• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Elasticity and Thermodynamic Properties of EuS Related to Phase Transition

    2014-07-19 11:18:26QiangLiuFengPeng
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2014年4期

    Qiang Liu,Feng Peng

    College of Physics and Electronic Information,Luoyang Normal University,Luoyang 471022,China

    Elasticity and Thermodynamic Properties of EuS Related to Phase Transition

    Qiang Liu,Feng Peng?

    College of Physics and Electronic Information,Luoyang Normal University,Luoyang 471022,China

    First-principles calculations of the crystal structures,phase transition,and elastic properties of EuS have been carried out with the plane-wave pseudopotential density functional theory method.The calculated values are in very good agreement with experimental data as well as some of the existing model calculations.The dependence of the elastic constants, the aggregate elastic modulus,and the elastic anisotropy on pressure have been investigated. Moreover,the variation of the Poisson’s ratio,Debye temperature,and the compressional and shear elastic wave velocities with pressure have been investigated for the f i rst time.Through the quasi-harmonic Debye model,the thermal expansions,heat capacities,Grneisen parameters and Debye temperatures dependence on the temperature and pressure are obtained in the pressure range from 0 GPa to 60 GPa and temperature range from 0 K to 800 K.

    EuS,First-principles,Pressure effect,Thermodynamic properties

    I.INTRODUCTION

    Rare-earth compounds attract considerable experimental and theoretical attention due to their interesting optical,magnetic and electronic properties[1-4]. Especially,europium chalcogenides have received renewed attention because of their technological importance[5-7]and their potential applications in spintronic and spin f i ltering devices[8].Horne et al.used the ab initio self-interaction corrected(SIC)method to discuss the electronic structure of the Eu chalcogenides and pnictides in both the divalent and trivalent states [8].Kunes and Pickett used the full potential linearized augmented planes waves(FP-LAPW)method to study the effective exchange parameters and the corresponding ordering temperatures of the(ferro)magnetic insulating Eu chalcogenides under ambient and elevated pressure conditions[9].Goncharenko et al.studied magnetic interactions of Eu chalcogenides using neutron dif f raction at very high pressures[10].The calculation of the band-structure and the structural stability of the high-pressure phases of Eu chalcogenides have been investigated by Singh et al.using the tight-binding linear muffin-tin orbital method within the atomic sphere approximation(ASA)[11,12].Svane et al.gave the light of pressure-induced valence transitions in rare earth chalcogenides[13].Recently,Rached et al.studied elastic properties of Eu chalcogenides using the fullpotential linear muffin-tin orbital(FP-LMTO)method [14].Temmerman et al.gave a review of pressure induced valence transitions in f-electron systems of Eu chalcogenides calculated with the self-interaction corrected local spin density(SIC-LSD)approximation[15]. Among the europium chalcogenides compounds very little information is available for EuS.In this work,we studied the elastic and the thermodynamic properties of EuS under pressure considering the phase transition. The high pressure phase transition and elastic properties of EuS from B1(NaCl)to B2(CsCl)are investigated in detail.All calculations are performed based on the plane-wave pseudopotential density-function theory (DFT).

    II.CALCULATED DETAILS AND THEORY

    A.Calculated details

    Vanderbilt-type non-local ultrasoft pseudopotentials (USPP)[16]are employed to describe the electron-ion interactions.The effects of exchange-correlation interaction are treated with the generalized gradient approximation(GGA)of Perdew-Burke-Ernzerhof(PBE) [17]considering the spin polarized.In the structure calculation,a plane wave basis set with energy cut-of f680.00 eV is used.Pseudo-atomic calculations are performed for S3s23p4and Eu4f75s25p66s2.For the Brillouin-zone sampling,the 12×12×12 Monkhorst-Pack mesh[18]is adopted.The self-consistent convergence of the total energy is 10-7eV/atom and the maximum force on the atom is 10-4eV/?A.All the total energy electronic structure calculations are implemented through the CASTEP code[19].

    TABLE I The lattice parameter a,bulk moduli B(in GPa), and the elastic constants cij(in GPa)at 0 K and 0 GPa for EuS.

    B.Structure property

    The energy-volume(E-V)curve can be obtained by f i tting the calculated E-Vresults to the Birch-Murnaghan EOS[20]:

    where E0is the equilibrium energy.Pressure P vs.the normalized volume Vnis obtained through the following equation:

    here B00and B0are the pressure derivative of the bulk modulus and zero pressure bulk modulus,respectively.

    To calculate the total energy EBMand the corresponding volume V for both phases,a series of different lattice parameters a are taken to obtain the total energy over a wide volume range from 0.6V0to 1.2V0,where V0is the zero pressure equilibrium primitive cell volume. Through these calculations,we can obtain the equilibrium a(Table I).It is found that a and B are in good agreement with experimental data[7,12]and other theoretical results[8,13,20,21],respectively.The ratio V/V0as a function of the applied pressure together with the experimental result is plotted in Fig.1.Our obtained data are consistent well with the experiment[7, 12].

    The estimation of the zero-temperature transition pressure between B1 and B2 structures of EuS can be obtained from the usual condition of equal enthalpies, in other words,P,at which enthalpy H=E+PV of both

    FIG.1 Variations of the normalized volume V/V0with the applied pressure P for EuS.

    FIG.2 Enthalpy H as a function of pressure P for EuS.

    phases is the same.Figure 2 shows the enthalpy as a function of the pressure for EuS.It indicates that the transition pressure from B1 to B2 is about 22.1 GPa. The datum agrees well with the experimental value of 21.5 GPa from Jayaraman et al.[7]and the calculated result of 21.1 GPa from Singh et al.[13].But it is lower than the value of 27 GPa from Rached et al.[14].

