• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Elasticity and Thermodynamic Properties of EuS Related to Phase Transition

    2014-07-19 11:18:26QiangLiuFengPeng
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2014年4期

    Qiang Liu,Feng Peng

    College of Physics and Electronic Information,Luoyang Normal University,Luoyang 471022,China

    Elasticity and Thermodynamic Properties of EuS Related to Phase Transition

    Qiang Liu,Feng Peng?

    College of Physics and Electronic Information,Luoyang Normal University,Luoyang 471022,China

    First-principles calculations of the crystal structures,phase transition,and elastic properties of EuS have been carried out with the plane-wave pseudopotential density functional theory method.The calculated values are in very good agreement with experimental data as well as some of the existing model calculations.The dependence of the elastic constants, the aggregate elastic modulus,and the elastic anisotropy on pressure have been investigated. Moreover,the variation of the Poisson’s ratio,Debye temperature,and the compressional and shear elastic wave velocities with pressure have been investigated for the f i rst time.Through the quasi-harmonic Debye model,the thermal expansions,heat capacities,Grneisen parameters and Debye temperatures dependence on the temperature and pressure are obtained in the pressure range from 0 GPa to 60 GPa and temperature range from 0 K to 800 K.

    EuS,First-principles,Pressure effect,Thermodynamic properties

    I.INTRODUCTION

    Rare-earth compounds attract considerable experimental and theoretical attention due to their interesting optical,magnetic and electronic properties[1-4]. Especially,europium chalcogenides have received renewed attention because of their technological importance[5-7]and their potential applications in spintronic and spin f i ltering devices[8].Horne et al.used the ab initio self-interaction corrected(SIC)method to discuss the electronic structure of the Eu chalcogenides and pnictides in both the divalent and trivalent states [8].Kunes and Pickett used the full potential linearized augmented planes waves(FP-LAPW)method to study the effective exchange parameters and the corresponding ordering temperatures of the(ferro)magnetic insulating Eu chalcogenides under ambient and elevated pressure conditions[9].Goncharenko et al.studied magnetic interactions of Eu chalcogenides using neutron dif f raction at very high pressures[10].The calculation of the band-structure and the structural stability of the high-pressure phases of Eu chalcogenides have been investigated by Singh et al.using the tight-binding linear muffin-tin orbital method within the atomic sphere approximation(ASA)[11,12].Svane et al.gave the light of pressure-induced valence transitions in rare earth chalcogenides[13].Recently,Rached et al.studied elastic properties of Eu chalcogenides using the fullpotential linear muffin-tin orbital(FP-LMTO)method [14].Temmerman et al.gave a review of pressure induced valence transitions in f-electron systems of Eu chalcogenides calculated with the self-interaction corrected local spin density(SIC-LSD)approximation[15]. Among the europium chalcogenides compounds very little information is available for EuS.In this work,we studied the elastic and the thermodynamic properties of EuS under pressure considering the phase transition. The high pressure phase transition and elastic properties of EuS from B1(NaCl)to B2(CsCl)are investigated in detail.All calculations are performed based on the plane-wave pseudopotential density-function theory (DFT).

    II.CALCULATED DETAILS AND THEORY

    A.Calculated details

    Vanderbilt-type non-local ultrasoft pseudopotentials (USPP)[16]are employed to describe the electron-ion interactions.The effects of exchange-correlation interaction are treated with the generalized gradient approximation(GGA)of Perdew-Burke-Ernzerhof(PBE) [17]considering the spin polarized.In the structure calculation,a plane wave basis set with energy cut-of f680.00 eV is used.Pseudo-atomic calculations are performed for S3s23p4and Eu4f75s25p66s2.For the Brillouin-zone sampling,the 12×12×12 Monkhorst-Pack mesh[18]is adopted.The self-consistent convergence of the total energy is 10-7eV/atom and the maximum force on the atom is 10-4eV/?A.All the total energy electronic structure calculations are implemented through the CASTEP code[19].

    TABLE I The lattice parameter a,bulk moduli B(in GPa), and the elastic constants cij(in GPa)at 0 K and 0 GPa for EuS.

    B.Structure property

    The energy-volume(E-V)curve can be obtained by f i tting the calculated E-Vresults to the Birch-Murnaghan EOS[20]:

    where E0is the equilibrium energy.Pressure P vs.the normalized volume Vnis obtained through the following equation:

    here B00and B0are the pressure derivative of the bulk modulus and zero pressure bulk modulus,respectively.

    To calculate the total energy EBMand the corresponding volume V for both phases,a series of different lattice parameters a are taken to obtain the total energy over a wide volume range from 0.6V0to 1.2V0,where V0is the zero pressure equilibrium primitive cell volume. Through these calculations,we can obtain the equilibrium a(Table I).It is found that a and B are in good agreement with experimental data[7,12]and other theoretical results[8,13,20,21],respectively.The ratio V/V0as a function of the applied pressure together with the experimental result is plotted in Fig.1.Our obtained data are consistent well with the experiment[7, 12].

    The estimation of the zero-temperature transition pressure between B1 and B2 structures of EuS can be obtained from the usual condition of equal enthalpies, in other words,P,at which enthalpy H=E+PV of both

    FIG.1 Variations of the normalized volume V/V0with the applied pressure P for EuS.

