• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Surface-enhanced Raman Scattering of Af l atoxin B1on Silver by DFT Method

    2014-07-18 11:51:52SiminGaoHongyanWangYuexiaLin
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2014年2期

    Si-min Gao,Hong-yan Wang,Yue-xia Lin

    School of Physical Science and Technology,Southwest Jiao tong University,Chengdu 610031,China

    (Dated:Received on January 23,2013;Accepted on September 23,2013)

    Surface-enhanced Raman Scattering of Af l atoxin B1on Silver by DFT Method

    Si-min Gao,Hong-yan Wang?,Yue-xia Lin

    School of Physical Science and Technology,Southwest Jiao tong University,Chengdu 610031,China

    (Dated:Received on January 23,2013;Accepted on September 23,2013)

    The structure,electrostatic properties,and Raman spectra of af l atoxin B1(AFB1) andAFB1-AgcomplexarestudiedbydensityfunctionaltheorywithB3LYP/6-311G(d,p)/Lanl2dz basis set.The results show that the surface-enhanced Raman scattering (SERS)and pre-resonance Raman spectra of AFB1-Ag complex strongly depend on the adsorption site and the excitation wavelength of the incident light.The SERS factors are found to enhance 102-103order compared to normal Raman spectrum of AFB1molecule due to the larger static polarizabilities of the AFB1-Ag complex,which directly results in the stronger chemical enhancement in SERS spectra.The pre-resonance Raman spectra of AFB1-Ag complex are explored at 266,482,785,and 1064 nm incident light wavelength,in which the enhancement factors are about 102-104,mainly caused by the charge-transfer excitation resonance.The vibrational modes are analyzed to explain the relationship between the vibrational direction and the enhanced Raman intensities.

    Af l atoxin B1,Surface-enhanced Raman scattering spectrum,Pre-resonance Raman spectra,Density functional theory

    I.INTRODUCTION

    A fl atoxins(AFs)are a group of hepatoxic,carcinogenic,mutagenic,and teratogenic mycotoxins,which are mainly produced by Aspergillus fl avus,A.parastiticus,and A.anomies[1].As the most common mycotoxins detected in human food and animal feed,AFs have drawn an increasing attention because of their frequent occurrence in cereal,cotton and groundnuts[2].Among more than 20 AFs derivatives,a fl atoxin B1(AFB1)has the most powerful toxicity and carcinogenicity to animals and human,which can cause malignant tumors in various animals and primary hepatocellular carcinoma in human[3].The toxicity and carcinogenicity of AFB1are associated with its DNA binding properties,as well as its teratogenic properties to cause malformations in many organs in embryos[4].

    In order to remove or destroy the toxin,many chemical,biological,and physical methods are used to detect AFs in contaminated crops[5].Recently some novel biosensors based on surface plasmon resonance[6],for example surface enhanced Raman scattering(SERS) [7-9],have been developed to implement the rapid detection of chemical and biological samples.SERS, fi rstly observed by Fleischmann et al.in 1974,has been employed successfully for qualitative micro analyses because of the high sensitivity and selectivity[10-12]. However,it is not easy to apply SERS to quantitative microanalyses because of the intensity and a band shift of the enhancement of a Raman spectra depending on the vibrational mode[13].Dif f erent vibrational modes correspond to dif f erent intensity and band shift.The SERS is af f ected by the molecular structural changes and the conditions of a metal colloid or a substrate. Based on metallic nanostructure substrates[14],the enhancement factor induced by nanostructure can reach as much as 14 to 15 orders of magnitude,which allows the SERS technique to be sensitive enough to detect small amount of molecules,even single molecule[15, 16].AFB1is a Raman-active compound which can be detected or identif i ed by SERS microscopy after capturing.Some experiments on the SERS technique have been performed to detect and track af l atoxins toxin by our cooperation group[17].

    In order to explore the SERS mechanism of AFB1adsorbed on Ag nanoparticles,density functional theory (DFT)method is used to analyze the AFB1-Ag complex structures and properties.The SERS spectra and preresonance Raman spectra of AFB1molecule have been calculated to explore the SERS enhance efficiency of single AFB1molecule absorbed on Ag nanoparticles.