    C.Elasticity

    To calculate the elastic constants under hydrostatic pressures,the non-volume conserving strains are adopted because this method is consistent with our calculated elastic constants using the stress-strain coefficients,which are appropriate for the calculation of the elastic wave velocities.The elastic constants cijkl, with respect to the fi nite strain variables are de fi ned as [22-24]:

    where cijkldenotes the second-order derivatives with respect to the inf i nitesimal strain(Eulerian),and δ is the f i nite strain variable.For EuS(B1 or B2),there are three independent elastic constants,i.e.c11,c12,and c44.In our calculations,for all strains,δ=±0.0018, ±0.003,and±0.0006 are taken to calculate the total energies E for the strained crystal structure,respectively. To make comparison with experimental results under hydrostatic pressure,the elastic constants Cijmust be transformed into the observable cijdef i ned with respect to the f i nite strain variables[23-25].Cijis transformed into cijin the case of hydrostatic pressure P as follows:

    From the independent elastic constants above,the theoretical polycrystalline elastic modulus can be obtained. There are two approximation methods to calculate the polycrystalline modulus,namely the Voigt method[26] and the Reuss method[27].The Voigt GVand Reuss GRshear moduli are given by

    The shear modulus G and bulk modulus B can be estimated by

    The polycrystalline Young’s modulus E,anisotropy factor A,and the Poisson’s ratio σ are then calculated by

    The elastic Debye temperature Θ can be estimated from the average sound velocity vm,by the following equation [28]

    where h is Planck constant,kBis Boltzmann constant, NAis Avogadro number,n is the number of atoms in the molecule,M is the molecular weight,and ρ is the density.vmis approximately calculated from

    where vpand vsare the compressional and shear wave velocities,respectively,which can be obtained from Navier’s equation[29]

    III.RESULTS AND DISCUSSION

    A.Elasticity

    Our calculated cijof the EuS for two phases at zero pressure and zero temperature are listed in Table I.Our result is consistent with the data from Shapira et al. [21],but is inconsistent with the value from Rached et al.[14].In Table II,we present the pressure dependence on the cij,B,and G of EuS at di ff erent pressures. It is shown that c11varies substantially under applied pressure compared with the variations in c12and c44. c11represents elasticity in length.A longitudinal strain produces a change in c11.c12and c44are related to the elasticity in shape,which is a shear constant.A transverse strain causes a change in shape without a change in volume.Therefore,c12and c44are less sensitive to pressure as compared with c11.Moreover,B is sensitive to press as compared with G.

    As it is known,the elastic constants determine the response of the crystal to external forces.They play an important part in determining the strength of the material.The single crystal shear moduli for the{100} plane along the[010]direction and for the{110}plane along the[110]direction are simply given by

    They are listed in Table II together with Young’s modulus E and Eh100i,σ and A under applied pressures.

    For B1 phase,G{100}are always lower than G{110}from 0 GPa to 20 GPa,indicating that it is harder to shear on the{110}plane along the[110]direction than on the{100}plane along the[010]direction;for B2 phase, the result is contrary.G represents the resistance to plastic deformation,while B represents the resistance to fracture[30].B/G of polycrystalline phases is considered.A high(low)B/G value is associated with ductility(brittleness).The critical value which separates ductile and brittle materials is about 1.75.It is interesting to try to understand the microscopic originof this empirical parameter.For both two phases,when P>10 GPa,the calculated values of the B/G(>1.75) increase with pressures,which means that pressure can improve ductility.

    TABLE II The calculated elastic constants cij(in GPa),and aggregate elastic moduli(B,G,E,in GPa),the quotient of bulk to shear modulus B/G,the elastic anisotropic parameter,the Poisson’s ratio σ,the Debye temperature Θ(in K)of the EuS under pressure P(in GPa)at zero temperature.

    FIG.3 The calculated elastic velocities v vs.pressure P at 0 K.

    The Young’s modulus E and Poisson’s ratio σ are important for technological and engineering applications. E is def i ned as the ratio from stress to strain,and is used to provide a measure of the stif f ness of the solid, i.e.,the larger the value of E,the stiffer the material is.v provides more information about the characteristics of the bonding forces than any of the other elastic constants.The v=0.25 and 0.5 are the lower limit and upper limit for central force solids,respectively.In our case,v increases with the applied pressure for both phases(Table II).The obtained v values are very close to the value of 0.30 which indicates that the interatomic forces in the EuS are central forces.

    The elastic anisotropy of crystals has an important implication in engineering science since it is highly correlated with the possibility to induce microcracks in the materials[31].The anisotropy factor was evaluated to provide insight on the elastic anisotropy of the EuS.For a completely isotropic material,the A factor takes the value of 1,while values smaller or greater than unity measure the degree of elastic anisotropy.In the wide range of applied pressure,the obtained anisotropy factors are listed in Table II.One can f i nd that the B1-EuS exhibits low elastic anisotropy at zero pressure and the degree of the anisotropy increases with pressure;for B2-EuS,the degree of the anisotropy decreases with pressure.

    FIG.4 The calculated heat capacity CPof B1 structure of EuS vs.temperature T at ambient pressure P.The dashed line data are from phonon dispersion,and the solid line data are from quasi-harmonic Debye model.

