• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    二氰基亞甲基-四氫吡喃-苯并噻二唑的多功能邏輯門應用

    2014-07-19 11:54:38喻艷華付成文丹賀賢然
    江漢大學學報(自然科學版) 2014年2期
    關(guān)鍵詞:噻二唑基亞吡喃

    喻艷華,付成,文丹,賀賢然

    (江漢大學交叉學科研究院,湖北武漢430056)

    二氰基亞甲基-四氫吡喃-苯并噻二唑的多功能邏輯門應用

    喻艷華,付成,文丹,賀賢然*

    (江漢大學交叉學科研究院,湖北武漢430056)

    合成了基于二氰基亞甲基-四氫吡喃和苯并噻二唑的新型熒光化合物,并研究了該化合物通過改變二價銅離子和氟離子/溴離子滴加順序?qū)姆肿訜晒猬F(xiàn)象。研究發(fā)現(xiàn)先加入二價銅離子導致該化合物的最大發(fā)射波長“藍移”,繼續(xù)滴加氟離子導致熒光淬滅,若繼續(xù)滴加的是溴離子則熒光不變;反之先加入氟離子,該化合物熒光強度微弱降低,繼續(xù)滴加銅離子對熒光強度影響不大,若滴加溴離子,該化合物熒光不變,繼續(xù)滴加銅離子,最大發(fā)射波長強度降低,并且在485nm處出現(xiàn)新的熒光;這些熒光變化的機制也得到研究與證實。分子邏輯門是在分子水平上的邏輯操作來描述邏輯門,輸入和輸出信號。通過改變離子性質(zhì)(加入氟離子或溴離子)、滴加順序、激發(fā)波長獲得不同的熒光發(fā)射波長和熒光強度,模擬了EnYES、EnNOT、EnIMP、EnINH、EnNAND邏輯門,1∶2信號分離器和鍵盤鎖。

    分子熒光;絡合作用;離子識別;邏輯門;鍵盤鎖

    Biographies:YU Yanhua(1985—),female,assistant research fellow,majors in organic chemistry.

    0 Introduction

    The current"Information Age"requires an everincreasing amount of data storage and processing,whereas miniaturization of silicon-based electronic components is about to reach its limit[1].The con?cepts related to digital information technology have been developed on the basis of Boolean binary log?ic,meaning that information is stored and processed by a combination of two different values:0 or 1,cor?responding to the presence or absence of an electric current[2].The pioneering work of de Silva on molec?ular logic have demonstrated that information could be treated at the molecular level using chemical in?puts and fluorescence signals as outputs to mimic the function of an AND logic gate[3].Since then,sev?eral research groups have focused their efforts on the realization of molecular devices that could act as components for molecular computers;and the field of molecular logic developed from an academic curi?osity to a mature interdisciplinary research area with applications in a myriad of fields ranging from chemi?cal sensing,biological diagnosis,targeted therapy,information and security technologies[4-5].

    Unlike classical electronic components that can be easily connected together to create devices with higher complexity,the"wiring"of molecular logic gates in a serial manner is challenged by a number of bottlenecks such as homogenization of inputs and outputs,physical integration of logic gates,decrease in propagation delay and increase of the fan-out[4]. Consequently,the approach consisting in the devel?opment of molecular logic gate arrays,that is,mole?cules not only mimicking a single logic gate but an entire electronic circuit,and able to perform multi?ple logic operations through reconfiguration of the in?puts and/or outputs,which is now emerging as a way to overcome these limitations[4].

    Thanks to their excellent optical-electronic properties,dicyanomethylene-4H-pyran(DCM)devivatives have been investigated as OLED emit?ters,logic gates and optical chemosensors[4].Benzo?thiadiazole devivatives have also been used in the de?velopment of organic light-emitting materials or fluo?roionophores[6].As a continuing interest on the de?velopment of fluorescent molecules[7],we reported here in the synthesis,ion-sensing properties and functionnal integration into various arrays of logic gates of a DCM-benzothiadiazole conjugate mole?cule 7(Scheme 1).

    1 Results and Discussion

    In the context of developing new molecular de?vices for ion sensing and data processing,we were interested in the synthesis of fluorescent compound 7,designed by a combination of the azido-DCM 4 and triazolyl-BZT 6 dyes(Scheme 1).Our choice was motivated by the spectral overlap between BZT fluorescence emission(λem≈490 nm)and DCM ab?sorption(λmax≈460 nm),which should allow ob?servation of fluorescence around 605 nm upon either DCM excitation at 457 nm or BZT excitation at 370 nm.Such a cross-talk between the fluorophores wasexpectedtobeofinterestinthecontextofmolecular information handling,since various chemical stimu?li might affect either fluorophore to different extent.

    1.1 Synthesis of fluorophores 4,6 and 7

    Scheme 1 Synthesis of fluorophore 7 and model compounds 4 and 6

    The target compound 7(Scheme 1)was effi?ciently synthesized from DCM azide 4 and known BZT derivative 5[8].Mesylation of hydroxy-aldehyde 1 followed by substitution with sodium azide in DMF at 90℃led to azide 2,which was reacted with 3 in the presence of piperidine to yield 75%of DCM 4 as the(E)-isomer exclusively[9].Mono-deprotection of 5 was achieved by careful treatment with a catalytic amount of KOH in MeOH,followed by copper-cata?lyzed Huisgen[3+2]cycloaddition of the crude product with azide 4,to afford the desired fluores?cent triazole 7 in 46%overall yield.Triazolyl-BZT 6 was obtained from 5 and ethyl 3-azidopropanoate[10]in 62%yield for the two steps using a similar proce?dure.

    1.2 Ion sensing properties

    The ability of 4,6 and 7 to act as chemical sen?sors for various anions and cations was investigated by following the evolution of absorbance and fluores?cence of 10 μM solutions in MeCN after addition of 8 equiv.ions.Upon excitation at 457 nm,4 exhibit?ed fluorescence emission centered around 610 nm,which remained unchanged after addition of various anions(Fig.1 ).In contrast,the presence of Cu2+re?sulted in a complete quenching of fluorescence,while Fe2+and Hg2+induced a decrease of fluores?cence intensity to ca.75%and 60%of their initial value,respectively.The fluorescence emission spec?tra of triazolyl-BZT 6 upon excitation at 370 nm are reported in Fig.2 .With a notable exception of F-,which induces TMS-alkyne deprotection[10]and re?sults in a slight fluorescence intensity decrease asso?ciated with a blue shift of the maximum from 496 to 489 nm,none of the tested anions affected fluores?cence emission of 6.Among the metal cations test?ed,Cu2+,Ni2+,and to a lower extent Hg2+,Co2+and Fe2+induced a significant decrease in fluorescence intensity.