    II.COMPUTATIOANAL METHODS

    The simple microscopic active adsorption site modes are adopted to simulate the AFB1molecule adsorbed on the Ag nanoparticle.Two adsorption sites of AFB1are considered in this work.The structures of AFB1and AFB1-Ag complex are optimized using 6-311G(d,p) basis set for C,H,O atoms and Lanl2dz[18]ECP basis set for Ag atom with 1s-4p core kept frozen at the B3LYP level[19-21].The B3LYP method is a hybrid HF/DFT method using a combination of Becke’s threeparameter exchange functional(B3)with the Lee-Yang-Parr(LYP)generalized gradient correlation functional. The Berny gradient method[22]is employed in complete geometry optimization for AFB1and AFB1-Ag complexes.The SERS spectra and pre-resonance Raman spectra of AFB1molecule are calculated at the same functional and basis set.The absorption spectra and the excited state electronic structures are calculated to explore the resonance incident light wavelength by using the time-dependent density functional theory(TD-DFT)[23]at the same level.To better match experimental vibrational frequencies,the vibrational scaling factor[24]0.98 is adopted.All of the computations are performed by the Gaussian 09 program[25],in which the f i ne grid(75302)is the default for evaluating integrals numerically.

    The Raman activity or Raman scattering factor Sp(in a.u.)is determined by:

    where αpand γpare isotropic and anisotropic polarizabilities.Spis directly obtained by Gaussian 09 program.

    III.RESULTS AND DISCUSSION

    A.Geometrical structure

    Due to the strong electronic negativity,atom O is much easier to interact with metal Ag than atoms C and H.Therefore two dif f erent adsorption sites of AFB1molecule,denoted as a site and b site shown in Fig.1,are selected to explore the adsorbing properties of the AFB1molecule adsorbed on the Ag nanoparticle.More signif i cant structural perturbations are found when AFB1molecule adsorbed on Ag nanoparticle through a site than b site.The O-Ag bond length(R1,R2)are 0.278 and 0.304 nm for AFB1-Agacomplex,respectively,shorter than that for complex AFB1-Agb(0.315 and 0.357 nm)in Table I.The bond lengths near the Ag surface have changed obviously,and the other bonds far away from the Ag surface have not changed signif i cantly.Compared to AFB1molecule,the bond length C12-O13 in AFB1-Agacomplex is increased obviously by 0.005?A(from 1.219?A to 1.224?A),and C23-O22 bond length is lengthened,while the bonds C8-C12,C8-C23,and C23-O21 become shorter.For the AFB1-Agbcomplex,the bonds C1-O14,C15-O19, and C18-O19 are all lengthened.The other bond lengths,bond angles,and dihedral angles agree approximately with the ones in the AFB1molecule.The optimized parameters of AFB1molecule,including bond lengths,bond angles,and dihedral angles for the ground state are in good agreement with N-V’s calculated results[26]and experimental results[27].

    FIG.1 Scheme of AFB1,AFB1-Aga(adsorption in a site) complex and AFB1-Agb(adsorption in b site)complex.

    TABLE I Binding properties between AFB1and Ag atom.

    The adsorbed energy is def i ned as:

    When the AFB1molecule is adsorbed on Ag nanoparticle through the a adsorption site,the adsorbed energy is-16.22 kJ/mol,while for AFB1-Agbcomplex,the adsorbed energy is much smaller than the AFB1-Agbcomplex(-6.37 kJ/mol,Table I).Therefore,the a adsorption site is a more appropriate site for the AFB1molecule adsorbed on the Ag nanoparticles.Only the AFB1-Agacomplex is discussed in the following section.

    Because of the coupling interaction,the charges are redistributed between the AFB1molecule and Ag atom. 0.105 e for the AFB1-Agacomplex and 0.052 e for the AFB1-Agbcomplex are transported from the AFB1molecule to Ag,which result in the static polarizability along x-axis being more increased,listed in Table II. Compared to the single AFB1molecule,the static polarizabilities of two complexes are increased obviously. The average static polarizabilities are increased from 246.11 to 323.68.The largest change is found for the AFB1-Ag complex in the xx components of the static polarizability,corresponding to C=O stretching vibrational mode.The Raman intensity is proportional to the square of the molecular induced dipole moment, while the molecular induced dipole moment is P=α·E, where α is the molecular polarizability and E is the external electric f i eld.Thus when the molecular polariz-ability is increasing,the Raman intensity is also greatly enhanced.The static polarizabilities are one of decisive factors of the ground state chemical enhancement which is not associated with any excitation of the moleculemetal system.The calculated static polariability in Table II predicts that the static chemical enhancement will be found in the surface-enhanced Raman spectra due to the static polarizability changes.

    TABLE II Calculated static polarizability in a.u.hαi=(αxx+αyy+αzz)/3.

    TABLE III Comparison of vibration modes between AFB1and AFB1-Ag complex.f is frequency and I is intensity.