    The obtained compressional,shear and average wave velocities are illustrated in Fig.3.It is shown that the vs,vp,and vmincrease gradually with pressure.However,vpis more sensitive to pressure than vsand vm.

    B.Thermodynamic properties

    Through the quasi-harmonic Debye model,the thermodynamic properties of EuS are obtained.The calculated details can be seen in our recent works[32-35]. To test the validity of quasi-harmonic Debye model,we calculated the phonon dispersion of B1-EuS by the linear response method and obtained the thermodynamic properties from the phonon dispersion.Figure 4 shows that heat capacities curves of B1-EuS vs.temperature from different methods f i t very well.So,the quasiharmonic Debye model is valid in this work.

    FIG.5 Pressure P(a)and temperature T(b)dependence of the isothermal bulk modulus B for EuS.

    FIG.6 Temperature T dependence of the heat capacity CPfor EuS.

    Figure 5 presents the relation of the isothermal bulk modulus as a function of temperature T up to 800 K at P=0,30,and 60 GPa,respectively.At lower pressures, the isothermal bulk modulus is nearly a constant when T<200 K,but it drops remarkably when T>200 K, which are in accordance with the relationships between the ratio V/V0and T as shown in Fig.1.It demonstrates that dramatic volume variation leads to the rapid decreases in the isothermal bulk modulus.One can f i nd that the effect of T on the isothermal bulk modulus is less important than that of P on it.

    The calculated heat capacity CPat constant pressure and heat capacity CVat constant volume with T at different P are shown in Fig.6.There is little difference between CPand CVat low temperatures.However,at high temperature,the CVapproaches to a constant,CPincreases monotonously with the increment of the temperature.The values follow the Debye model at low temperature(CV(T)-T3)and the classical behavior(CV(T)-3R for mono-atomic solids)is found at sufficiently high temperatures,obeying Dulong and Petit’s Rule.From Fig.6,one can also see that the heat capacity increases with the temperatures at the same pressure and decreases with the pressures at the same temperature,and the inf l uences of the temperature on the heat capacity are much more significant than that of the pressure on it.

    FIG.7VariationoftheDebyetemperatureΘand Gr¨uneisen parameter γ with pressure P.

    FIG.8 Temperature T(a)and pressure P(b)dependence of the thermal expansion coefficient α for EuS.

    The Debye temperature Θ is a fundamental parameter of a material which is link to many physical properties such as speci fic heat,elastic constants,and melting point[36].The Debye temperature and the Gru¨neisen parameter at various temperatures and di ff erent pressures are presented in Fig.7.Our calculated Debye temperature at T=0 K is 278.51 J/(mol K),which is in agreement with the results of 274.04 J/(mol K) from Eq.(12)and 276 J/(mol K)from Ref.[21]and 280 J/(mol K)from Ref.[37].From Fig.7,one can fi nd:(i)When the temperature keeps constant,the Debye temperature increases almost linearly with applied pressures;while the Gru¨neisen parameter decreases smoothly with pressures.(ii)When the pressure keeps constant,the Debye temperature decreases with the increasing temperatures;while the Gru¨neisen parameter increases with the increasing temperatures.In virtue of the fact that the e ff ect of increasing pressure on the material is the same as decreasing temperature of the material.(iii)The Debye temperature at the temperature of 800 K is lower than that at 300 K,which shows that the vibration frequency of the particles in EuS changes with the pressures and the temperatures.

    The thermal expansion coefficient α with T and P for EuS is presented in Fig.8.From Fig.8(a),α increaseswith T3at low temperature and gradually approaches a linear increase at high temperatures and then the increasing trend becomes gentler.The effects of pressure on α are very small at low temperatures;the effects are increasingly obvious as the temperature increases. As P increases,α decreases rapidly and the effects of T become less and less pronounced,resulting in linear high-temperature behaviour.It is noteworthy that the high-temperature dependence of α is not linear at low pressures(0 GPa);this is an indication of the inadequacy of the quasi-harmonic approximation at high temperature and low pressure.It can be found that α converges to a constant value at high temperature and pressure.However,from Fig.8(b),as the pressure increases,α decreases almost exponentially,and the higher the temperature is,the faster α decreases. It shows that the effect of temperature is much greater than that of pressure on α.

    IV.CONCLUSION

    The structural properties and phase transition and elastic constants of EuS at high pressure are computed by the ultrasoft pseudopotentials within the generalized gradient approximation in the frame of density functional theory.We carry out total energy calculations over a wide range of volume from 0.6V0to 1.2V0,and obtain the equilibrium ratio of the normalized volume V/V0for a given volume.The obtained pressure dependence on the normalized volume is in excellent agreement with the experimental result.

    The aggregate elastic modulus(B,G,E),Poisson’s ratio and the shear anisotropic factor A of EuS at high pressure from 0 GPa to 60 GPa considering phase transition are also calculated.An analysis of the calculated parameters reveals the anisotropy in EuS.When P>10 GPa,the calculated values of the B/G(>1.75) increase with pressure,which indicates that pressure can improve ductility.The obtained Poisson’s ratios are very close to the value of 0.30,which means that the interatomic forces in the EuS are central forces.The compressional and shear wave velocities,and the Debye temperature are successfully obtained.The experimental values of the sound velocity,Poisson ratio,and Debye temperature under high pressure are not available for comparison yet,but considering the case of Refs.[38, 39],our predicted data should be credible.