    FIG.2 Enthalpy H as a function of pressure P for EuS.

    phases is the same.Figure 2 shows the enthalpy as a function of the pressure for EuS.It indicates that the transition pressure from B1 to B2 is about 22.1 GPa. The datum agrees well with the experimental value of 21.5 GPa from Jayaraman et al.[7]and the calculated result of 21.1 GPa from Singh et al.[13].But it is lower than the value of 27 GPa from Rached et al.[14].

    C.Elasticity

    To calculate the elastic constants under hydrostatic pressures,the non-volume conserving strains are adopted because this method is consistent with our calculated elastic constants using the stress-strain coefficients,which are appropriate for the calculation of the elastic wave velocities.The elastic constants cijkl, with respect to the fi nite strain variables are de fi ned as [22-24]:

    where cijkldenotes the second-order derivatives with respect to the inf i nitesimal strain(Eulerian),and δ is the f i nite strain variable.For EuS(B1 or B2),there are three independent elastic constants,i.e.c11,c12,and c44.In our calculations,for all strains,δ=±0.0018, ±0.003,and±0.0006 are taken to calculate the total energies E for the strained crystal structure,respectively. To make comparison with experimental results under hydrostatic pressure,the elastic constants Cijmust be transformed into the observable cijdef i ned with respect to the f i nite strain variables[23-25].Cijis transformed into cijin the case of hydrostatic pressure P as follows:

    From the independent elastic constants above,the theoretical polycrystalline elastic modulus can be obtained. There are two approximation methods to calculate the polycrystalline modulus,namely the Voigt method[26] and the Reuss method[27].The Voigt GVand Reuss GRshear moduli are given by

    The shear modulus G and bulk modulus B can be estimated by

    The polycrystalline Young’s modulus E,anisotropy factor A,and the Poisson’s ratio σ are then calculated by

    The elastic Debye temperature Θ can be estimated from the average sound velocity vm,by the following equation [28]

    where h is Planck constant,kBis Boltzmann constant, NAis Avogadro number,n is the number of atoms in the molecule,M is the molecular weight,and ρ is the density.vmis approximately calculated from

    where vpand vsare the compressional and shear wave velocities,respectively,which can be obtained from Navier’s equation[29]

    III.RESULTS AND DISCUSSION

    A.Elasticity

    Our calculated cijof the EuS for two phases at zero pressure and zero temperature are listed in Table I.Our result is consistent with the data from Shapira et al. [21],but is inconsistent with the value from Rached et al.[14].In Table II,we present the pressure dependence on the cij,B,and G of EuS at di ff erent pressures. It is shown that c11varies substantially under applied pressure compared with the variations in c12and c44. c11represents elasticity in length.A longitudinal strain produces a change in c11.c12and c44are related to the elasticity in shape,which is a shear constant.A transverse strain causes a change in shape without a change in volume.Therefore,c12and c44are less sensitive to pressure as compared with c11.Moreover,B is sensitive to press as compared with G.

    As it is known,the elastic constants determine the response of the crystal to external forces.They play an important part in determining the strength of the material.The single crystal shear moduli for the{100} plane along the[010]direction and for the{110}plane along the[110]direction are simply given by

    They are listed in Table II together with Young’s modulus E and Eh100i,σ and A under applied pressures.

    For B1 phase,G{100}are always lower than G{110}from 0 GPa to 20 GPa,indicating that it is harder to shear on the{110}plane along the[110]direction than on the{100}plane along the[010]direction;for B2 phase, the result is contrary.G represents the resistance to plastic deformation,while B represents the resistance to fracture[30].B/G of polycrystalline phases is considered.A high(low)B/G value is associated with ductility(brittleness).The critical value which separates ductile and brittle materials is about 1.75.It is interesting to try to understand the microscopic originof this empirical parameter.For both two phases,when P>10 GPa,the calculated values of the B/G(>1.75) increase with pressures,which means that pressure can improve ductility.

    TABLE II The calculated elastic constants cij(in GPa),and aggregate elastic moduli(B,G,E,in GPa),the quotient of bulk to shear modulus B/G,the elastic anisotropic parameter,the Poisson’s ratio σ,the Debye temperature Θ(in K)of the EuS under pressure P(in GPa)at zero temperature.

    FIG.3 The calculated elastic velocities v vs.pressure P at 0 K.

    The Young’s modulus E and Poisson’s ratio σ are important for technological and engineering applications. E is def i ned as the ratio from stress to strain,and is used to provide a measure of the stif f ness of the solid, i.e.,the larger the value of E,the stiffer the material is.v provides more information about the characteristics of the bonding forces than any of the other elastic constants.The v=0.25 and 0.5 are the lower limit and upper limit for central force solids,respectively.In our case,v increases with the applied pressure for both phases(Table II).The obtained v values are very close to the value of 0.30 which indicates that the interatomic forces in the EuS are central forces.

    The elastic anisotropy of crystals has an important implication in engineering science since it is highly correlated with the possibility to induce microcracks in the materials[31].The anisotropy factor was evaluated to provide insight on the elastic anisotropy of the EuS.For a completely isotropic material,the A factor takes the value of 1,while values smaller or greater than unity measure the degree of elastic anisotropy.In the wide range of applied pressure,the obtained anisotropy factors are listed in Table II.One can f i nd that the B1-EuS exhibits low elastic anisotropy at zero pressure and the degree of the anisotropy increases with pressure;for B2-EuS,the degree of the anisotropy decreases with pressure.

    FIG.4 The calculated heat capacity CPof B1 structure of EuS vs.temperature T at ambient pressure P.The dashed line data are from phonon dispersion,and the solid line data are from quasi-harmonic Debye model.

