT掃描結(jié)果顯示在缺血再灌注損傷48 h、168 h時(shí),視網(wǎng)膜神經(jīng)上皮層的厚度開(kāi)始變薄,其間各層結(jié)構(gòu)仍然顯示不清。病理檢查結(jié)果顯示,視網(wǎng)膜神經(jīng)節(jié)細(xì)胞層開(kāi)始出現(xiàn)核濃縮。在此階段中氧自由基、炎癥反應(yīng)、興奮性氨基酸的毒性作用、鈣超載等啟動(dòng)了多途徑的細(xì)胞壞死、凋亡,導(dǎo)致了最終的形態(tài)破壞及功能損傷[10]。
在缺血再灌注損傷各個(gè)時(shí)間點(diǎn)對(duì)視網(wǎng)膜色素上皮層厚度及形態(tài)的觀察結(jié)果顯示色素上皮層的變化并不明顯,厚度測(cè)量無(wú)統(tǒng)計(jì)學(xué)差異、形態(tài)觀察與正常對(duì)照組相比并未出現(xiàn)異常。視網(wǎng)膜色素上皮層病變不明顯的原因考慮為:本模型通過(guò)前房灌注制造高眼壓,高眼壓主要影響視網(wǎng)膜中央動(dòng)脈系統(tǒng)的血液供應(yīng),而視網(wǎng)膜中央動(dòng)脈系統(tǒng)供應(yīng)視網(wǎng)膜內(nèi)層結(jié)構(gòu),視網(wǎng)膜色素上皮層屬于視網(wǎng)膜外層,其供血主要來(lái)自脈絡(luò)膜組織,故在此模型中,它的病變并不明顯[11]。病理學(xué)檢查結(jié)果也證實(shí)了這一結(jié)論。
我們對(duì)比觀察了OCT與視網(wǎng)膜病理切片的檢查結(jié)果,從病理形態(tài)的準(zhǔn)確性及精確性而言,OCT所提供的影像學(xué)信息遠(yuǎn)遠(yuǎn)不能同病理切片相提并論,但我們認(rèn)為作為一種無(wú)創(chuàng)性檢查,OCT在臨床上對(duì)于缺血再灌注損傷性疾病仍然有著其特有的使用價(jià)值:(1)OCT能精確測(cè)量視網(wǎng)膜厚度變化,從而提示病變進(jìn)展的程度,是處于氧自由基和炎癥反應(yīng)的高峰期,還是已經(jīng)進(jìn)入病變的萎縮期,從而指導(dǎo)不同階段的治療策略,并對(duì)治療效果進(jìn)行監(jiān)測(cè);對(duì)于組織厚度的測(cè)量,OCT測(cè)量對(duì)象為活體,而病理方法測(cè)量標(biāo)本經(jīng)過(guò)脫水等處理環(huán)節(jié),測(cè)量值相對(duì)變小,因此OCT更接近真實(shí)厚度[12];(2)OCT能在視網(wǎng)膜結(jié)構(gòu)層次的改變方面提供影像學(xué)信息,幫助我們認(rèn)識(shí)病變不同階段造成視網(wǎng)膜損傷的部位、程度;(3)OCT無(wú)創(chuàng)傷、可重復(fù)性好,加上目前已經(jīng)十分成熟的追蹤系統(tǒng),OCT可提供患者疾病的動(dòng)態(tài)觀察;(4)對(duì)于活體組織,進(jìn)行精細(xì)的病理學(xué)檢查并不可行,OCT雖不能提供精細(xì)的病變特征,僅能從整體上反映病變程度,但隨著OCT技術(shù)的進(jìn)展,它與病理學(xué)之間的差距將會(huì)越來(lái)越小,具有廣闊的應(yīng)用前景[13];(5)在實(shí)驗(yàn)動(dòng)物的研究中,OCT可對(duì)一個(gè)研究對(duì)象提供連續(xù)的觀察結(jié)果,改變了傳統(tǒng)病理檢查只能提供一個(gè)時(shí)間點(diǎn)的觀察結(jié)果,減少了動(dòng)物的使用量,避免了重復(fù)而繁瑣的實(shí)驗(yàn)步驟,節(jié)省了成本,提高了效率。
1 Nucci C,Tartaglione R,Cerulli A,Mancino R,Spanò A,Cavaliere F,etal.Retinal damage caused by high intraocular pressure-induced transient ischemia is prevented by coenzyme Q10 in rat[J].IntRevNeurobiol,2007,82(9):397-406.