    The other thermodynamic properties are predicted using the quasi-harmonic Debye model.It is found that the high temperature leads to a smaller adiabatic bulk modulus,a smaller Debye temperature,a larger Gr¨uneisen parameter,a larger heat capacity,and a bigger thermal expansion coefficient at constant pressure. But the high pressure gives birth to a lager isothermal bulk modulus,a larger Debye temperature,a smaller Gr¨uneisen parameter,a smaller heat capacity,and a smaller thermal expansion coefficient at constant temperature.The thermal expansion coefficient and heat capacity at constant volume are shown to converge to a nearly constant value at high pressures and temperatures.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.40804034 and No.11304141),the Natural Science Foundation of the Education Department of Henan Province of China (No.2011B140014),the Program for the Science and Technology Department of Henan Province of China (No.112102310641),and the Program for Innovative Research Team(in Science and Technology)in University of Henan Province(No.13IRTSTHN020).

    [1]F.J.Ried,L.K.Matsan,J.F.Miller,and R.C.Maines, J.Phys.Chem.Solids 25,969(1964).

    [2]R.Didchenko and F.P.Gortsema,J.Phys.Chem. Solids 24,863(1963).

    [3]R.Akimoto,M.Kobayashi,and T.Suzuki,J.Phys. Soc.Jpn.62,1490(1993).

    [4]I.N.Goncharenko and I.Mirebeau,Europhys.Lett.37, 633(1997).

    [5]C.J.M.Rooymans,Solid State Commun.3,421 (1965).

    [6]A.Chatterjee,A.K.Singh,and A.Jayaraman,Phys. Rev.B 6,2285(1972).

    [7]A.Jayaraman,A.K.Singh,A.Chatterjee,and S.U. Devi,Phys.Rev.B 9,2513(1974).

    [8]M.Horne,P.Strange,W.M.Temmerman,Z.Szotek, A.Svane,and H.Winter,J.Phys.:Condens.Matter 16,5061(2004).

    [9]J.Kunes and W.E.Pickett,Physica B 359,205(2005).

    [10]I.N.Goncharenko and I.Mirebeau,Phys.Rev.Lett. 80,1082(1998).

    [11]D.Singh,M.Rajagopalan,and A.K.Bandyopadhyay, Solid State Commun.112,39(1999).

    [12]D.Singh,M.Rajagopalan,M.Husain,and A.K. Bandyopadhyay,Solid State Commun.115,323(2000).

    [13]A.Svane,P.Strange,W.M.Temmerman,Z.Szotek, H.Winter,and L.Petit,Phys.Stat.Sol.(b)223,105 (2001).

    [14]D.Rached,M.Ameri,M.Rabah,R.Khenata,A. Bouhemadou,N.Benkhettou,and M.D.el Hannani, Phys.Stat.Sol.(b)244,1988(2007).

    [15]W.M.Temmerman,A.Svane,L.Petit,M.L¨uders,P. Strange,and Z.Szotek,Phase Trans.80,415(2007).

    [16]D.Vanderbilt,Phys.Rev.B 41,7892(1990).

    [17]J.P.Perdew,K.Burke,and M.Ernzerhof,Phys.Rev. Lett.77,3865(1996).

    [18]H.J.Monkhorst and J.D.Pack,Phys.Rev.B 13,5188 (1976).

    [19]M.D.Segall,P.J.D.Lindan,M.J.Probert,C.J. Pickard,P.J.Hasnip,S.J.Clark,and M.C.Payne,J. Phys.:Condens.Matter 14,2717(2002).

    [20]A.Svane,G.Santi,Z.Szotek,W.M.Temmerman,P. Strange,M.Horne,G.Vaitheeswaran,V.Kanchana,L. Petit,and H.Winter,Phys.Stat.Sol.(b)241,3185 (2004).

    [21]Y.Shapira and T.B.Reed,Conf.Proc.5,837(1971).

    [22]J.Wang,J.Li,S.Yip,S.Phillpot,and D.Wolf,Phys. Rev.B 52,12627(1995).

    [23]D.C.Wallace,Thermodynamics of Crystals,New York: John Wiley&Sons,20(1972).

    [24]B.B.Karki,G.J.Ackland,and J.Crain,J.Phys.: Condens.Matter 9,8579(1997).

    [25]T.H.K.Barron and M.L.Klein,Proc.Phys.Soc.85, 523(1965).

    [26]K.Tsubouchi and N.Mikoshiba,IEEE.Trans.Sonics Ultrason.Su-32,634(1985).

    [27]A.Reuss,Z.Angew.Math.Mech.9,49(1929).

    [28]G.V.Sin’ko and N.A.Smirnov,J.Phys.:Condens. Matter 14,6989(2002).

    [29]O.L.Anderson,J.Phys.Chem.Solids 24,909(1963). [30]S.F.Pugh,Philos.Mag.45,823(1954).

    [31]V.Tvergaard and J.W.Hutchinson,J.Am.Ceram. Soc.71,157(1988).

    [32]F.Peng,Q.Liu,H.Z.Fu,and X.D.Yang,Solid State Commun.149,56(2009).

    [33]F.Peng,H.Z.Fu,and X.D.Yang,Solid State Commun.145,91(2008).

    [34]F.Peng,Y.Han,H.Z.Fu,and X.Cheng,Phys.Stat. Sol.(b)245,2743(2008).

    [35]F.Peng,H.Z.Fu,and X.D.Yang,Phys.B 403,2851 (2008).

    [36]P.Ravindran,L.Fast,P.A.Korzhavyi,B.Johansson,J.Wills,and O.Eriksson,J.Appl.Phys.84,4891 (1998).