    B.The Raman spectra of AFB1-Ag complex

    The surface enhanced Raman e ff ect is observed in the Raman spectra of AFB1-Ag complex compared to the normal Raman spectrum(NRS)of single AFB1molecule,shown in Fig.2.The Raman peaks frequencies,the Raman intensities and the corresponding vibration assignments are listed in Table III.The profi le of SERS for AFB1-Ag complex is consistent with the normal Raman spectrum,however,obvious enhanced Raman intensities are found at some vibrational modes.The vibration modes assignments in this work are consistent with the experimental results, which are obtained at the 785 nm excitation wavelength[17].The Raman enhanced factor(IEF)is given by IEF=ISERS/INRSat the corresponding vibrational modes.

    FIG.2 The Raman spectra of AFB1molecule and AFB1-Ag complex.

    According to the surface plasmon resonance theory [28],the vibrations along the direction perpendicular to the absorption surface are expected to occur more enhancement than the vibrations in the parallel direction.For the single AFB1molecule and the AFB1-Ag complex,the peaks with the maxima enhanced intensity are found at 1596 and 1588 cm-1,whose Raman intensities are up to 609,belonging to the C2=C4 and C=Ostretching vibrations of cyclopentene ring with O moving toward silver surface.The C=O(cyclopentene ring and pyrane ring)stretching vibrations of AFB1-Ag complex are found at 1613 and 1740 cm-1,whose Raman intensities are 103 and 101,respectively.While the two vibrational modes are found at 1693 and 1756 cm-1in experiment[17].The C17=C18 stretching vibration in the complex is found at 1636 cm-1,with the blue shift of 16 cm-1compared to the experiment.The C-C-C stretching vibration is found at 1235 cm-1,with vibrational direction along with x-axis,resulting the Raman enhancement factors up to 120.The other vibrational modes agreed approximately with the ones in the AFB1molecule.

    For AFB1-Ag complex,the static polarizabilities incensement along x-axis can result in the NRS spectrum intensity enhancement due to the static chemical enhancement.Compared to the NRS of the single AFB1molecules,the enhanced SERS ef f ects mainly result from the chemical environment modif i cation when the AFB1molecule is adsorbed on Ag-nanoparticle.The charge redistribution and the structural perturbation lead to greater increases of the static polarizabilities in the complex.Therefore,the enhancement mechanism of SERS for AFB1molecule can be ascribed to the ground state chemical enhancement.

    C.Pre-resonance Raman spectra of AFB1-Ag complex

    When the incident light wavelength is close to the molecule electronic excitation energy,the incident electronic f i eld can excite the electron transition to induce resonance,which leads to the Raman scattering signal intensity enhanced by a factor up to 104-106.This process is referred as the resonance Raman scattering, in which the enhancement is proportional to the oscillator strength of the electron transition.For the AFB1-Ag complex,the metal-molecule charge transfer(CT)is found due to the interaction between the molecule and the metal when the molecule is adsorbed on the metal nanoparticle surface.

    According to the absorption spectra of the AFB1-Ag complex,266 and 482 nm incident wavelengths,in the proximity of the two absorption maxima of AFB1-Ag complex,are chosen to explore the pre-resonance spectrum of AFB1-Ag complex.Meanwhile 785 and 1064 nm incident wavelength,which are away from resonance absorption of the AFB1-Ag complex but correspond to the S5and S3electron excitation states,are selected to compare the pre-resonance Raman spectra. The total enhancement factors are up to 102-103in pre-resonance Raman spectra of the AFB1-Ag complex at four chosen incident wavelengths.The pre-resonance Raman spectra and molecular orbital corresponding to charge transfer between AFB1molecule and Ag atom are shown in Fig.4.Due to the charge transfer resonances between the molecule and the atom Ag,the most enhancement factor of C=O stretching vibration is up to 102at 1740 cm-1at the 266 nm incident light,the stretching vibration of C-C and C=O at 1588 cm-1, the enhancement factor is only 63.But for 482 nm incident wavelength,the most enhancement factor 104is found at 1531 cm-1,corresponding to C-C stretching and stretching vibration of C-C-C with the wiggle of C-H.The C-C and C=O stretching vibration at 1588 cm-1along x-axis,the enhancement factor is up to 102.The stretching vibration of the bonds near the Ag atom(C-C,C-O-C)and C=O stretching are also obviously enhanced up to 10.