    The obtained compressional,shear and average wave velocities are illustrated in Fig.3.It is shown that the vs,vp,and vmincrease gradually with pressure.However,vpis more sensitive to pressure than vsand vm.

    B.Thermodynamic properties

    Through the quasi-harmonic Debye model,the thermodynamic properties of EuS are obtained.The calculated details can be seen in our recent works[32-35]. To test the validity of quasi-harmonic Debye model,we calculated the phonon dispersion of B1-EuS by the linear response method and obtained the thermodynamic properties from the phonon dispersion.Figure 4 shows that heat capacities curves of B1-EuS vs.temperature from different methods f i t very well.So,the quasiharmonic Debye model is valid in this work.

    FIG.5 Pressure P(a)and temperature T(b)dependence of the isothermal bulk modulus B for EuS.

    FIG.6 Temperature T dependence of the heat capacity CPfor EuS.

    Figure 5 presents the relation of the isothermal bulk modulus as a function of temperature T up to 800 K at P=0,30,and 60 GPa,respectively.At lower pressures, the isothermal bulk modulus is nearly a constant when T<200 K,but it drops remarkably when T>200 K, which are in accordance with the relationships between the ratio V/V0and T as shown in Fig.1.It demonstrates that dramatic volume variation leads to the rapid decreases in the isothermal bulk modulus.One can f i nd that the effect of T on the isothermal bulk modulus is less important than that of P on it.

    The calculated heat capacity CPat constant pressure and heat capacity CVat constant volume with T at different P are shown in Fig.6.There is little difference between CPand CVat low temperatures.However,at high temperature,the CVapproaches to a constant,CPincreases monotonously with the increment of the temperature.The values follow the Debye model at low temperature(CV(T)-T3)and the classical behavior(CV(T)-3R for mono-atomic solids)is found at sufficiently high temperatures,obeying Dulong and Petit’s Rule.From Fig.6,one can also see that the heat capacity increases with the temperatures at the same pressure and decreases with the pressures at the same temperature,and the inf l uences of the temperature on the heat capacity are much more significant than that of the pressure on it.

    FIG.7VariationoftheDebyetemperatureΘand Gr¨uneisen parameter γ with pressure P.

    FIG.8 Temperature T(a)and pressure P(b)dependence of the thermal expansion coefficient α for EuS.

    The Debye temperature Θ is a fundamental parameter of a material which is link to many physical properties such as speci fic heat,elastic constants,and melting point[36].The Debye temperature and the Gru¨neisen parameter at various temperatures and di ff erent pressures are presented in Fig.7.Our calculated Debye temperature at T=0 K is 278.51 J/(mol K),which is in agreement with the results of 274.04 J/(mol K) from Eq.(12)and 276 J/(mol K)from Ref.[21]and 280 J/(mol K)from Ref.[37].From Fig.7,one can fi nd:(i)When the temperature keeps constant,the Debye temperature increases almost linearly with applied pressures;while the Gru¨neisen parameter decreases smoothly with pressures.(ii)When the pressure keeps constant,the Debye temperature decreases with the increasing temperatures;while the Gru¨neisen parameter increases with the increasing temperatures.In virtue of the fact that the e ff ect of increasing pressure on the material is the same as decreasing temperature of the material.(iii)The Debye temperature at the temperature of 800 K is lower than that at 300 K,which shows that the vibration frequency of the particles in EuS changes with the pressures and the temperatures.

    The thermal expansion coefficient α with T and P for EuS is presented in Fig.8.From Fig.8(a),α increaseswith T3at low temperature and gradually approaches a linear increase at high temperatures and then the increasing trend becomes gentler.The effects of pressure on α are very small at low temperatures;the effects are increasingly obvious as the temperature increases. As P increases,α decreases rapidly and the effects of T become less and less pronounced,resulting in linear high-temperature behaviour.It is noteworthy that the high-temperature dependence of α is not linear at low pressures(0 GPa);this is an indication of the inadequacy of the quasi-harmonic approximation at high temperature and low pressure.It can be found that α converges to a constant value at high temperature and pressure.However,from Fig.8(b),as the pressure increases,α decreases almost exponentially,and the higher the temperature is,the faster α decreases. It shows that the effect of temperature is much greater than that of pressure on α.

    IV.CONCLUSION

    The structural properties and phase transition and elastic constants of EuS at high pressure are computed by the ultrasoft pseudopotentials within the generalized gradient approximation in the frame of density functional theory.We carry out total energy calculations over a wide range of volume from 0.6V0to 1.2V0,and obtain the equilibrium ratio of the normalized volume V/V0for a given volume.The obtained pressure dependence on the normalized volume is in excellent agreement with the experimental result.

    The aggregate elastic modulus(B,G,E),Poisson’s ratio and the shear anisotropic factor A of EuS at high pressure from 0 GPa to 60 GPa considering phase transition are also calculated.An analysis of the calculated parameters reveals the anisotropy in EuS.When P>10 GPa,the calculated values of the B/G(>1.75) increase with pressure,which indicates that pressure can improve ductility.The obtained Poisson’s ratios are very close to the value of 0.30,which means that the interatomic forces in the EuS are central forces.The compressional and shear wave velocities,and the Debye temperature are successfully obtained.The experimental values of the sound velocity,Poisson ratio,and Debye temperature under high pressure are not available for comparison yet,but considering the case of Refs.[38, 39],our predicted data should be credible.