    Fig.1 Fluorescence intensity ratio(left)and emission spectra(right)of 4(10μMin MeCN)after addition of8 equiv.of ions(λex=457 nm)

    Fig.2 Fluorescence intensity ratio(left)and emission spectra(right)of 6(10μMin MeCN)after addition of8 equiv.ions(λex=370 nm)

    Fig.3 Fluorescence intensity ratio(left)and emission spectra(right)of 7(10μMin MeCN)after addition of8 equiv.of ions(λex=370 nm)

    Our attention then turned to compound 7,re?garded as a combination of the previously studied flu?orophores 4 and 6(Fig.3 ).As expected,excitation of BZT(at 370 nm)resulted in fluorescence emis?sion at ca.605 nm,as a consequence of intramolecu?lar energy transfer.Addition of anions did not influ?ence the fluorescence intensity,except F–through deprotection of the TMS-alkyne moiety[11].In con?trast,addition of Cu2+immediately resulted in a dis?coloration of the solution,associated with the appari?tion of the characteristic blue fluorescence of BZT around 490 nm.This result clearly indicates that Cu2+affects the DCM moiety of 7 and quenches its fluorescence,which allows BZT fluorescence emis?sion to be observed.Among other metal cations test?ed,the most notable effects were exhibited by Ni2+,F(xiàn)e2+and Hg2+,resulting in a ca.50%-70%quench?ing of fluorescence as compared to the blank sample.

    1.3 Sequential ion addition

    Having established the selectivity of ion recog?nition by fluorophores 4,6 and 7,our interest then focused on studying the effect of combining cations and anions in a sequence-dependent manner.Our choice turned to Cu2+as a cation,since it affects both DCM and BZT moieties;F-(which induces TMS-alkyne deprotection)and Br-(inert)were se?lected as anions,on the basis of their ability to form stable complexes of the type[Cu(X)n](2-n)+in MeCN,characterized by association constants in the range 107-1015[12].

    The behavior of compound 4 was thus investi?gated in the presence of various combinations of Cu2+,F(xiàn)-and Br-(1 equiv.each,F(xiàn)ig.4 ).Addition of Cu2+resulted in an instantaneous and complete ex?tinction of fluorescence,which was only very weakly recovered after halide ions addition(Fig.4 a).This behaviour is in keeping with the transformation of 4 through Cu2+-mediated air oxidation of DCM as de?picted in Scheme 2.However,the oxidation mecha?nism remains to be clarified.Cu2+-promoted oxida?tion reaction is well known in living system and has been applied to fluorescence turn-on detection of Cu2+[13].In our case,pyran 8 was isolated as a com?plex mixture of regio and/or stereoisomers.This hy?pothesis was further confirmed by the observation that when Cu2+was added to a degassed solution of 4 in MeCN under inert atmosphere,no reaction oc?curred during at least 30 min.,as revealed by theabsence of discoloration of the red solution.In con?trast,the presence of F–or Br–in solution prior to Cu2+maintained a significantly high fluorescence in?tensity(ca.70%-90%of the blank value;Fig.4 b),by preventing 4 from air oxidation,presumably through formation of the complex[CuX]-.It to be no?ticed that oxidation of DCM devrivatives by Cu2+has not been reported before[5].

    Fig.4 Emission spectra of 4(top:10μMin CH3CN,λex457 nm)and 6(bottom:10μMin CH3CN,λex370 nm)after addition of 1 equiv.Cu(ClO4)2,Bu4NF and/or Bu4NBr

    Addition of 1 equiv.Cu2+to 6 induced a ca. 2-fold decrease in BZT fluorescence emission inten?sity,which further diminished when another equiva?lent Cu2+was added to the solution(Fig.4 c).In con?trast,when 1 equiv.F-or Br-was introduced after 1 equiv.Cu2+,fluorescence intensity was restored to reach ca.80%-90%of its initial level.Interestingly,when halide ions addition preceded Cu2+,the fluores?cence intensity of BZT remained almost unchanged(Fig.4 d).

    Scheme 2Cu2+-mediated aerobic oxidative cyclization of 4 into 8

    Such a behavior presumably originates from the Cu2+complexation between a nitrogen atom of benzo?thiadiazole and N(3)of triazole leading to complex[6.Cu][14-15],in which photoinduced electron trans?fer or charge transfer is likely to occur and affect the intensity of the fluorescence(Scheme 3)[8].Subse?quent halide addition results in the formation of com?plexes of the type[6.CuX],with de-coordination of one of the N-atoms.Further halide addition results in the regeneration of 6 and the formation of species of the type[Cu(X)n](2-n)+[11].Conversely,the pres?ence of halide ions prior to Cu2+addition presumably prevents formation of[6.Cu](through formation of[Cu(X)n](2-n)+),as revealed by the conservation of optical properties.

    The spectroscopic and visual outcome of 7 in the presence of combinations of two sequential in?puts chosen from F-,Br-and Cu2+,at two excitation wavelengths(370 and 457 nm)are reported in Fig.5 and Fig.6 .The most dramatic impact was observed when Cu2+was associated with halide ions since such a combination proved to be dependent not only on the sequence of addition but also on the nature of the anion.Indeed,addition of Cu2+followed by F-result?ed in a complete extinction of fluorescence,while using Br-led to a conservation of BZT emission around 490 nm.The inversed sequence F-/Cu2+only induced a slight reduction of fluorescence intensity at ca.600 nm,whereas the couple Br-/Cu2+resulted in the apparition of an additional band around 490 nm. In the light of these studies,the behavior of 7 upon sequential addition of ions could be rationalized as follows:as a first input,F(xiàn)-affects BZT(TMS-al?kyne deprotection)without significantly modifying the fluorescence intensity of 7;Br-has no effect while Cu2+induces quenching of DCM fluorescence through oxidative dimerization(vide supra)thus re?vealing BZT fluorescence.

    Fig.5 Solution of fluorophore 7 in MeCN(A),after sequential addition of F–/Cu2+(B),Br–/Cu2+(C),Cu2+/ F-(D)or Cu2+/Br–(E),upon excitation at 365 nm

    When F-was present in solution prior to Cu2+ad?dition,no striking modification of fluorescence in?tensity of 7 could be observed;in contrast,addition of Cu2+following Br-leads to partial quenching of DCM fluorescence with concomitant partial appear?ance of BZT fluorescence.Such a behavior is pre?sumably the consequence of a competition between formation of complexes of the type[Cu(X)n](2-n)+and DCM oxidative cyclization.Utilization of Br-as a second input following Cu2+has no detectable ef?fect,whereas F–leads to complete quenching of fluo?rescence,revealing a modification of the BZT moi?etypossiblyinvolvingtheformationof acop?per-acetylide complex[16].

    1.4 Keypad lock

    The sequence-dependent character of 7 was ex?ploited for the realization of a molecular keypad lock able to deliver various secret codes,depending on the sequence of inputs(Fig.7 ).Indeed,attributing the letters"E","M"and"N"respectively to Cu2+,F(xiàn)-and Br-inputs,and"W","D"and"U"respec? tively to red,blue and absence of fluorescence(up?on excitation at 365 nm,see Fig.5 )as outputs,the four words"END","MEW","EMU"or"NEW" could be read.

    Fig.7 Compound 7 as a fluorescence-based molecular keypad lock

    1.5 Logic gate arrays

    The ion-responsive properties of fluorophores 4,6 and 7 were also employed to perform logic oper?ations.In the case of BZT 6,using both chemical and optical inputs(Cu2+,Br-and excitation at 370 nm),associated with the reading of fluorescence at 487 nm(relative threshold value of 0.7 as compared to the blank sample)as an output,the truth table depicted in Tab.1 was constructed(see Fig.4 c/d).Interest?ingly,6 performs enabled IMPLICATION(EnIMP)logic operation,that is,output will be 0 only in the presence of In1(Cu2+)alone.In3(λex370 nm)acts as the enabling channel,since no logic functionality could be observed when its value is 0;therefore,BZT 6 is a molecular mimic of the electronic logic circuit represented in Fig.8 a.