    [37]E.M.Dudnik,G.V.Lashkarev,Y.B.Paderno,and V. A.Obolonchik,Inorg.Mater.2,833(1966).

    [38]T.Iitaka and T.Ebisuzaki,Phys.Rev.B 64,012103 (2001).

    [39]O.G¨ulseren and R.E.Cohen,Phys.Rev.B 65,064103 (2002).

    ceived on March 16,2014;Accepted on May 8,2014)

    ?Author to whom correspondence should be addressed.E-mail:pengfengscu@gmail.com,Tel.:+86-379-62960015,FAX:+86-379-65526093

    亚洲国产中文字幕在线视频| cao死你这个sao货| 国内少妇人妻偷人精品xxx网站 | 日本 av在线| 在线观看免费午夜福利视频| 老汉色∧v一级毛片| 国产亚洲av高清不卡| 一级毛片女人18水好多| 久久久久久久久免费视频了| 99久久无色码亚洲精品果冻| 一级a爱片免费观看的视频| 99国产精品99久久久久| 久久久久国内视频| 午夜免费成人在线视频| svipshipincom国产片| 极品教师在线免费播放| 夜夜看夜夜爽夜夜摸| 天堂网av新在线| 麻豆av在线久日| 熟女电影av网| 日本撒尿小便嘘嘘汇集6| 99久久精品热视频| 国产伦在线观看视频一区| 精品无人区乱码1区二区| 舔av片在线| 国产精品影院久久| 免费看光身美女| 看免费av毛片| 人妻久久中文字幕网| 精品免费久久久久久久清纯| 久久精品国产清高在天天线| 国产欧美日韩一区二区三| 国产乱人伦免费视频| 国产单亲对白刺激| 高清毛片免费观看视频网站| 国产精品久久久久久精品电影| 国产精品亚洲美女久久久| 丰满人妻熟妇乱又伦精品不卡| 午夜激情欧美在线| 露出奶头的视频| 老汉色∧v一级毛片| 九色国产91popny在线| 国产欧美日韩一区二区精品| 成人特级av手机在线观看| 久久国产乱子伦精品免费另类| 老熟妇乱子伦视频在线观看| 亚洲人成网站高清观看| 国产亚洲欧美98| 久久久色成人| 少妇裸体淫交视频免费看高清| 热99在线观看视频| 欧美日韩黄片免| 熟妇人妻久久中文字幕3abv| 1024手机看黄色片| 久久精品国产清高在天天线| 亚洲精品在线美女| 丁香六月欧美| 亚洲男人的天堂狠狠| 免费人成视频x8x8入口观看| 一二三四社区在线视频社区8| 极品教师在线免费播放| 日韩三级视频一区二区三区| 亚洲成人中文字幕在线播放| 黄色女人牲交| 亚洲,欧美精品.| 日韩欧美三级三区| 淫秽高清视频在线观看| 欧美成人性av电影在线观看| 精品免费久久久久久久清纯| 亚洲精品美女久久久久99蜜臀| 在线视频色国产色| 亚洲一区二区三区色噜噜| 精品国产超薄肉色丝袜足j| 午夜日韩欧美国产| h日本视频在线播放| 色综合婷婷激情| 超碰成人久久| 婷婷精品国产亚洲av| 人妻久久中文字幕网| 国产视频内射| bbb黄色大片| 国产精品美女特级片免费视频播放器 | 亚洲午夜精品一区,二区,三区| 老司机福利观看| 99精品久久久久人妻精品| 免费观看的影片在线观看| 亚洲精华国产精华精| xxx96com| 国产亚洲欧美98| 国产精品久久久久久人妻精品电影| 久久精品综合一区二区三区| 亚洲国产精品sss在线观看| 亚洲国产日韩欧美精品在线观看 | www.999成人在线观看| 国产亚洲精品久久久久久毛片| 麻豆一二三区av精品| 国产激情偷乱视频一区二区| 国产av麻豆久久久久久久| 日韩大尺度精品在线看网址| 男女那种视频在线观看| 制服人妻中文乱码| 精品久久久久久久久久免费视频| 成人18禁在线播放| 99久久成人亚洲精品观看| 国产人伦9x9x在线观看| 母亲3免费完整高清在线观看| 色播亚洲综合网| 啦啦啦免费观看视频1| 丰满人妻熟妇乱又伦精品不卡| 日本撒尿小便嘘嘘汇集6| 中文字幕人成人乱码亚洲影| 熟女电影av网| 免费在线观看影片大全网站| 中文字幕久久专区| aaaaa片日本免费| 一级作爱视频免费观看| 久久久水蜜桃国产精品网| 波多野结衣高清无吗| 日本免费一区二区三区高清不卡| 99久久精品一区二区三区| 国产久久久一区二区三区| 国产单亲对白刺激| 免费搜索国产男女视频| 亚洲av成人av| 久久久久久久久久黄片| 日韩免费av在线播放| 一本综合久久免费| 91九色精品人成在线观看| 成人亚洲精品av一区二区| 黄片大片在线免费观看| 性色avwww在线观看| 