    The other thermodynamic properties are predicted using the quasi-harmonic Debye model.It is found that the high temperature leads to a smaller adiabatic bulk modulus,a smaller Debye temperature,a larger Gr¨uneisen parameter,a larger heat capacity,and a bigger thermal expansion coefficient at constant pressure. But the high pressure gives birth to a lager isothermal bulk modulus,a larger Debye temperature,a smaller Gr¨uneisen parameter,a smaller heat capacity,and a smaller thermal expansion coefficient at constant temperature.The thermal expansion coefficient and heat capacity at constant volume are shown to converge to a nearly constant value at high pressures and temperatures.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.40804034 and No.11304141),the Natural Science Foundation of the Education Department of Henan Province of China (No.2011B140014),the Program for the Science and Technology Department of Henan Province of China (No.112102310641),and the Program for Innovative Research Team(in Science and Technology)in University of Henan Province(No.13IRTSTHN020).

    [1]F.J.Ried,L.K.Matsan,J.F.Miller,and R.C.Maines, J.Phys.Chem.Solids 25,969(1964).

    [2]R.Didchenko and F.P.Gortsema,J.Phys.Chem. Solids 24,863(1963).

    [3]R.Akimoto,M.Kobayashi,and T.Suzuki,J.Phys. Soc.Jpn.62,1490(1993).

    [4]I.N.Goncharenko and I.Mirebeau,Europhys.Lett.37, 633(1997).

    [5]C.J.M.Rooymans,Solid State Commun.3,421 (1965).

    [6]A.Chatterjee,A.K.Singh,and A.Jayaraman,Phys. Rev.B 6,2285(1972).

    [7]A.Jayaraman,A.K.Singh,A.Chatterjee,and S.U. Devi,Phys.Rev.B 9,2513(1974).

    [8]M.Horne,P.Strange,W.M.Temmerman,Z.Szotek, A.Svane,and H.Winter,J.Phys.:Condens.Matter 16,5061(2004).

    [9]J.Kunes and W.E.Pickett,Physica B 359,205(2005).

    [10]I.N.Goncharenko and I.Mirebeau,Phys.Rev.Lett. 80,1082(1998).

    [11]D.Singh,M.Rajagopalan,and A.K.Bandyopadhyay, Solid State Commun.112,39(1999).

    [12]D.Singh,M.Rajagopalan,M.Husain,and A.K. Bandyopadhyay,Solid State Commun.115,323(2000).

    [13]A.Svane,P.Strange,W.M.Temmerman,Z.Szotek, H.Winter,and L.Petit,Phys.Stat.Sol.(b)223,105 (2001).

    [14]D.Rached,M.Ameri,M.Rabah,R.Khenata,A. Bouhemadou,N.Benkhettou,and M.D.el Hannani, Phys.Stat.Sol.(b)244,1988(2007).

    [15]W.M.Temmerman,A.Svane,L.Petit,M.L¨uders,P. Strange,and Z.Szotek,Phase Trans.80,415(2007).

    [16]D.Vanderbilt,Phys.Rev.B 41,7892(1990).

    [17]J.P.Perdew,K.Burke,and M.Ernzerhof,Phys.Rev. Lett.77,3865(1996).

    [18]H.J.Monkhorst and J.D.Pack,Phys.Rev.B 13,5188 (1976).

    [19]M.D.Segall,P.J.D.Lindan,M.J.Probert,C.J. Pickard,P.J.Hasnip,S.J.Clark,and M.C.Payne,J. Phys.:Condens.Matter 14,2717(2002).

    [20]A.Svane,G.Santi,Z.Szotek,W.M.Temmerman,P. Strange,M.Horne,G.Vaitheeswaran,V.Kanchana,L. Petit,and H.Winter,Phys.Stat.Sol.(b)241,3185 (2004).

    [21]Y.Shapira and T.B.Reed,Conf.Proc.5,837(1971).

    [22]J.Wang,J.Li,S.Yip,S.Phillpot,and D.Wolf,Phys. Rev.B 52,12627(1995).

    [23]D.C.Wallace,Thermodynamics of Crystals,New York: John Wiley&Sons,20(1972).

    [24]B.B.Karki,G.J.Ackland,and J.Crain,J.Phys.: Condens.Matter 9,8579(1997).

    [25]T.H.K.Barron and M.L.Klein,Proc.Phys.Soc.85, 523(1965).

    [26]K.Tsubouchi and N.Mikoshiba,IEEE.Trans.Sonics Ultrason.Su-32,634(1985).

    [27]A.Reuss,Z.Angew.Math.Mech.9,49(1929).

    [28]G.V.Sin’ko and N.A.Smirnov,J.Phys.:Condens. Matter 14,6989(2002).

    [29]O.L.Anderson,J.Phys.Chem.Solids 24,909(1963). [30]S.F.Pugh,Philos.Mag.45,823(1954).

    [31]V.Tvergaard and J.W.Hutchinson,J.Am.Ceram. Soc.71,157(1988).

    [32]F.Peng,Q.Liu,H.Z.Fu,and X.D.Yang,Solid State Commun.149,56(2009).

    [33]F.Peng,H.Z.Fu,and X.D.Yang,Solid State Commun.145,91(2008).

    [34]F.Peng,Y.Han,H.Z.Fu,and X.Cheng,Phys.Stat. Sol.(b)245,2743(2008).

    [35]F.Peng,H.Z.Fu,and X.D.Yang,Phys.B 403,2851 (2008).