2 Vidal-Sanz M,Lafuente MP,Mayor S,de Imperial JM,Villegas-Pérez MP.Retinal ganglion cell death induced by retinal ischemia.Neuroprotective effects of two alpha-2 agonists[J].SurvOphthalmol,2001,45(3):s261-277.
3 Karahan E,Zengin MO,Tuncer I.Correlation of choroidal thickness with outer and inner retinal layers[J].OphthalmicSurgLasersImagingRetina,2013,24(6):1-4.
4 Aaker GD,Gracia L,Myung JS,Borcherding V,Banfelder JR,D’Amico DJ,etal.Volumetric three-dimensional reconstruction and segmentation of spectral-domain OCT[J].OphthalmicSurgLasersImaging,2011,42(4):s116-120.
5 Ishizuka F,Shimazawa M,Inoue Y,Nakano Y,Ogishima H,Nakamuras,etal.Toll-like Receptor 4 mediates retinal ischemia/reperfusion injury through nuclear factor-κB and spleen tyrosine kinase activation[J].InvestOphthalmolVisSci,2013,54(8):5807-5816.
6 Huang P,Huo Y,Lou LX,Li H,Barnstable CJ,Zhang C,etal.CD4 positive T helper cells contribute to retinal ganglion cell death in mouse model of ischemia reperfusion injury[J].ExpEyeRes,2013,115(10):131-139.
7 Varga B,Gesztelyi R,Bombicz M,Haines D,Szabo AM,Kemeny-Beke A,etal.Protective effect of alpha-melanocyte-stimulating hormone(α-MSH)on the recovery of ischemia/reperfusion(I/R)-induced retinal damage in a rat model[J].JMolNeurosci,2013,50(3):558-570.
8 Kamioka Y,Fujikawa C,Ogai K,Sugitani K,Watanabe S,Kato S,etal.Functional characterization of fish neuroglobin:zebrafish neuroglobin is highly expressed in amacrine cells after optic nerve injury and can translocate into ZF4 cells[J].BiochimBiophysActa,2013,1834(9):1779-1788.
9 Vin AP,Hu H,Zhai Y,Von Zee CL,Logeman A,Stubbs EB Jr,etal.Neuroprotective effect of resveratrol prophylaxis on experimental retinal ischemic injury[J].ExpEyeRes,2013,108(3):72-75.
10 Dorfman D,Fernandez DC,Chianelli M,Miranda M,Aranda ML,Rosenstein RE.Post-ischemic environmental enrichment protects the retina from ischemic damage in adult rats[J].ExpNeurol,2013,240(2):146-156.
11 Tong N,Zhang Z,Gong Y,Yin L,Wu X.Diosmin protects rat retina from ischemia reperfusion injury[J].JOculPharmacolTher,2012,28(5):459-466.
12 Schallner N,Fuchs M,Schwer CI,Loop T,Buerkle H,Lagrèze WA,etal.Postconditioning with inhaled carbon monoxide counteracts apoptosis and neuroinflammation in the ischemic rat retina[J].PLoSOne,2012,7(9):e46479.