    Compared to incident wavelength 266 and 482 nm, the maximum enhancement factor is up to 103at 785 nm incident wavelength,which is C-C stretching vibration with the wiggle of C-H at 1531 cm-1along x-axis,because of electric transfer between HOMO and LUMO of AFB1-Ag complex.The C=C and C=O stretching vibration is enhanced up to 102at 1588 cm-1,the C=O stretching vibration modes are found at 1740 cm-1,their enhancement factor are only up to 10.For 1064 nm excitation energy,the most enhancement factor is 102,corresponding to C-C stretching vibration and ring(s)skeleton vibration at 1531 cm-1.The enhancement Raman intensities at 892,1031,1461,1588,and 1593 cm-1are also up to 102,corresponding to the pyrane ring breath vibration and C-C,C-C-C,C-O-C stretching vibration mode with ring deformation,ring(s)skeleton vibration,and the C=O stretch peaks,respectively.Therefore,when the incident light is away from resonance absorption of excitation energy,the more vibratioanal modes enhanced simultaneously.

    Compared to the SERS intensities of isolated AFB1, the enhancement due to the charge transfer resonance contributes an additional 2-4 orders of magnitude to the chemical enhancement at four chosen incident wavelengths.It is proven that the CT mechanism signif icantly contributes to the enhancement of pre-resonance Raman intensity,which is also used to explain the dependence of the certain bands in SERS experiments on the electrode potential[29,30].

    IV.CONCLUSION

    The SERS and pre-resonance spectra of the AFB1molecule are studied by DFT method.Raman scattering intensity not only depends strongly on the local chemical environment of adsorption site but also depends on the incident excitation wavelength.The geometry structure and the adsorption energy show that a site of AFB1molecule is a more favorable adsorption site than b site.When AFB1molecule is adsorbed on silver nanoparticle by a site,the enhancement factor of AFB1-Ag complex is up to 103compared to normal Raman spectrum of the isolated AFB1molecule,which results from a great change of the perpendicular polar-izabilities due to the chemical environment modif i cation in AFB1-Ag complex.

    FIG.3 The pre-resonance Raman spectra of AFB1-Ag complex at four dif f erent incident light wavelengths of 266,482,785, and 1064 nm.The molecular orbitals corresponding to charge transfer between AFB1molecule and Ag atom are also shown.

    For the pre-resonance Raman spectra at the incident wavelength 266,482,785,and 1064 nm,the enhancement factors at some specif i c vibration modes are up to 103,which are mainly attributed to the charge-transfer excitation resonance enhancement but not the plasmon resonance of the nanoparticle because Ag atom or cluster is too small to have a real plasmon resonance.The SERS enhancement mechanism of AFB1-Ag complex can be ascribed to the chemical enhancement in which the static chemical enhancement of ground state and the charge transfer resonance enhancement of excitation state work is together due to the chemical interaction between the AFB1molecule and the Ag nanoparticle.The stronger SERS enhancements ef f ects should be predicted for the real nanoparticles because of the combination of the chemical enhancement and the electromagnetic enhancement.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.11174237),the National Basic Research Program of China(No.2013CB328904), and the Application Basic program of Sichuan Province (No.2013JY0035).

    [1]C.P.Kurtzman,B.W.Horn,C.W.Hesseltine,and A. V.Leeuwenhoek,J.Microbiol.53,147(1987).

    [2]H.van Egmond,R.Schothorst,and M.Jonker,Anal. Bioanal.Chem.389,147(2007).

    [3]J.M.Essigmann,R.G.Croy,A.M.Nadzan,W.F. Busby,V.N.Reinhold,G.Buchi,and G.N.Wogan, Proc.Nati.Acad.Sci.USA 74,1870(1977).

    [4]M.Benasutti,S.Ejadi,M.D.Whitlow,and E.L. Loechler,Biochemistry 27,472(1988).

    [5]C.J.Mercado,M.P.N.Real,and R.R.Del Rosario, J.Food Sci.56,733(1991).

    [6]S.J.Daly,G.J.Keating,P.P.Dillon,B.M.Manning, R.O’Kennedy,and H.A.Lee,J.Agric.Food Chem. 48,5097(2000).

    [7]M.Fleischmann,P.J.Hendra,and A.McQuillan,J. Chem.Phys.Lett.26,163(1974).

    [8]D.L.Jeanmaire and R.P.Van Duyne,J.Electroanal. Chem.84,1(1977).

    [9]M.G.Albrecht and J.A.Creighton,J.Am.Chem.Soc. 99,5215(1977).

    [10]M.Moskovits,Rev.Mod.Phys.57,783(1985).

    [11]J.Creighton,Surf.Sci.124,209(1983).