18禁国产床啪视频网站| 欧美日本亚洲视频在线播放| 亚洲av成人不卡在线观看播放网| 中文资源天堂在线| 高清在线国产一区| 婷婷丁香在线五月| 色播亚洲综合网| 色综合站精品国产| 国产精品一及| 国产高潮美女av| 身体一侧抽搐| 欧美精品啪啪一区二区三区| 久久人妻av系列| 精品久久久久久久久久免费视频| 久久久久性生活片| 天天躁日日操中文字幕| 国模一区二区三区四区视频 | 国产精品野战在线观看| 国产97色在线日韩免费| 日本 欧美在线| 色精品久久人妻99蜜桃| 长腿黑丝高跟| 少妇人妻一区二区三区视频| 在线视频色国产色| 精品福利观看| 9191精品国产免费久久| 中文字幕av在线有码专区| 99热这里只有精品一区 | 成人三级做爰电影| 别揉我奶头~嗯~啊~动态视频| 给我免费播放毛片高清在线观看| 亚洲中文av在线| 欧美性猛交╳xxx乱大交人| 草草在线视频免费看| 999久久久精品免费观看国产| 亚洲午夜精品一区,二区,三区| 国产av麻豆久久久久久久| 欧美成人免费av一区二区三区| 国产激情久久老熟女| 久久久久国内视频| 最好的美女福利视频网| 人人妻人人看人人澡| 成人特级av手机在线观看| 欧美+亚洲+日韩+国产| 变态另类成人亚洲欧美熟女| 啦啦啦观看免费观看视频高清| 国产成人影院久久av| 亚洲中文av在线| 少妇人妻一区二区三区视频| 激情在线观看视频在线高清| 亚洲国产中文字幕在线视频| 狂野欧美白嫩少妇大欣赏| 90打野战视频偷拍视频| 久久久久亚洲av毛片大全| 免费看光身美女| 麻豆成人av在线观看| 亚洲一区二区三区色噜噜| 国产精品影院久久| 亚洲熟女毛片儿| 欧美极品一区二区三区四区| 最近最新免费中文字幕在线| 久久亚洲真实| 日本黄色视频三级网站网址| 亚洲aⅴ乱码一区二区在线播放| 999精品在线视频| 一个人看的www免费观看视频| 亚洲欧美精品综合久久99| 观看美女的网站| 亚洲激情在线av| 亚洲 国产 在线| 亚洲国产日韩欧美精品在线观看 | 国产精品久久久久久久电影 | 嫩草影院精品99| 亚洲乱码一区二区免费版| 亚洲 国产 在线| 国产激情偷乱视频一区二区| 国产日本99.免费观看| 99在线视频只有这里精品首页| 久久久久久久午夜电影| 91av网一区二区| 亚洲自拍偷在线| 日韩中文字幕欧美一区二区| 999精品在线视频| 国产精品久久久久久久电影 | 国产精品一及| 成人特级黄色片久久久久久久| 国产熟女xx| 搡老熟女国产l中国老女人| 亚洲国产日韩欧美精品在线观看 | 91av网一区二区| 亚洲中文字幕日韩| 又黄又爽又免费观看的视频| 亚洲欧美精品综合一区二区三区| 99国产精品99久久久久| www日本在线高清视频| 国产精品亚洲一级av第二区| 男人舔女人的私密视频| 一区二区三区高清视频在线| 国产乱人伦免费视频| 久久久久国产精品人妻aⅴ院| 激情在线观看视频在线高清| 日韩欧美国产一区二区入口| 欧美日本亚洲视频在线播放| 日韩欧美国产一区二区入口| 欧美日韩瑟瑟在线播放| 一本精品99久久精品77| tocl精华| 桃红色精品国产亚洲av| 天天躁日日操中文字幕| 免费人成视频x8x8入口观看| 俄罗斯特黄特色一大片| 最近视频中文字幕2019在线8| 欧美黑人欧美精品刺激| 婷婷六月久久综合丁香| 啦啦啦免费观看视频1| 亚洲国产欧美人成| 床上黄色一级片| 国产成人精品久久二区二区91| 欧美在线一区亚洲| 男女视频在线观看网站免费| 听说在线观看完整版免费高清| 亚洲片人在线观看| 国产av在哪里看| 亚洲va日本ⅴa欧美va伊人久久| 啦啦啦韩国在线观看视频| 中文字幕久久专区| 婷婷亚洲欧美| 一本综合久久免费| 在线观看舔阴道视频| 亚洲中文日韩欧美视频| 看片在线看免费视频| 中文字幕av在线有码专区| 日日夜夜操网爽| 国产成人av教育| 欧美乱妇无乱码| 亚洲欧美一区二区三区黑人| 精品国产乱码久久久久久男人| 少妇裸体淫交视频免费看高清| 国产精品久久久久久人妻精品电影| 亚洲五月婷婷丁香| 91久久精品国产一区二区成人 | 狠狠狠狠99中文字幕| 日本a在线网址| 十八禁网站免费在线| 亚洲美女视频黄频| 国产精品影院久久| 三级国产精品欧美在线观看 | 在线看三级毛片| 淫秽高清视频在线观看| 婷婷六月久久综合丁香| 国产成人系列免费观看| 国产高潮美女av| 亚洲精品一区av在线观看| av福利片在线观看| 国产激情偷乱视频一区二区| 两个人看的免费小视频| 男人和女人高潮做爰伦理| 老汉色av国产亚洲站长工具| 久久精品人妻少妇| 亚洲成人免费电影在线观看| 婷婷精品国产亚洲av在线| 999久久久精品免费观看国产| 757午夜福利合集在线观看| 