    [36]P.Ravindran,L.Fast,P.A.Korzhavyi,B.Johansson,J.Wills,and O.Eriksson,J.Appl.Phys.84,4891 (1998).

    [37]E.M.Dudnik,G.V.Lashkarev,Y.B.Paderno,and V. A.Obolonchik,Inorg.Mater.2,833(1966).

    [38]T.Iitaka and T.Ebisuzaki,Phys.Rev.B 64,012103 (2001).

    [39]O.G¨ulseren and R.E.Cohen,Phys.Rev.B 65,064103 (2002).

    ceived on March 16,2014;Accepted on May 8,2014)

    ?Author to whom correspondence should be addressed.E-mail:pengfengscu@gmail.com,Tel.:+86-379-62960015,FAX:+86-379-65526093

    av又黄又爽大尺度在线免费看 | 高清日韩中文字幕在线| av在线观看视频网站免费| 国产精品,欧美在线| 在线免费观看的www视频| 国产亚洲午夜精品一区二区久久 | 麻豆久久精品国产亚洲av| 中文欧美无线码| 国产一级毛片七仙女欲春2| 麻豆久久精品国产亚洲av| 天天躁夜夜躁狠狠久久av| 黄片wwwwww| 国产高清视频在线观看网站| 日日干狠狠操夜夜爽| 人妻少妇偷人精品九色| 国产精品嫩草影院av在线观看| 久久久国产成人免费| 精品人妻熟女av久视频| 美女高潮的动态| 男插女下体视频免费在线播放| 亚洲欧美日韩高清专用| 好男人在线观看高清免费视频| 麻豆av噜噜一区二区三区| 一级爰片在线观看| 最近中文字幕2019免费版| 日韩中字成人| 亚洲婷婷狠狠爱综合网| av在线老鸭窝| 国产高潮美女av| 国产成年人精品一区二区| 精品久久久久久久末码| 观看免费一级毛片| 三级国产精品欧美在线观看| 成年女人永久免费观看视频| 国产麻豆成人av免费视频| 夜夜爽夜夜爽视频| 大话2 男鬼变身卡| 一级毛片电影观看 | 黄色一级大片看看| 99久久精品热视频| 男插女下体视频免费在线播放| 国产av一区在线观看免费| 国产黄片美女视频| 亚洲av免费在线观看| 国语对白做爰xxxⅹ性视频网站| 日本三级黄在线观看| 国产探花极品一区二区| 搡女人真爽免费视频火全软件| 国产黄片视频在线免费观看| 欧美成人免费av一区二区三区| 亚洲,欧美,日韩| 日产精品乱码卡一卡2卡三| 亚洲精品国产成人久久av| 亚洲成人久久爱视频| 欧美潮喷喷水| 亚洲真实伦在线观看| 久久精品综合一区二区三区| 女人被狂操c到高潮| 国产成人一区二区在线| 亚洲自拍偷在线| 日本免费a在线| 免费黄色在线免费观看| 国产亚洲精品av在线| 熟妇人妻久久中文字幕3abv| 亚洲欧美日韩无卡精品| 变态另类丝袜制服| 国产老妇伦熟女老妇高清| 日韩视频在线欧美| 免费看a级黄色片| 舔av片在线| 在线免费观看不下载黄p国产| 日韩欧美国产在线观看| 精品人妻一区二区三区麻豆| 岛国在线免费视频观看| 两个人视频免费观看高清| 国产亚洲av嫩草精品影院| 国产真实乱freesex| 亚洲欧美精品综合久久99| 久久久久久久久久久丰满| 亚洲国产日韩欧美精品在线观看| 少妇人妻一区二区三区视频| 亚洲精品影视一区二区三区av| av黄色大香蕉| 夜夜看夜夜爽夜夜摸| 我的女老师完整版在线观看| 能在线免费观看的黄片| 赤兔流量卡办理| 波多野结衣高清无吗| 成人漫画全彩无遮挡| 日本黄色片子视频| 白带黄色成豆腐渣| 欧美精品国产亚洲| 麻豆乱淫一区二区| 国产黄片美女视频| 亚洲av成人av| 女人被狂操c到高潮| 国内精品一区二区在线观看| 免费不卡的大黄色大毛片视频在线观看 | 男人舔女人下体高潮全视频| 日本一二三区视频观看| 欧美97在线视频| 男的添女的下面高潮视频| 国产精品日韩av在线免费观看| 午夜爱爱视频在线播放| 国产色爽女视频免费观看| 亚洲丝袜综合中文字幕| 国产免费男女视频| 国产黄片美女视频| 久久99蜜桃精品久久| 国产精品国产三级国产av玫瑰| 嫩草影院新地址| 在线免费十八禁| 久久久久久久国产电影| 人人妻人人看人人澡| 国产精品久久久久久久电影| 久久99精品国语久久久| 免费播放大片免费观看视频在线观看 | 国产成人福利小说| 成人无遮挡网站| 欧美高清性xxxxhd video| 在线a可以看的网站| 国产精品,欧美在线| 