    Fig.8 Logic circuits corresponding to the functions of(a)6 and(b)4

    As a consequence of the sequence-dependent character of DCM 4(compare Cu2+/Br-and Br-/Cu2+in Fig.4 a/b),this compound can act as two logic cir?cuits performing either the functions enabled IN?VERTER(EnINV,resulting in output 0 when In1 is 1)when the order of addition is Cu2+/Br-,or EnIMP(resulting in output 0 only if In2 is present alone) when the order is Br–/Cu2+(Tab.1 ).The enabling optical input In3 is excitation at 457 nm,and a rep?resentation of the electronic circuits corresponding to the functions of 4 can be found in Fig.8 b.Note?worthy is the fact that same results were obtained for both 6 and 4 when F-was used instead of Br-.

    In compound 7 however,the nature of the ha?

    Tab.1 Truth table for compounds 6 and 4

    lide(F-or Br-)also influences fluorescence emis?sion resulting in four molecular molecular logic gate arrays able to perform enabled YES(EnYES),en?abled NOT(EnNOT),EnIMP,enabled INHIBIT(EnINH)and enabled NOT AND(EnNAND)func?tions,through simple modification of the order of ion addition,the nature of the halide ion(F-or Br-)and the fluorescence reading wavelength and/or rela?tive intensity threshold values.For instance,using Cu2+and Br-as sequence-controlled In1 and In2,re?spectively,and BZT excitation at 370 nm as the en?abling In3,EnYES and EnNOT logic operations were revealed upon reading fluorescence at 487 nm(If,rel=0.3)and 605 nm(If,rel=0.3),respectively(Tab.2 a,F(xiàn)ig.6 and Fig.9 a).Practically,irrespec?tive of the value of In2,EnYES returns the value of In1,while EnNOT returns the opposite of In1.Re?versing the order of addition(Br–as In1 and Cu2+as In2)conversely lead to EnYES and EnNOT func?tions with respect to In2,whatever the value of In1(Tab.2 b,F(xiàn)ig.6 and Fig.9 b).In addition,EnIMP and EnINH functions were obtained by following flu?orescence emission at 605 nm(If,rel=0.3)and 487 nm(If,rel=0.5),respectively.When the logic device is enabled(i.e.In3 is 1),EnIMP returns 0 only when In2 is present and In1 absent,while En?INH returns 1 in the same situation.

    Furthermore,compound 7 acts as a 1∶2 demul?tiplexer,an electronic device allowing the individu?al recovery of multiple signals transmitted on the same data line[4,17].

    Depending on the value of the address input Ad(Cu2+),7 is able to deliver the value of input In(excitation at 370 nm)to either outputs O1 or O2(Tab.3 ),thus mimicking the circuit depicted in Fig.10 .

    As mentioned above,the nature of the halide ion also influences the behavior of 7.Indeed,using F-as the first input followed by Cu2+,with excitation at 370 nm as the enabling input,resulted in EnNOT(λobs605 nm,thresholdIf,rel=0.3),EnINH(λobs487 nm,thresholdIf,rel=0.3)and En?NAND(λobs570 nm,thresholdIf,rel=0.3)logic functions(Tab.2 c,F(xiàn)ig.6 and Fig.9 c).The latter returns 0 when both In1 and In2 are 1.Noteworthy is the fact that NAND gate(together with NOR gate)is considered to be universal since it could be used to generate any logic function[2].Finally,when Cu2+is followed by F-,compound 7 exhibits the behavior of EnIMP(λobs605 nm,thresholdIf,rel=0.3)and EnINH(λobs605 nm,thresholdIf,rel=0.3)functions(Tab.2 d,F(xiàn)ig.6 and Fig.9 d).

    Tab.2 Truth table for compound 7

    Tab.3 Truth table of a 1∶2 demultiplexer

    2 Conclusion

    Three novel fluorescent molecules based on DCM,triazolyl-BZT and a combination thereof were synthesized and exhibited a propensity to selectively modify their fluorescence behavior in the presence of some anions and cations.The Cu2+-promoted oxida? tive dimerization of DCM moiety has been observed for the first time.Combinations of Cu2+,F(xiàn)-and/or Br-proved to be highly sequence-and halide-de?pendent for fluorescence emission in the case of DCM-based compounds 4 and 7.This property has been used to construct a keypad lock for compound 7.By appropriate selection of inputs(nature of ions,sequence of additions and excitation wavelength)and outputs(fluorescence reading wavelength and threshold),these fluorophores were able to mimick the functions of complex logic gate arrays performing up to the six logic operations EnYES,EnNOT,En?IMP,EnINH,EnNAND and 1∶2 demultiplexer. Although our system remains irreversible,this study might open the way for the design of new chromo?phores as molecular logic gates.

    3 Experimental Section

    Fig.9 Logic circuits corresponding to the functions of compound 7

    Fig.10 Molecular 1∶2 demultiplexer corresponding to the function of 7

    General:Commercially available solvents and reagents were used without further purification ex?cept MeCN which was distilled over CaH2.Melting points were measured on a Kofler bench.Column chromatography was performed on Carlo Erba Silica Gel 60A(40-63 μm).Analytical thin layer chroma?tography was performed on E.Merck aluminum per?colated plates of Silica Gel 60F-254 with detection by UV.1H and13C-NMR spectra were recorded on a Jeol ECS-400 spectrometer.ESI-HRMS spectra were recorded on a Bruker microTOF-Q II spectrom?eter or Bruker maxis using standard conditions.IR spectra were recorded on Shimadzu FTIR-8400S spectrometer(Shimadzu Corporation,Kyoto,Ja?pan).Absorptionspectrawererecordedona Uvikon-940KON-TRONspectrophotometerand corrected emission spectra were performed on a Jo?bin-Yvon Fluoromax 3 spectrofluorometer(1 cm quartz cell was used).The fluorescence quantum yield(ΦF)was determined by the standard method using quinine sulphate in 0.5 M H2SO4as a refer?ence.The refractive index of the solvent was taken into account in the measurement[18].All anions were of the form(Bu4N+,X-),all cations of the form[Mn(+HClO4-)n],except AgNO3.

    4-[N-(2-Azidoethyl)-N-methyl]amino?benzaldehyde 2:To a stirred solution of 4-[N-(2-hydroxyethyl)-N-methyl]aminobenzaldehyde(9.03 g,0.050 mol)in CH2Cl2(125 mL)at 0℃,were added respectively Et3N(21 mL,0.150 mol)and MsCl(5.8 mL,0.075 mol).The mixture was stirred for 20 to 30 min.until the brown color changedtoyellow.Themixturewastreatedwith150mL of water,the aqueous layer was extracted with CH2Cl2(2×50 mL).The organic layers were com?bined,washed with brine,dried over MgSO4and evaporated under vacuum to give 13.84 g of crude mesylate which was used without purification for the next step.To a solution of this crude product in DMF(90 mL)was added sodium azide(4.89 g,0.750 mol). The mixture was stirred at 90℃for 90 min.(moni?toring by TLC),cooled to RT and the solvent was evaporated under vacuum.The residue was parti?tioned in CH2Cl2/H2O(150/150 mL),the aqueous layer was extracted with CH2Cl2(2×50 mL),then or?ganic layers were combined,washed with saturated NaHCO3,dried over MgSO4and evaporated under vacuum.Column chromatography(gradient EtOAc/ petroleum ether 9/1,8/2,7/3,6/4)afforded 2(10.15 g,99%)as a brown oil.TLC:Rf=0.31(petroleum ether/EtOAc:2/1).1H NMR(400 MHz,CDCl3):δ=9.74(s,1H,CHO),7.74(d,J=8.7 Hz,2H,Ph),6.74(d,J=8.7 Hz,2H,Ph),3.63(t,J=5.9 Hz,2H,CH2),3.51(t,J= 6.0 Hz,2H,CH2),3.11(s,3H,N-Me).13C NMR(100 MHz,CDCl3):δ=190.4,153.0,132.5,126.1,111.2,77.3,51.6,48.9;39.2. HRMS(ESI)forC10H13N4O[M+H]+calcd 205.1084,found 205.1 088;for C10H12N4ONa[M+ Na]+calcd 227.090 3,found 227.090 4.