国产精品乱码一区二三区的特点| 日韩大尺度精品在线看网址| 国内久久婷婷六月综合欲色啪| 日本黄色片子视频| 欧美色视频一区免费| 欧美成人性av电影在线观看| 99在线人妻在线中文字幕| 国产蜜桃级精品一区二区三区| 啦啦啦免费观看视频1| 老熟妇仑乱视频hdxx| 老司机在亚洲福利影院| 人妻丰满熟妇av一区二区三区| 午夜久久久久精精品| 一个人观看的视频www高清免费观看 | 一边摸一边抽搐一进一小说| 夜夜爽天天搞| 亚洲国产欧美人成| 麻豆国产97在线/欧美| 狠狠狠狠99中文字幕| 在线观看午夜福利视频| 久久性视频一级片| 99久久无色码亚洲精品果冻| 亚洲av熟女| 麻豆国产av国片精品| 麻豆av在线久日| 亚洲五月婷婷丁香| 一边摸一边抽搐一进一小说| 精品久久久久久久末码| x7x7x7水蜜桃| 操出白浆在线播放| 老司机午夜十八禁免费视频| 亚洲国产色片| 久9热在线精品视频| 国产精品亚洲av一区麻豆| 国产日本99.免费观看| 在线播放国产精品三级| 日本三级黄在线观看| 成人亚洲精品av一区二区| 国产精品久久电影中文字幕| 夜夜夜夜夜久久久久| 国产成人欧美在线观看| 欧美zozozo另类| 我要搜黄色片| 美女cb高潮喷水在线观看 | 一级作爱视频免费观看| 午夜精品久久久久久毛片777| 国产精品亚洲av一区麻豆| 午夜精品一区二区三区免费看| 天堂网av新在线| 日本熟妇午夜| 亚洲午夜精品一区,二区,三区| 欧美高清成人免费视频www| 两性午夜刺激爽爽歪歪视频在线观看| 黑人操中国人逼视频| 久久精品综合一区二区三区| 久久精品影院6| 一个人免费在线观看的高清视频| 免费观看的影片在线观看| 久久人妻av系列| 亚洲无线观看免费| 亚洲国产中文字幕在线视频| 国产综合懂色| 亚洲中文日韩欧美视频| 成人精品一区二区免费| 免费看光身美女| 国内精品一区二区在线观看| 人妻夜夜爽99麻豆av| 久久欧美精品欧美久久欧美| 日本五十路高清| 国产野战对白在线观看| 中文字幕人成人乱码亚洲影| 亚洲国产欧洲综合997久久,| 五月玫瑰六月丁香| 熟女人妻精品中文字幕| 可以在线观看的亚洲视频| 久久精品国产99精品国产亚洲性色| 又爽又黄无遮挡网站| 91麻豆av在线| 中文资源天堂在线| 激情在线观看视频在线高清| 欧美又色又爽又黄视频| 少妇人妻一区二区三区视频| 国产91精品成人一区二区三区| 色精品久久人妻99蜜桃| 桃色一区二区三区在线观看| 欧美一级a爱片免费观看看| 国产精品国产高清国产av| 三级国产精品欧美在线观看 | 亚洲精品中文字幕一二三四区| 亚洲成av人片免费观看| 精品无人区乱码1区二区| 黄色丝袜av网址大全| 搞女人的毛片| 日本五十路高清| 97超视频在线观看视频| 亚洲av熟女| 99热6这里只有精品| 国内久久婷婷六月综合欲色啪| 免费观看精品视频网站| 波多野结衣巨乳人妻| 亚洲精品在线美女| 国产精品久久久久久精品电影| 亚洲av第一区精品v没综合| 欧美大码av| 一级毛片精品| 成人精品一区二区免费| 国产精品久久久久久久电影 | 天堂影院成人在线观看| 久久久久久久久中文| 精品不卡国产一区二区三区| 久久久国产欧美日韩av| 美女高潮喷水抽搐中文字幕| 日本 欧美在线| 中出人妻视频一区二区| 国产伦精品一区二区三区四那| 日韩精品中文字幕看吧| 午夜免费成人在线视频| 久久久久久久久久黄片| 俺也久久电影网| 99久久综合精品五月天人人| 中文字幕久久专区| 亚洲专区字幕在线| 亚洲精品一区av在线观看| 国产精品av久久久久免费| 国产美女午夜福利| 九色国产91popny在线| 欧美日韩综合久久久久久 | xxx96com| 黄色成人免费大全| 国产精品久久久久久精品电影| 精品国产乱码久久久久久男人| 在线观看午夜福利视频| 免费观看的影片在线观看| 一本一本综合久久| 欧美色欧美亚洲另类二区| 真实男女啪啪啪动态图| 看片在线看免费视频| 国产极品精品免费视频能看的| 国产成人系列免费观看| av在线天堂中文字幕| 精品欧美国产一区二区三| 午夜久久久久精精品| 一个人看的www免费观看视频| 九九在线视频观看精品| 日韩欧美在线乱码| 欧美色欧美亚洲另类二区| 美女扒开内裤让男人捅视频| 久久久国产成人精品二区| 淫妇啪啪啪对白视频| 国产亚洲精品av在线| 亚洲国产中文字幕在线视频| 成人一区二区视频在线观看| 久久伊人香网站| 成人18禁在线播放| 久久精品亚洲精品国产色婷小说| netflix在线观看网站| 亚洲av中文字字幕乱码综合| 国产精品99久久久久久久久| 三级男女做爰猛烈吃奶摸视频| 国产精品 欧美亚洲| 日本三级黄在线观看| 国产亚洲精品一区二区www| 