13 Klein T,Wieser W,Reznicek L,Neubauer A,Kampik A,Huber R.Multi-MHz retinal OCT[J].BiomedOptExpress,2013,4(10):1890-1908.
date:Dec 17,2013
National Natural Science Foundation of China(No:81360204)From theDepartmentofOphthalmology,theFirstAffiliatedHospitalofKunmingMedicalUniversity(LI Juan-Juan,LI Yan),Kunming650031,YunnanProvince,China;DepartmentofNeurosurgery,theFirstAffiliatedHospitalofKunmingMedicalUniversity(TANG Zhi-Wei),Kunming650021,YunnanProvince,China
Application of optical coherence tomography in rat retinal ischemia reperfusion injury models
LI Juan-Juan,LI Yan,TANG Zhi-Wei
optical coherence tomography;retinal ischemic reperfusion injury;HE staining;retinal thickness
ObjectiveTo observe the changes of retinal morphology and pathologic characteristics in retinal ischemic reperfusion injury (RIRI) animal model by optical coherence tomography (OCT).MethodsTransient ischemia was induced in SD mice by raising intraocular pressure to 110 mmHg (1 kPa=7.5 mmHg) for 60 minutes followed by retinal reperfusion by restoring normal pressure.At 0 hour (normal control group),2 hours,12 hours,24 hours,48 hours and 168 hours after RIRI,retinal changes were monitored by histological assessment with HE staining and SD-OCT scanning.The retinal thickness was measured.ResultsOCT showed the each layer of retina was relatively normal at 2 hours after RIRI,the nerve epithelial layer was became edema and thickened at 12 hours and 24 hours after RIRI,and the boundary layers of the structure could not be shown clearly.The edema reached peak at 48 hours after RIRI,and each layer could not be shown clearly until 168 hours after RIRI.Compared with normal control group,there were statistical differences in retinal thickness at 12 hours,24 hours,48 hours and 168 hours after RIRI (allP<0.05),the retinal thickness at 168 hours was decreased and thinned obviously.Pathological examination showed the retinal edema and occasionally retinal ganglion cell layer and inner nuclear layer degeneration appeared,a large vacuoles in retinal nerve fiber layer and ganglion cell layer formed with increased thickness at 12 hours and 24 hours after RIRI,and the edema peaked at 48 hours after RIRI.With the disease retinal ganglion cell layer began nuclear enrichment,the nuclear enrichment significantly increased,the retinal cells were obviously decreased,and the retina became thinner at 168 hours after RIRI.ConclusionCompared with conventional histopathology,OCT can’t provide more detailed histological data,but in the living tissues OCT can disclose the changes in the overall organizational structure of retina after injury,as a non-invasive and easy method,OCT have some values in animal experiments and clinical application.
李娟娟,女,1980年出生,在讀博士研究生。研究方向?yàn)椴Aw視網(wǎng)膜疾病。聯(lián)系電話:0871-65156650-3084(O);E-mail:ljj800-502@163.com
AboutLIJuan-Juan:Female,born in 1980.Doctor degree.Tel:+86-871-65156650-3084(O);E-mail:ljj800502@163.com
2013-12-17
國(guó)家自然科學(xué)基金資助(編號(hào):81360204)
650031 云南省昆明市,昆明醫(yī)科大學(xué)第一附屬醫(yī)院眼科(李娟娟,李燕);650021 云南省昆明市,昆明醫(yī)科大學(xué)第一附屬醫(yī)院神經(jīng)外科(湯志偉)
李燕,E-mail:liyanr@hotmail.com
李娟娟,李燕,湯志偉.光學(xué)相干斷層掃描在視網(wǎng)膜缺血再灌注動(dòng)物模型中的應(yīng)用及評(píng)價(jià)[J].眼科新進(jìn)展,2014,34(7):616?619,623.
10.13389/j.cnki.rao.2014.0169
【實(shí)驗(yàn)研究】
修回日期:2014-02-28
本文編輯:付中靜
Accepteddate:Feb 28,2014
Responsibleauthor:LI Yan,E-mail:liyanr@hotmail.com
[RecAdvOphthalmol,2014,34(7):616-619,623]