    (E)-2-(2-(4-((2-Azidoethyl)(methyl)amino)styryl)-6-tert-butyl-4H-pyran-4-yli?dene)malononitrile 4:To a stirred solution of 4-[N-(2-azidoethyl)-N-methyl]aminobenzaldehyde(6.02 g,0.029 mol)and 2-(2-tert-butyl-6-meth?yl-4H-pyran-4-ylidene)malononitrile[19](6.32 g,0.029 mol)in distilled MeCN(60 mL)under ar?gon,was added piperidine(3.9 mL,0.039 mol). The mixture was refluxed for 3 to 4 h(monitoring by TLC)and cooled to RT.The filtered precipitate was washed with cold MeCN(10-20 mL)and cyclohex?ane(200-400 mL).The filtrate was evaporated un?der vacuum and the residue triturated with a mini?mum of cold MeCN and filtered(sonication could be used during trituration).Combination of the two sol?ids afforded 4(8.79 g,75%)as an orange-red sol?id.A portion of 4(6.2 g)was recrystallized from MeCN(110 mL).TLC:Rf=0.33(petroleum ether/ EtOAc:7/3).m.p.156°C.1H NMR(400 MHz,CD?Cl3):δ=7.45(d,J=8.7 Hz,2H,Ph),7.34(d,J=15.6 Hz,1H,CH=),6.73(d,J=8.7 Hz,2H,Ph),6.61(d,J=1.8 Hz,1H,CH=),6.53(d,J=1.8 Hz,1H,CH=),6.53(d,J= 1.8 Hz,1H,CH=),6.51(d,J=16.0 Hz,1H,CH=),3.63(t,J=6.0 Hz,2H,CH2),3.51(t,J=5.7 Hz,2H,CH2),3.11(s,3H,N-Me),1.38(s,9H,tBu).13C NMR(100 MHz,CDCl3):δ=172.0,160.1,156.9,150.3,138.2,129.9,123.2,115.84,115.77,113.6,112.1,105.8,102.5,77.2,58.2,51.6,49.0,39.0,36.8,28.2.HRMS(ESI)for C23H25N6O[M+H]+calcd 400.2007,found 401.208 8;for C23H24N6ONa[M+ Na]+423.190 4,found 423.190 3.

    (E)-2-(2-Tert-butyl-6-(4-(methyl(2-(4-(7-((trimethylsilyl)ethynyl)benzo[c][1,2,5]thiadiazol-4-yl)-1H-1,2,3-triazol-1-yl)eth?yl)amino)styryl)-4H-pyran-4-ylidene)malo?nonitrile 7:To a solution of 4,7-bis((trimethylsi?lyl)ethynyl)benzo[c][1,2,5]thiadiazole 58(200 mg,0.61 mmol)in MeOH(15 mL)was add?ed 1M aqueous KOH(30 mL),and the mixture was stirred at RT under argon over night.After evapora?tion of the solvent under vacuum,the residue was dissolved in EtOAc(30 mL),washed with water(30 mL)and brine(30 mL),dried over MgSO4,fil?tered,and concentrated.To the obtained solid dis?solved in CH2Cl2(10 mL)and H2O(1 mL),were added 3(243 mg,0.61 mmol),CuSO4·5H2O(25 mg,0.1 mmol)and sodium ascorbate(40 mg,0.2 mmol). The reaction mixture was vigorously stirred at RT for 12 h,then CH2Cl2(20 mL)was added.The solution was washed with water(30 mL),dried over MgSO4,filtered,and concentrated to a solid which was puri?fied by column chromatography(petroleum ether/ EtOAc/CH2Cl2:3/3/1)to afford compound 7(300 mg,46%).TLC:Rf=0.34(petroleum ether/EtOAc:2/1).m.p.132℃.1H NMR(400 MHz,CDCl3):δ=8.65(s,1H,CH),8.50(d,J=7.4 Hz,1H,CH),7.88(d,J=7.4 Hz,1H,CH),7.42(d,J=8.7 Hz,2H,Ph),7.30(d,J=16.0 Hz,1H,CH),6.71(d,J=8.7 Hz,2H,Ph),6.60(d,J=2.3 Hz,1H,CH=),6.53(d,J=2.3 Hz,1H,CH=),6.47(d,J=16.0 Hz,1H,CH=),4.71(m,2H,CH2),4.05(m,2H,CH2),2.94(s,3H,CH3),1.37(s,9H,3×CH3),0.34(s,9H,Si(CH3)3).13C NMR(100 MHz,CDCl3):δ=172.0,159.9,156.8,155.0,151.4,149.8,143.1,137.9,134.2,129.9,125.2,125.1,123.6,123.5,116.0,115.7,115.6,113.9,112.2,105.9,102.5,100.2,58.3,52.7,47.8,39.0,36.7,28.1,0.0.IR(KBr):2 207,1 642,1 597,1 548,1 498,1 421,1 377,1 304,1 252,1 175,1 119,1 053,928,848,750 cm-1.UV/Vis(MeCN):λmax(ε)=457 nm(40 700 L·mol–1·cm–1). ΦF(λex372 nm)=(12±1.2)%.HRMS(ESI)for C36H37N8OSSi[M+H]+:calcd 657.250 2,found 657.257 1.

    Ethyl 3-(4-(7-((trimethylsilyl)ethynyl)benzo[c][1,2,5]thiadiazol-4-yl)-1H-1,2,3-triazol-1-yl)propanoate 6:To a solution of 4,7-bis((trimethylsilyl)ethynyl)benzo[c][1,2,5]thi?adiazole 5[5](200 mg,0.61 mmol)in MeOH(15 mL)was added 1M aqueous KOH(30 mL),and the mix?ture was stirred at rt under argon over night.After evaporation of the solvent under vacuum,the resi?due was dissolved in EtOAc(30 mL),washed with water(30 mL)and brine(30 mL),dried over Mg?SO4,filtered,and concentrated.To the solid dis?solved in CH2Cl2(10 mL)and H2O(1 mL),were added ethyl 3-azidopropanoate(87 mg,0.61 mmol),CuSO4·5H2O(25 mg,0.1 mmol)and sodium ascor?bate(40 mg,0.2 mmol).The reaction mixture was vigorously stirred at RT for 12 h,then CH2Cl2(20 mL)was added.The solution was washed with water(30 mL),dried over MgSO4,filtered,and concen?trated to a solid which was purified by column chro?matography(petroleumether/EtOAc:10/1)to afford compound 6(250 mg,62%).TLC:Rf=0.36(petroleum ether/EtOAc:15/1).m.p.124℃.1H NMR(400 MHz,CDCl3):δ=8.84(s,1H,CH),8.50(d,J=7.4 Hz,1H,CH),7.88(d,J=7.4 Hz,1H,CH),4.79(t,J=6.4 Hz,2H,CH2),4.17(q,J=7.2 Hz,2H,CH2),3.06(t,J=6.4 Hz,2H,CH2),1.25(t,J=7.2 Hz,3H,CH3)0.34(s,9H,Si(CH3)3),13C NMR(100 MHz,CDCl3):δ=170.4,154.9,151.4,142.8,134.2,125.1,123.9,115.8,102.2,100.3,61.3,45.8,34.8,14.1,0.0;IR(KBr):2 146,1 729,1 591,1 464,1 442,1 404,1 378,1 249,1 197,1 163,1 096,838,850,757 cm-1.UV/Vis(MeCN):λmax(ε)=390 nm(11 800 L·mol–1·cm–1). ΦF(λex368 nm)=(79±7.9)%.HRMS(ESI)for C18H22N5O2SSi[M+H]+:calcd 400.1185,found 400.126 3.