亚洲国产色片| 久久久久免费精品人妻一区二区| 日本wwww免费看| 午夜免费激情av| 亚洲在线观看片| 天天躁夜夜躁狠狠久久av| 欧美一区二区亚洲| 级片在线观看| 亚洲精品日韩在线中文字幕| 丝袜美腿在线中文| 久久精品熟女亚洲av麻豆精品 | 国产一区二区三区av在线| 久久久久久久午夜电影| 日韩欧美精品免费久久| 国产亚洲av片在线观看秒播厂 | 村上凉子中文字幕在线| 国产免费视频播放在线视频 | 在线天堂最新版资源| 久久人人爽人人爽人人片va| 久久精品国产99精品国产亚洲性色| 国产白丝娇喘喷水9色精品| 亚洲av.av天堂| 亚洲精品日韩在线中文字幕| 乱人视频在线观看| 久久精品国产亚洲网站| 久久久精品大字幕| 亚洲在久久综合| 国产免费一级a男人的天堂| 日韩中字成人| 最近视频中文字幕2019在线8| 1024手机看黄色片| 在线播放无遮挡| 久久精品久久久久久噜噜老黄 | 日韩精品青青久久久久久| 免费看美女性在线毛片视频| 久久久a久久爽久久v久久| 日韩av不卡免费在线播放| 一个人免费在线观看电影| 欧美高清性xxxxhd video| 欧美三级亚洲精品| 免费大片18禁| 国产成人精品一,二区| 亚洲精品乱码久久久久久按摩| 两个人视频免费观看高清| 老女人水多毛片| 又粗又爽又猛毛片免费看| 一个人免费在线观看电影| 午夜久久久久精精品| 边亲边吃奶的免费视频| 色播亚洲综合网| 亚洲av成人精品一区久久| 日日啪夜夜撸| 插阴视频在线观看视频| 欧美+日韩+精品| 99久久精品热视频| 99热这里只有是精品在线观看| 一个人看的www免费观看视频| 亚洲熟妇中文字幕五十中出| 中文字幕免费在线视频6| 大话2 男鬼变身卡| 一个人观看的视频www高清免费观看| 丝袜喷水一区| 国产三级在线视频| 日本欧美国产在线视频| 日日摸夜夜添夜夜添av毛片| 五月玫瑰六月丁香| 亚洲av不卡在线观看| 插逼视频在线观看| 嫩草影院新地址| 天堂网av新在线| 成年女人看的毛片在线观看| 亚洲av成人av| 熟女电影av网| 97人妻精品一区二区三区麻豆| 丰满乱子伦码专区| 99热全是精品| 99久久精品一区二区三区| 中文亚洲av片在线观看爽| 亚洲综合色惰| 一区二区三区四区激情视频| 日韩 亚洲 欧美在线| 国产亚洲av片在线观看秒播厂 | 晚上一个人看的免费电影| 18+在线观看网站| 精品人妻偷拍中文字幕| 一区二区三区免费毛片| 久久久欧美国产精品| 久久这里只有精品中国| 麻豆乱淫一区二区| 久久久久久久久久成人| 欧美人与善性xxx| 中文字幕制服av| 亚洲在久久综合| 黄片无遮挡物在线观看| 青青草视频在线视频观看| 精品久久久久久成人av| 国产精品乱码一区二三区的特点| 纵有疾风起免费观看全集完整版 | 看黄色毛片网站| 欧美一区二区精品小视频在线| 久久久久久久久久黄片| 老司机影院成人| 伊人久久精品亚洲午夜| 久久久久久久午夜电影| 国产又黄又爽又无遮挡在线| 久久精品夜夜夜夜夜久久蜜豆| 日韩 亚洲 欧美在线| 波野结衣二区三区在线| 国产精品女同一区二区软件| 乱码一卡2卡4卡精品| 日本五十路高清| 国产在视频线精品| 女人久久www免费人成看片 | 三级男女做爰猛烈吃奶摸视频| a级毛片免费高清观看在线播放| 别揉我奶头 嗯啊视频| 男人舔奶头视频| 久久午夜福利片| 久久久久久久久中文| 亚洲av.av天堂| 婷婷色av中文字幕| 91午夜精品亚洲一区二区三区| 六月丁香七月| 不卡视频在线观看欧美| 国产精品爽爽va在线观看网站| 亚洲天堂国产精品一区在线| 热99在线观看视频| 女人被狂操c到高潮| 成人毛片60女人毛片免费| 亚洲av熟女| 成人欧美大片| 欧美精品国产亚洲| 国产高清三级在线| av免费观看日本| 亚洲人与动物交配视频| 国产女主播在线喷水免费视频网站 | 一个人观看的视频www高清免费观看| 国产在线男女| av免费在线看不卡| 国产av一区在线观看免费| 中文欧美无线码| 简卡轻食公司| 麻豆久久精品国产亚洲av| 六月丁香七月| 国产精品.