亚洲精品色激情综合| 久久九九热精品免费| 成人高潮视频无遮挡免费网站| 日本成人三级电影网站| 亚洲美女黄片视频| 狂野欧美激情性xxxx| 91麻豆av在线| 精品国产乱子伦一区二区三区| 久久精品91蜜桃| 色综合亚洲欧美另类图片| 日韩高清综合在线| 亚洲成a人片在线一区二区| 亚洲欧美日韩高清在线视频| 欧美日韩精品网址| 在线观看一区二区三区| 女生性感内裤真人,穿戴方法视频| 亚洲欧美激情综合另类| 99久久99久久久精品蜜桃| 国内少妇人妻偷人精品xxx网站 | 狂野欧美激情性xxxx| 中文字幕最新亚洲高清| 99久久精品一区二区三区| 伦理电影免费视频| 久久久久久久久中文| 成年版毛片免费区| 久久久国产欧美日韩av| 国产精品爽爽va在线观看网站| 最近在线观看免费完整版| 日韩欧美国产在线观看| 国产午夜精品论理片| 亚洲精品一区av在线观看| 亚洲av美国av| 这个男人来自地球电影免费观看| 日本一二三区视频观看| 中文字幕久久专区| 国产亚洲精品久久久久久毛片| 久久亚洲精品不卡| 18禁美女被吸乳视频| www国产在线视频色| 国产激情欧美一区二区| 不卡一级毛片| 美女黄网站色视频| 毛片女人毛片| 九色国产91popny在线| 婷婷精品国产亚洲av| 久久亚洲精品不卡| 91久久精品国产一区二区成人 | 在线播放国产精品三级| 在线免费观看不下载黄p国产 | 亚洲九九香蕉| 性欧美人与动物交配| 黑人欧美特级aaaaaa片| 国内精品一区二区在线观看| 色在线成人网| 中文字幕熟女人妻在线| 午夜精品在线福利| 日本一本二区三区精品| 人妻夜夜爽99麻豆av| 女生性感内裤真人,穿戴方法视频| 男人和女人高潮做爰伦理| 成人精品一区二区免费| 日本免费一区二区三区高清不卡| 亚洲九九香蕉| 亚洲人与动物交配视频| 国产激情欧美一区二区| 国产高潮美女av| 亚洲精品粉嫩美女一区| 99在线视频只有这里精品首页| 国产高清三级在线| 身体一侧抽搐| 九色成人免费人妻av| 国产成人影院久久av| 亚洲国产色片| 精品一区二区三区av网在线观看| 亚洲国产精品合色在线| 午夜a级毛片| 性色avwww在线观看| 最近最新中文字幕大全电影3| 亚洲成av人片在线播放无| 男女下面进入的视频免费午夜| 99久久无色码亚洲精品果冻| 人妻丰满熟妇av一区二区三区| 国产毛片a区久久久久| 岛国视频午夜一区免费看| 免费在线观看成人毛片| 又黄又爽又免费观看的视频| 久久精品国产清高在天天线| 亚洲成人久久爱视频| 亚洲av成人一区二区三| 一级a爱片免费观看的视频| 国产精品久久久久久人妻精品电影| 亚洲国产日韩欧美精品在线观看 | 色视频www国产| 亚洲国产精品合色在线| 人人妻,人人澡人人爽秒播| 桃红色精品国产亚洲av| 国产午夜精品论理片| 色av中文字幕| www.自偷自拍.com| 欧美成人一区二区免费高清观看 | 国产精品综合久久久久久久免费| 极品教师在线免费播放| 久久伊人香网站| 国产乱人伦免费视频| 国产精品爽爽va在线观看网站| 夜夜夜夜夜久久久久| 在线观看舔阴道视频| 久久这里只有精品中国| 黄色片一级片一级黄色片| 亚洲va日本ⅴa欧美va伊人久久| 免费av毛片视频| 久久精品国产99精品国产亚洲性色| 中文亚洲av片在线观看爽| 深夜精品福利| 免费人成视频x8x8入口观看| 成人一区二区视频在线观看| 色噜噜av男人的天堂激情| 久久天躁狠狠躁夜夜2o2o| 国产aⅴ精品一区二区三区波| 久久欧美精品欧美久久欧美| 99在线视频只有这里精品首页| 网址你懂的国产日韩在线| 国产伦人伦偷精品视频| 怎么达到女性高潮| 在线永久观看黄色视频| 午夜成年电影在线免费观看| 国产野战对白在线观看| x7x7x7水蜜桃| 嫩草影视91久久| 国产高清视频在线观看网站| 俺也久久电影网| 99久久精品一区二区三区| 波多野结衣高清无吗| 国产真实乱freesex| 小蜜桃在线观看免费完整版高清| 在线免费观看的www视频| 美女 人体艺术 gogo| 国产精品99久久99久久久不卡| 亚洲成人中文字幕在线播放| 欧美xxxx黑人xx丫x性爽| 波多野结衣巨乳人妻| 一个人看视频在线观看www免费 | 精品国内亚洲2022精品成人| 悠悠久久av| 亚洲av电影在线进入| 啦啦啦韩国在线观看视频| 亚洲av免费在线观看| 久久久久国产一级毛片高清牌| 白带黄色成豆腐渣| 国产一区二区激情短视频| 天堂影院成人在线观看| 欧美+亚洲+日韩+国产| 99国产综合亚洲精品| 91在线观看av| 岛国视频午夜一区免费看| 国产 一区 欧美 日韩| 每晚都被弄得嗷嗷叫到高潮| 国产亚洲欧美在线一区二区| 国产成人一区二区三区免费视频网站|