    Copper(II)-catalyzed oxidative cyclisation of 4:To a solution of 4(50 mg,0.125 mmol)in 3 mL MeCN was added Cu(ClO4)2·6H2O(46 mg,0.125 mmol).After stirring at RT for 5 min,the sol?vent was removed under vacuum to give a green solid which was exclusively soluble in MeCN.The green solid was dissolved in 5 mL MeCN,washed with 1M EDTA,then extracted with EtOAc(2×20 mL).The combined organic layers were dried over MgSO4,evaporated to give a yellow solid which was purified by column chromatography(petroleum ether/EtO?Ac:2/1)to afford 10 mg of compound 8 as a light yellow solid.TLC:Rf=0.34(petroleum ether/EtO?Ac:1/1).HRMS(ESI)for C46H49N12O3[M+H]+:calcd 817.404 5,found 817.404 3.

    Procedure for ion addition

    Stock solutions of compounds 4,6 or 7 were prepared in MeCN at a concentration of 10-3M.Solu?tions of Cu(ClO4)2,Bu4NF,Bu4NBr were prepared in MeCN at a concentration of 10-2M.In a quartz cu?vette,25 μL stock solutions of compounds 4,6 or 7 were diluted with 2 475 μL MeCN(final concen?tration of 10 mM),then 2.5 μL of a solution of Cu2+,F(xiàn)-or Br-was added.The mixture was shacked for 1 min(followed by a second addition and shack?ing for another minute if necessary)before recording absorption and fluorescence spectra.

    4 Acknowledgments

    Thanks to RUAN Yibin for helpful discussions.

    [1]MATHARU A S,JEEVA S,RAMANUJAM P S.Liq?uid crystals for holographic optical data storage[J]. Chem Soc Rev,2007,36:1868-1880.

    [2]HAYES J P.Introduction to Digital Logic Design[M]. Boston:Longman Publishing Co.,Inc.,1993.

    [3]DE SILVA A P,GUNARATNE H Q N,MCCOY C P. A molecular photoionic AND gate based on fluorescent signalling[J].Nature,1993,364:42-44.

    [4]DE SILVA A P.Molecular logic gate arrays[J].Chem Asian J,2011,6:750-766.

    [5]MARGULIES D,F(xiàn)ELDER C E,MELMAN G,et al.A molecular keypad lock:a photochemical device capa?ble of authorizing password entries[J].J Am Chem Soc,2007,129:347-354.

    [6]FANG Q,XU B,JIANG B,et al.Bisindoles contain?ing a 2,1,3-benzothiadiazole unit:novel non-doping red organic light-emitting diodes with excellent color purity[J].Chem Commun,2005,11:1468-1470.

    [7]DAVID O,MAISONNEUVE S,XIE J.Generation of new fluorophore by click chemistry:synthesis and prop?erties of β-cyclodextrin substituted by 2-pyridyl tri?azole[J].Tetrahedron Lett,2007,48:6527-6530.

    [8]DASILVEIRA NETO B A,SANT′ANA LOPES A,EB?ELING G,et al.Photophysical and electrochemicalproperties of π-extended molecular 2,1,3-benzothiadi?azoles[J].Tetrahedron Lett,2005,61:10975-10982.

    [9]ANDREU R,CARRASQUER L,GARIN J,et al.New one-andtwo-dimensional4H-pyranylideneNLO-phores[J].Tetrahedron Lett,2009,50:2920-2924.

    [10]REUX B,WEBER V,GALMIER M J,et al.Synthesis and cytotoxic properties of new fluorodeoxyglucose-cou?pled chlorambucil derivatives[J].Bioorg Med Chem,2008,16:5004-5020.

    [11]LU H,WANG Q,LI Z,et al.A specific chemodosime?ter for fluoride ion based on a pyrene derivative with tri?methylsilylethynylgroups[J].OrgBiomolChem,2011,9:4558-4562.

    [12]SESTILI L,F(xiàn)URLANI C,CIANA A,et al.Polarogra?phy of copper(II)-halide complexes in non-aqueous solvents[J].Electrochim Acta,1970,15:225-235.

    [13]WANG D,SHIRAISHI Y,HIRAI T.A BODIPY-based fluorescent chemodosimeter for Cu(II)driven by an oxi?dative dehydrogenation mechanism[J].Chem Com?mun,2011,47:2673-2675.

    [14]PAPAEFSTATHIOU G S,TSOHOS A,RAPTOPOU?LOU C P,et al.Cystal engineering:stacking interac? tions control the crystal structures of benzothiadiazole(btd)and its complexes with copper(II)and copper(I)chlorides[J].Cryst Growth Des,2001(1):191-194.

    [15]TAMANINI E,RIGBY S E J,MOTEVALLI M,et al. Responsive metal complexes:a click-based"allosteric scorpionate"complex permits the detection of a biologi?cal recognition event by EPR/ENDOR spectroscopy[J]. Chem Eur J,2009,15:3720-3728.

    [16]CHOW Y L,BUONO-CORE G E.Triplet-state benzo?phenone-sensitized photoreduction of bis(acetylaceto?nato)copper(II):the generation and stability of copper(I)complexes[J].Can J Chem,1983,61:795-800.

    [17]ANDRéASSON J,PISCHEL U,STRAIGHT S D,et al. All-photonic multifunctional molecular logic device[J].J Am Chem Soc,2011,133:11641-11648.

    [18]LAKOWICZ J R.Principles of fluorescence spectrosco?py[M].3rd ed.New York:Springer Science,2006.

    [19]YAO Y S,XIAO J,WANG X S,et al.Starburst DCM-type red-light-emitting materials for electrolumi?nescence applications[J].Adv Funct Mater,2006,16:706-718.