久久久| 嫩草影院精品99| 欧美97在线视频| 国产伦精品一区二区三区视频9| 麻豆精品久久久久久蜜桃| av在线蜜桃| 99久久无色码亚洲精品果冻| 九草在线视频观看| 舔av片在线| 中文字幕久久专区| 亚洲精品色激情综合| 内地一区二区视频在线| 26uuu在线亚洲综合色| 国产精品国产三级国产专区5o | 蜜桃亚洲精品一区二区三区| 村上凉子中文字幕在线| 国产精品一二三区在线看| 亚洲欧美精品自产自拍| 99久久精品国产国产毛片| 波多野结衣巨乳人妻| 亚洲精品,欧美精品| 亚洲国产精品成人久久小说| 久久鲁丝午夜福利片| 高清av免费在线| 直男gayav资源| 日本色播在线视频| 国产单亲对白刺激| 亚洲欧美日韩无卡精品| 干丝袜人妻中文字幕| 午夜福利高清视频| 亚洲欧美中文字幕日韩二区| 边亲边吃奶的免费视频| 亚洲国产色片| 午夜福利网站1000一区二区三区| 毛片女人毛片| 日本-黄色视频高清免费观看| 国产成人a∨麻豆精品| 熟妇人妻久久中文字幕3abv| 我要看日韩黄色一级片| 午夜免费男女啪啪视频观看| 国国产精品蜜臀av免费| 一级毛片aaaaaa免费看小| 丰满人妻一区二区三区视频av| 中文字幕制服av| 村上凉子中文字幕在线| 成人鲁丝片一二三区免费| 亚洲激情五月婷婷啪啪| 乱系列少妇在线播放| 亚洲电影在线观看av| 18禁在线无遮挡免费观看视频| 搞女人的毛片| 久久综合国产亚洲精品| 欧美日韩国产亚洲二区| 成人漫画全彩无遮挡| 麻豆一二三区av精品| 国产成年人精品一区二区| 国产在视频线在精品| 看非洲黑人一级黄片| 国产一级毛片在线| 久久国产乱子免费精品| 欧美成人精品欧美一级黄| 国产极品天堂在线| 精品无人区乱码1区二区| 国产免费一级a男人的天堂| 禁无遮挡网站| 久久精品91蜜桃| 好男人视频免费观看在线| 99久久九九国产精品国产免费| 天美传媒精品一区二区| 久久精品国产亚洲av涩爱| 我要看日韩黄色一级片| 色5月婷婷丁香| 激情 狠狠 欧美| a级一级毛片免费在线观看| 又粗又硬又长又爽又黄的视频| 国产综合懂色| 爱豆传媒免费全集在线观看| 国产色婷婷99| АⅤ资源中文在线天堂| 免费人成在线观看视频色| 亚洲18禁久久av| 国产又黄又爽又无遮挡在线| 五月玫瑰六月丁香| 成人一区二区视频在线观看| 丰满乱子伦码专区| 日韩在线高清观看一区二区三区| 欧美一区二区亚洲| 日韩,欧美,国产一区二区三区 | 夜夜看夜夜爽夜夜摸| 一级毛片我不卡| 小说图片视频综合网站| 国产在视频线精品| 国内精品美女久久久久久| 一本一本综合久久| 国内少妇人妻偷人精品xxx网站| 在线免费十八禁| av在线蜜桃| 亚洲欧美日韩高清专用| 久久精品91蜜桃| 午夜福利视频1000在线观看| 两个人的视频大全免费| 人妻少妇偷人精品九色| 久久久午夜欧美精品| 最近2019中文字幕mv第一页| 亚洲av中文av极速乱| 秋霞在线观看毛片| 日韩欧美精品v在线| 色视频www国产| 国产极品天堂在线| 国产单亲对白刺激| 成人国产麻豆网| 亚洲国产精品久久男人天堂| 免费电影在线观看免费观看| 久久久久久久亚洲中文字幕| 国产成人福利小说| 91精品一卡2卡3卡4卡| 91久久精品国产一区二区三区| 国产午夜精品一二区理论片| 一级二级三级毛片免费看| 国产亚洲精品av在线| 18禁在线播放成人免费| 久久鲁丝午夜福利片| 91久久精品国产一区二区成人| 网址你懂的国产日韩在线| 国产精品久久视频播放| 国产精品久久久久久久电影| 在线免费十八禁| 男女啪啪激烈高潮av片| 三级国产精品片| 国产精品福利在线免费观看| 成人亚洲精品av一区二区| 国产不卡一卡二| 国产精品久久电影中文字幕| 最近最新中文字幕免费大全7| 日本一本二区三区精品| 成年女人永久免费观看视频| 国产午夜精品论理片| 久久99热这里只频精品6学生 | 一级毛片久久久久久久久女| 国产精品一区二区三区四区免费观看| 欧美成人a在线观看| 精品国产露脸久久av麻豆 | 啦啦啦啦在线视频资源| 午夜a级毛片| 别揉我奶头 嗯啊视频| 高清日韩中文字幕在线| 成人一区二区视频在线观看| 乱人视频在线观看| 国产精品一区二区三区四区免费观看| 性色avwww在线观看| 欧美三级亚洲精品| 欧美xxxx性猛交bbbb| 亚洲乱码一区二区免费版| 特大巨黑吊av在线直播| 国产精品一及| 免费一级毛片在线播放高清视频| 亚洲av电影在线观看一区二区三区 | a级毛色黄片| 国产真实伦视频高清在线观看| 老司机福利观看| 草草在线视频免费看| 丝袜喷水一区| 丰满乱子伦码专区| 久久久久国产网址| 97热精品久久久久久| 大话2 男鬼变身卡| 人妻系列 视频| 97人妻精品一区二区三区麻豆| 中文字幕免费在线视频6| 亚洲av.av天堂| 精品国内亚洲2022精品成人| 中文字幕熟女人妻在线| 少妇高潮的动态图| 亚洲综合精品二区| 亚洲激情五月婷婷啪啪| 晚上一个人看的免费电影| www.色视频.com| 亚洲在线自拍视频| 久久久精品欧美日韩精品| 久久鲁丝午夜福利片| 欧美xxxx黑人xx丫x性爽| 全区人妻精品视频| 水蜜桃什么品种好| 久久99蜜桃精品久久| 成年av动漫网址| 99久久中文字幕三级久久日本| 啦啦啦韩国在线观看视频| 噜噜噜噜噜久久久久久91| 内射极品少妇av片p| 美女内射精品一级片tv| 成人毛片60女人毛片免费| 日韩一区二区三区影片| 热99在线观看视频| 国产淫语在线视频| 日韩成人av中文字幕在线观看| 国产精品国产高清国产av| 亚洲va在线va天堂va国产| 成人亚洲欧美一区二区av| 亚洲av免费高清在线观看| 精品人妻偷拍中文字幕| 99久国产av精品| 色吧在线观看| 国产又色又爽无遮挡免| 日韩av在线大香蕉| av在线蜜桃| 桃色一区二区三区在线观看| 国产精品福利在线免费观看| 高清在线视频一区二区三区 | 观看免费一级毛片| or卡值多少钱| .国产精品久久| 在线免费十八禁| 亚洲欧美日韩无卡精品| 老女人水多毛片| 男女国产视频网站| 国产白丝娇喘喷水9色精品| 男人和女人高潮做爰伦理| 婷婷六月久久综合丁香| 免费人成在线观看视频色| 少妇裸体淫交视频免费看高清| 国语自产精品视频在线第100页| 午夜精品在线福利| 欧美日韩在线观看h| 高清在线视频一区二区三区 | 亚洲在线自拍视频| 免费看美女性在线毛片视频| 插逼视频在线观看| 一级黄片播放器| 色噜噜av男人的天堂激情| 国产成人精品一,二区| 欧美性感艳星| 国产av码专区亚洲av| 非洲黑人性xxxx精品又粗又长| 久久久久精品久久久久真实原创| 国产淫语在线视频| 一区二区三区四区激情视频| 三级国产精品欧美在线观看| 久热久热在线精品观看| 日韩欧美三级三区| 国产亚洲精品av在线| videossex国产| 日韩av在线免费看完整版不卡| 中文字幕亚洲精品专区| 亚洲国产欧洲综合997久久,| 亚洲在久久综合| 禁无遮挡网站| 国产一区二区三区av在线| 久久久a久久爽久久v久久| 乱人视频在线观看| 熟女电影av网| 国产69精品久久久久777片| av国产免费在线观看| 男女那种视频在线观看| 超碰av人人做人人爽久久| 亚洲中文字幕日韩| 成年免费大片在线观看| 97超视频在线观看视频| 国产伦理片在线播放av一区| 亚洲va在线va天堂va国产| av在线观看视频网站免费| 日韩欧美国产在线观看| 一级二级三级毛片免费看| 美女脱内裤让男人舔精品视频| 麻豆乱淫一区二区| 99久久中文字幕三级久久日本| 亚洲国产日韩欧美精品在线观看| 亚洲va在线va天堂va国产| 欧美日本亚洲视频在线播放| 国产大屁股一区二区在线视频| 成人漫画全彩无遮挡| 中文亚洲av片在线观看爽| 久久精品久久久久久久性| 七月丁香在线播放| 国产成人一区二区在线| 99久国产av精品国产电影| 亚洲乱码一区二区免费版| 男女那种视频在线观看| 嫩草影院新地址| 两个人的视频大全免费| 亚洲人成网站在线播| 麻豆国产97在线/欧美| 成人高潮视频无遮挡免费网站| 亚洲欧美日韩高清专用| 色噜噜av男人的天堂激情| 99久久精品一区二区三区| 男女视频在线观看网站免费| 亚洲精品乱码久久久久久按摩| 亚洲精品一区蜜桃| 国产高清国产精品国产三级 | a级毛色黄片| 最近最新中文字幕免费大全7| 欧美日韩国产亚洲二区| 国产精品熟女久久久久浪| 日韩中字成人| 国产在线男女| 国语对白做爰xxxⅹ性视频网站| 亚洲欧美精品专区久久| 午夜精品一区二区三区免费看| 日本av手机在线免费观看| 永久免费av网站大全| 欧美高清性xxxxhd video| 国产亚洲最大av| 欧美区成人在线视频| 国产精品国产三级国产专区5o | 国产午夜精品论理片| 亚洲最大成人手机在线| 哪个播放器可以免费观看大片| 欧美潮喷喷水| 色播亚洲综合网| 国产极品天堂在线| 99热这里只有是精品50| 欧美zozozo另类| 久久热精品热| 又爽又黄a免费视频| 免费观看人在逋| 国产熟女欧美一区二区| 久热久热在线精品观看| 97在线视频观看| 插逼视频在线观看| 久热久热在线精品观看| 97在线视频观看| 国产熟女欧美一区二区| 99久国产av精品| 男女国产视频网站| 夜夜看夜夜爽夜夜摸| 晚上一个人看的免费电影| 丰满乱子伦码专区| 欧美日韩一区二区视频在线观看视频在线 | 久久久久久伊人网av| 色5月婷婷丁香| 亚洲国产色片| 美女国产视频在线观看| 国产探花极品一区二区| 亚洲欧美一区二区三区国产| 国产精品,欧美在线| 九草在线视频观看| 少妇熟女欧美另类| 久久久久久久久久黄片| 伦理电影大哥的女人| 青春草国产在线视频| 亚洲熟妇中文字幕五十中出| 一个人看的www免费观看视频| 成年免费大片在线观看| 国产成人福利小说| 国产av码专区亚洲av| 午夜福利成人在线免费观看| 我要看日韩黄色一级片| 永久免费av网站大全| 天堂影院成人在线观看|