    (責任編輯:陳曠)

    2013-12-15

    The National Natural Science Foundation of China(No.21302065)

    O644;O69

    A

    1673-0143(2014)02-0049-12

    *Corresponding Author:HE Xianran(1983—),male,associate research fellow,doctor,majors in sugar chemistry and pharmacochemistry.E-mail:hexianran@163.com

    猜你喜歡
    噻二唑基亞吡喃
    小分子螺吡喃光致變色化合物合成研究進展*
    化學工程師(2022年5期)2022-05-11 06:26:16
    今天
    北方人(2021年8期)2021-09-03 09:24:23
    今天
    北方人(2021年15期)2021-08-26 11:51:38
    1,3,4-噻二唑取代的氮唑類化合物的合成及體外抗真菌活性
    1,3,4-噻二唑類衍生物在農(nóng)藥活性方面的研究進展
    1,3,4-噻二唑衍生物的合成與應用
    3-疊氮基丙基-β-D-吡喃半乳糖苷的合成工藝改進
    合成化學(2015年9期)2016-01-17 08:57:14
    1-O-[3-(2-呋喃基)丙烯?;鵠-β-D-吡喃果糖的合成及應用
    煙草科技(2015年8期)2015-12-20 08:27:14
    新型芳并吡喃類多環(huán)化合物的合成與光譜性質(zhì)研究
    兩種含1,3,4-噻二唑α-氨基膦酸酯與蛋白質(zhì)弱相互作用的ESI-MS研究
    av国产免费在线观看| 亚洲av免费在线观看| 18禁在线播放成人免费| 狂野欧美白嫩少妇大欣赏| 观看免费一级毛片| 国产午夜精品论理片| 国产爱豆传媒在线观看| 国产三级黄色录像| 热99re8久久精品国产| xxx96com| 99视频精品全部免费 在线| 热99在线观看视频| 精品免费久久久久久久清纯| 中文字幕精品亚洲无线码一区| 精品人妻一区二区三区麻豆 | 亚洲精品视频女| 色吧在线观看| 大香蕉97超碰在线| 亚洲三级黄色毛片| 22中文网久久字幕| av一本久久久久| 成年人午夜在线观看视频 | 黄片无遮挡物在线观看| 嫩草影院新地址| 三级国产精品片| 一级爰片在线观看| 一区二区三区高清视频在线| 一级a做视频免费观看| 国产亚洲精品久久久com| 久久久久久久久久久丰满| 99re6热这里在线精品视频| 亚洲精品久久久久久婷婷小说| 日本猛色少妇xxxxx猛交久久| 欧美日韩综合久久久久久| 国产一区二区在线观看日韩| 一夜夜www| 青春草国产在线视频| 亚洲精品一二三| 91午夜精品亚洲一区二区三区| 又粗又硬又长又爽又黄的视频| 国产在视频线精品| 大又大粗又爽又黄少妇毛片口| 日韩欧美精品免费久久| 丝瓜视频免费看黄片| 久久鲁丝午夜福利片| av在线蜜桃| 97超视频在线观看视频| 18禁裸乳无遮挡免费网站照片| av线在线观看网站| 国产有黄有色有爽视频| 亚洲国产欧美在线一区| 国产片特级美女逼逼视频| 又黄又爽又刺激的免费视频.| 三级男女做爰猛烈吃奶摸视频| 亚洲欧洲国产日韩| 国产精品久久视频播放| 亚洲在线自拍视频| 久久精品人妻少妇| 日韩成人av中文字幕在线观看| 久久精品久久久久久久性| 亚洲三级黄色毛片| 午夜日本视频在线| 搡老妇女老女人老熟妇| 国产久久久一区二区三区| 国产白丝娇喘喷水9色精品| 亚洲成人中文字幕在线播放| 少妇裸体淫交视频免费看高清| 三级国产精品片| 人妻一区二区av| 黄片无遮挡物在线观看| 午夜福利在线观看吧| 亚洲av在线观看美女高潮| 国产精品1区2区在线观看.| 国内揄拍国产精品人妻在线| 春色校园在线视频观看| 一级毛片aaaaaa免费看小| 成人毛片60女人毛片免费| 天堂√8在线中文| 精品一区二区三区视频在线| 久久久欧美国产精品| 午夜日本视频在线| 一个人观看的视频www高清免费观看| 中文字幕免费在线视频6| 色综合色国产| 在线免费观看的www视频| 高清欧美精品videossex| 男女那种视频在线观看| 日本黄大片高清| 国产男人的电影天堂91| 国产乱来视频区| 国产伦在线观看视频一区| 欧美日韩在线观看h| 日本免费a在线| 麻豆乱淫一区二区| 国产毛片a区久久久久| 久久精品国产自在天天线| 性插视频无遮挡在线免费观看| 久久久久久久久久久丰满| 亚洲国产高清在线一区二区三| 菩萨蛮人人尽说江南好唐韦庄| 欧美xxxx黑人xx丫x性爽| 国产大屁股一区二区在线视频| 国产精品久久久久久久电影| 国产亚洲91精品色在线| 久久精品久久久久久久性| 人妻制服诱惑在线中文字幕| 亚洲精品乱久久久久久| 久久久久性生活片| 人人妻人人澡人人爽人人夜夜 | 超碰97精品在线观看| 日本熟妇午夜| 亚洲av福利一区| 乱系列少妇在线播放| 80岁老熟妇乱子伦牲交| 国产极品天堂在线| 啦啦啦中文免费视频观看日本| 中文字幕免费在线视频6| 精品不卡国产一区二区三区| 夫妻午夜视频| 高清毛片免费看| 大陆偷拍与自拍| 久久人人爽人人爽人人片va| 麻豆精品久久久久久蜜桃| 伦精品一区二区三区| 日韩中字成人| videossex国产| av在线老鸭窝| 国产真实伦视频高清在线观看| 日日干狠狠操夜夜爽| 国产久久久一区二区三区| 免费观看在线日韩| 18禁在线播放成人免费| 高清在线视频一区二区三区| 男人舔奶头视频| 最近中文字幕高清免费大全6| 高清毛片免费看| 国产一级毛片七仙女欲春2| 麻豆国产97在线/欧美| 麻豆乱淫一区二区| 国产精品久久久久久久电影| 国产综合精华液| 别揉我奶头 嗯啊视频| 亚洲国产高清在线一区二区三| 色哟哟·www| a级毛色黄片| 国产伦一二天堂av在线观看| 国产欧美另类精品又又久久亚洲欧美| 亚洲一区高清亚洲精品| 精品国产一区二区三区久久久樱花 | 搡女人真爽免费视频火全软件| 亚洲婷婷狠狠爱综合网| 成人午夜精彩视频在线观看| 久久这里只有精品中国| 日韩亚洲欧美综合| 久久久久国产网址| 国产精品国产三级国产av玫瑰| 国产亚洲精品久久久com| 天堂av国产一区二区熟女人妻| 亚洲乱码一区二区免费版| 国产免费视频播放在线视频 | 国产亚洲91精品色在线| 中文字幕免费在线视频6| 久久精品国产亚洲av涩爱| 亚洲怡红院男人天堂| 成人av在线播放网站| 91狼人影院| 搡女人真爽免费视频火全软件| 五月天丁香电影| 亚洲性久久影院| 亚洲av成人精品一二三区| 国产精品一区二区三区四区免费观看| 天堂√8在线中文| 午夜激情欧美在线| 夜夜看夜夜爽夜夜摸| 精品午夜福利在线看| 99久久精品国产国产毛片| 欧美变态另类bdsm刘玥| 国产一区二区三区av在线| 国产精品久久视频播放| 国产伦在线观看视频一区| 亚洲综合色惰| 建设人人有责人人尽责人人享有的 | 国精品久久久久久国模美| 国产亚洲av片在线观看秒播厂 | 男插女下体视频免费在线播放| 成人午夜精彩视频在线观看| 亚洲综合色惰| 蜜桃亚洲精品一区二区三区| 国产免费福利视频在线观看| 日日干狠狠操夜夜爽| 国产免费又黄又爽又色| 免费观看a级毛片全部| 禁无遮挡网站| 欧美+日韩+精品| www.色视频.com| 三级毛片av免费| 久久久欧美国产精品| 久久99热这里只有精品18| 能在线免费观看的黄片| 久久久久久久久久久免费av| 18禁在线播放成人免费| 中国美白少妇内射xxxbb| 看非洲黑人一级黄片| 亚洲va在线va天堂va国产| 日韩电影二区| 久久久久久久久大av| 最近的中文字幕免费完整| 国产又色又爽无遮挡免| 国产精品国产三级国产av玫瑰| 国产亚洲一区二区精品| 三级国产精品欧美在线观看| 亚洲国产精品成人综合色| 国产欧美日韩精品一区二区| 日韩制服骚丝袜av| 女人被狂操c到高潮| 国产午夜福利久久久久久| 日本免费a在线| 亚洲在线自拍视频| 九九久久精品国产亚洲av麻豆| 国产人妻一区二区三区在| 特级一级黄色大片| 亚洲精品色激情综合| 国产精品一二三区在线看| 国产男女超爽视频在线观看| 超碰av人人做人人爽久久| 国产亚洲av片在线观看秒播厂 | 能在线免费观看的黄片| 亚洲电影在线观看av| 日韩成人av中文字幕在线观看| 成人综合一区亚洲| 久久久久久伊人网av| 97精品久久久久久久久久精品| 国产高清不卡午夜福利| 国产亚洲最大av| 亚洲美女搞黄在线观看| 人人妻人人澡欧美一区二区| 午夜免费激情av| av在线亚洲专区| 国产精品人妻久久久影院| 国产一级毛片在线| 午夜日本视频在线| 国产人妻一区二区三区在| 波野结衣二区三区在线| 深爱激情五月婷婷| 人人妻人人看人人澡| 精品久久久久久电影网| 国产精品久久久久久久久免| 日韩av不卡免费在线播放| 午夜老司机福利剧场| 久久久久免费精品人妻一区二区| 亚洲av成人av| 天堂影院成人在线观看| 少妇人妻一区二区三区视频| 亚洲欧美一区二区三区国产| 亚洲第一区二区三区不卡| 午夜亚洲福利在线播放| 赤兔流量卡办理| 亚洲一级一片aⅴ在线观看| 超碰97精品在线观看| 纵有疾风起免费观看全集完整版 | 亚洲,欧美,日韩| 777米奇影视久久| 亚洲av电影不卡..在线观看| 街头女战士在线观看网站| 女人十人毛片免费观看3o分钟| 可以在线观看毛片的网站| 久久精品夜夜夜夜夜久久蜜豆| 国产麻豆成人av免费视频| av福利片在线观看| 日日干狠狠操夜夜爽| 看黄色毛片网站| 国产 亚洲一区二区三区 | 久久人人爽人人片av| 日本-黄色视频高清免费观看| 日本免费a在线| 日韩欧美一区视频在线观看 | 成人午夜精彩视频在线观看| 一边亲一边摸免费视频| 国产综合懂色| 日韩不卡一区二区三区视频在线| 中文字幕亚洲精品专区| 黄片无遮挡物在线观看| 国产精品一二三区在线看| 亚洲精品aⅴ在线观看| 大片免费播放器 马上看| 久久久久久久久久成人| 欧美性感艳星| 80岁老熟妇乱子伦牲交| 麻豆国产97在线/欧美| 在线观看人妻少妇| av免费在线看不卡| 18禁动态无遮挡网站| 国产精品国产三级专区第一集| 国产亚洲精品久久久com| 亚洲av二区三区四区| 免费看美女性在线毛片视频| 午夜免费男女啪啪视频观看| 一级片'在线观看视频| 亚洲av在线观看美女高潮| 91av网一区二区| 国产黄色视频一区二区在线观看| 午夜福利网站1000一区二区三区| 大香蕉97超碰在线| 国产av码专区亚洲av| 国产高清有码在线观看视频| 特级一级黄色大片| 少妇裸体淫交视频免费看高清| 小蜜桃在线观看免费完整版高清| 精品久久久久久久久av| 十八禁国产超污无遮挡网站| 久久久久久久久大av| 精品久久久久久成人av| 亚洲成人中文字幕在线播放| 国产精品蜜桃在线观看| 亚洲国产精品sss在线观看| 国产麻豆成人av免费视频| 日本黄大片高清| 男插女下体视频免费在线播放| 亚洲av二区三区四区| 国产高清有码在线观看视频| 黄色配什么色好看| 国精品久久久久久国模美| 久久久久久久久久成人| 校园人妻丝袜中文字幕| 久久鲁丝午夜福利片| 久久综合国产亚洲精品| 日日摸夜夜添夜夜添av毛片| 免费大片18禁| 亚洲性久久影院| 中国国产av一级| 国产伦精品一区二区三区四那| 一边亲一边摸免费视频| 亚洲av成人精品一区久久| 亚洲怡红院男人天堂| 精品久久久久久成人av| 搡女人真爽免费视频火全软件| 18禁动态无遮挡网站| 亚洲成人精品中文字幕电影| 亚洲精品成人av观看孕妇| 久久热精品热| 亚洲国产精品成人久久小说| 在线观看av片永久免费下载| 国产成人aa在线观看| 国产高潮美女av| 禁无遮挡网站| 我的老师免费观看完整版| 丝袜美腿在线中文| av福利片在线观看| 亚洲综合精品二区| 一级毛片黄色毛片免费观看视频| 亚洲最大成人手机在线| 欧美xxⅹ黑人| 亚洲国产精品成人久久小说| 91午夜精品亚洲一区二区三区| 免费观看无遮挡的男女| 波多野结衣巨乳人妻| 国产精品三级大全| 亚洲不卡免费看| 在线观看av片永久免费下载| 午夜爱爱视频在线播放| 寂寞人妻少妇视频99o| 六月丁香七月| 夜夜看夜夜爽夜夜摸| 国产在视频线精品| 夜夜看夜夜爽夜夜摸| 国产在视频线精品| 麻豆久久精品国产亚洲av| 毛片一级片免费看久久久久| 人人妻人人澡人人爽人人夜夜 | 精品少妇黑人巨大在线播放| 超碰av人人做人人爽久久| 国产伦理片在线播放av一区| 一夜夜www| 少妇熟女aⅴ在线视频| 69人妻影院| 麻豆成人av视频| 日韩成人av中文字幕在线观看| 搞女人的毛片| 毛片一级片免费看久久久久| 人体艺术视频欧美日本| 久久国内精品自在自线图片| 我的老师免费观看完整版| 国产淫片久久久久久久久| 永久网站在线| 精品欧美国产一区二区三| 1000部很黄的大片| 亚洲精品第二区| 久久99精品国语久久久| 国产精品蜜桃在线观看| 日韩制服骚丝袜av| 国产成人a区在线观看| 久久久久久久久久黄片| 免费少妇av软件| 国产精品人妻久久久影院| 中文字幕久久专区| 淫秽高清视频在线观看| 亚洲在久久综合| 亚洲欧美日韩卡通动漫| 欧美区成人在线视频| 美女cb高潮喷水在线观看| 国产熟女欧美一区二区| 欧美日韩精品成人综合77777| 国产精品久久久久久久久免| 日韩制服骚丝袜av| 又黄又爽又刺激的免费视频.| 亚洲熟妇中文字幕五十中出| 赤兔流量卡办理| 亚洲av福利一区| 又爽又黄a免费视频| 亚洲成人中文字幕在线播放| 国产在视频线精品| 噜噜噜噜噜久久久久久91| 亚洲精品国产成人久久av| 亚洲国产精品成人久久小说| 亚洲精品一二三| 亚洲av.av天堂| 韩国高清视频一区二区三区| 亚洲最大成人中文| 床上黄色一级片| 老女人水多毛片| 亚洲精品日韩av片在线观看| 最近的中文字幕免费完整| av.在线天堂| 丝袜美腿在线中文| 熟妇人妻久久中文字幕3abv| 精品一区在线观看国产| 免费人成在线观看视频色| 国产国拍精品亚洲av在线观看| 成人综合一区亚洲| 国产男人的电影天堂91| av黄色大香蕉| 日本午夜av视频| 国产精品国产三级国产专区5o| 中文天堂在线官网| 国语对白做爰xxxⅹ性视频网站| 九草在线视频观看| 久久综合国产亚洲精品| a级一级毛片免费在线观看| 国产精品国产三级国产av玫瑰| 亚洲人成网站在线播| 久久99蜜桃精品久久| 国产麻豆成人av免费视频| 国内精品美女久久久久久| 嫩草影院入口| 伦理电影大哥的女人| 国产一区二区亚洲精品在线观看| 天堂av国产一区二区熟女人妻| 免费看美女性在线毛片视频| 免费av不卡在线播放| 午夜福利视频1000在线观看| 久久久亚洲精品成人影院| 建设人人有责人人尽责人人享有的 | av国产久精品久网站免费入址| 国产精品久久久久久久电影| 午夜激情欧美在线| 久久精品久久久久久噜噜老黄| 精品久久久久久成人av| 中文精品一卡2卡3卡4更新| 国产在线男女| 最近中文字幕高清免费大全6| 欧美日韩综合久久久久久| 国语对白做爰xxxⅹ性视频网站| 国产成人aa在线观看| 日日啪夜夜撸| 亚洲不卡免费看| 亚洲av成人av| 人人妻人人看人人澡| 国精品久久久久久国模美| 国产av码专区亚洲av| 国产精品美女特级片免费视频播放器| 国产黄频视频在线观看| 熟妇人妻不卡中文字幕| 亚洲自偷自拍三级| 人妻一区二区av| 精品久久久久久久末码| 三级国产精品欧美在线观看| 啦啦啦啦在线视频资源| 又大又黄又爽视频免费| 啦啦啦韩国在线观看视频| 国产高清国产精品国产三级 | 丝袜喷水一区| 综合色av麻豆| 人人妻人人澡人人爽人人夜夜 | h日本视频在线播放| 国产精品嫩草影院av在线观看| 只有这里有精品99| 丝瓜视频免费看黄片| 久久久国产一区二区| 中国美白少妇内射xxxbb| 大片免费播放器 马上看| 日韩欧美 国产精品| 日本黄色片子视频| 色吧在线观看| 中国美白少妇内射xxxbb| 久久97久久精品| 全区人妻精品视频| 国产精品一二三区在线看| 99久久精品热视频| 赤兔流量卡办理| 黄片wwwwww| 国产综合懂色| 亚洲av电影在线观看一区二区三区 | 一个人看的www免费观看视频| 成年人午夜在线观看视频 | 午夜激情欧美在线| 久久这里只有精品中国| 国产伦精品一区二区三区四那| 久久97久久精品| 亚洲av日韩在线播放| 国产乱来视频区| 国产精品久久久久久精品电影| 精品久久久久久久人妻蜜臀av| 国产高清有码在线观看视频| 两个人的视频大全免费| 欧美日韩亚洲高清精品| 2018国产大陆天天弄谢| 伊人久久精品亚洲午夜| 午夜免费激情av| 只有这里有精品99| 老女人水多毛片| av在线天堂中文字幕| 国产老妇女一区| 最近的中文字幕免费完整| 搡女人真爽免费视频火全软件| 久久精品熟女亚洲av麻豆精品 | 在线播放无遮挡| 欧美成人一区二区免费高清观看| 久久久亚洲精品成人影院| 国产69精品久久久久777片| 国产成人91sexporn| 国产精品人妻久久久久久| 91精品伊人久久大香线蕉| 纵有疾风起免费观看全集完整版 | 天天躁夜夜躁狠狠久久av| 亚洲人成网站在线播| 日本猛色少妇xxxxx猛交久久| 黄色一级大片看看| 美女cb高潮喷水在线观看| av播播在线观看一区| 十八禁国产超污无遮挡网站| 综合色丁香网| 免费观看在线日韩| 久久草成人影院| 亚洲av成人av| 亚洲欧美日韩东京热| 国产老妇伦熟女老妇高清| 亚洲国产精品sss在线观看| 免费少妇av软件| 国产av国产精品国产| ponron亚洲| 国产久久久一区二区三区| 国产亚洲午夜精品一区二区久久 | 色综合亚洲欧美另类图片| 少妇的逼水好多| 欧美成人a在线观看| 婷婷色麻豆天堂久久| 熟妇人妻不卡中文字幕| 国产精品爽爽va在线观看网站| 精品不卡国产一区二区三区| 国产69精品久久久久777片| 最近最新中文字幕免费大全7| 日日摸夜夜添夜夜添av毛片| 免费观看的影片在线观看| 日本色播在线视频| 日韩一区二区视频免费看| 日日干狠狠操夜夜爽| 午夜福利高清视频| 亚洲精品乱码久久久v下载方式| 国产亚洲午夜精品一区二区久久 | 亚洲欧美成人综合另类久久久| 成人欧美大片| 97热精品久久久久久| 免费高清在线观看视频在线观看| 日本一本二区三区精品| 两个人视频免费观看高清| 国产乱人视频| 亚洲国产精品国产精品| 亚洲av电影在线观看一区二区三区 | 久久精品人妻少妇| 亚洲天堂国产精品一区在线| 深爱激情五月婷婷| 人妻夜夜爽99麻豆av| 亚洲人成网站在线播| 国产亚洲最大av| 精品熟女少妇av免费看| 亚洲精品456在线播放app| 色哟哟·www| 欧美区成人在线视频| 亚洲精品456在线播放app| 国产精品三级大全| 美女脱内裤让男人舔精品视频| 免费看日本二区| 夫妻午夜视频| 你懂的网址亚洲精品在线观看| 国产单亲对白刺激| 亚洲欧洲日产国产| 大香蕉久久网| 青春草国产在线视频| 国产亚洲91精品色在线| .国产精品久久| 男人狂女人下面高潮的视频| 国产av不卡久久| 国产黄片美女视频| 国产乱来视频区| 又粗又硬又长又爽又黄的视频| www.av在线官网国产| 精品一区二区三区视频在线| 久久久成人免费电影| 精品少妇黑人巨大在线播放| 亚洲欧美一区二区三区国产| 国产精品国产三级国产av玫瑰| 精品酒店卫生间| 色视频www国产| av免费在线看不卡| 少妇高潮的动态图|