    [12]Y.F.Wang,J.H.Zhang,H.Y.Jia,M.J.Li,J.B.Zeng, B.Yang,B.Zhao,W.Q.Xu,and J.R.Lombardi,J. Phys.Chem.C 112,996(2008).

    [13]L.Jensen,C.M.Aikens,and G.C.Schatz,Chem.Soc. Rev.37,1061(2008).

    [14]K.Hering,D.Cialla,K.Ackermann,T.D¨orfer,R. M¨oller,H.Schneidewind,R.Mattheis,W.Fritzsche, P.R¨osch,and J.Popp,Anal.Bioanal.Chem.390,113 (2008).

    [15]K.Kneipp,Y.Wang,H.Kneipp,L.T.Perelman,I. Itzkan,R.R.Dasari,and M.S.Feld,Phy.Rev.Lett. 78,1667(1997).

    [16]S.M.Nie and S.R.Emery,Science 275,1102(1997). [17]X.M.Wu,S.M.Gao,J.S.Wang,H.Y.Wang,Y.W. Huang,and Y.P.Zhao,Analyst 137,4226(2012).

    [18]E.Mata,M.J.Quintana,and G.O.S?rensen,J.Mol. Struct.42,1(1997).

    [19]A.D.Becke,Phys.Rev.A 38,3098(1988).

    [20]A.D.Becke,J.Chem.Phys.98,5648(1993).

    [21]C.Lee,W.Yang,and R.G.Parr,Phys.Rev.B 37,785 (1988).

    [22]A.Ulman,C.S.Willand,W.K¨ohler,D.R.Robello,D. J.Williams,and L.Handley,J.Am.Chem.Soc.112, 7083(1990).

    [23]E.K.U.Gross and W.Kohn,J.Phys.Chem.B 108, 6164(2004).

    [24]H.B.Schlegel,J.Velkovski,and M.D.Halls,Theor. Chem.Acc.105,413(2001).

    [25]M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E. Scuseria,M.A.Robb,J.R.Cheeseman,G.Scalmani, V.Barone,B.Mennucci,G.A.Petersson,H.Nakatsuji,M.Caricato,X.Li,H.P.Hratchian,A.F.Izmaylov,J.Bloino,G.Zheng,J.L.Sonnenberg,M. Hada,M.Ehara,K.Toyota,R.Fukuda,J.Hasegawa, M.Ishida,T.Nakajima,Y.Honda,O.Kitao,H.Nakai, T.Vreven,J.A.Jr.Montgomery,J.E.Peralta,F. Ogliaro,M.Bearpark,J.J.Heyd,E.Brothers,K.N. Kudin,V.N.Staroverov,R.Kobayashi,J.Normand, K.Raghavachari,A.Rendell,J.C.Burant,S.S.Iyengar,J.Tomasi,M.Cossi,N.Rega,J.M.Millam,M. Klene,J.E.Knox,J.B.Cross,V.Bakken,C.Adamo, J.Jaramillo,R.Gomperts,R.E.Stratmann,O.Yazyev, A.J.Austin,R.Cammi,C.Pomelli,J.W.Ochterski, R.L.Martin,K.Morokuma,V.G.Zakrzewski,G.A. Voth,P.Salvador,J.J.Dannenberg,S.Dapprich,A. D.Daniels,¨O.Farkas,J.B.Foresman,J.V.Ortiz,J. Cioslowski,and D.J.Fox,Gaussian 09,Revision A.1, Wallingford CT:Gaussian Inc.,(2009).

    [26]I.Nicol′as-V′azquez,A.M′endez-Albores,E.Moreno-Mart′?nez,R.Miranda,and M.Castro,Arch Environ. Contam.Toxicol.59,393(2010).

    [27]T.C.van Soest and A.F.Peerdeman,Acta Cryst.B 26,1947(1970).

    [28]M.Moskovits,Rev.Mod.Phys.57,783(1985).

    [29]J.F.Arenas,M.S.Woolley,J.C.Otero,and J.I. Marcos,J.Phys.Chem.100,3199(1996).

    [30]J.F.Arenas,I.L.Toc′on,J.C.Otero,and J.I.Marcos, J.Phys.Chem.100,9254(1996).

    ?Author to whom correspondence should be addressed.E-mail:hongyanw@home.swjtu.edu.cn,Tel.:+86-28-87600963, FAX:+86-28-87601357

    国产探花极品一区二区| 亚洲自拍偷在线| 免费高清视频大片| 男插女下体视频免费在线播放| 日本黄色片子视频| 日韩欧美在线乱码| 久久久久久九九精品二区国产| 国产免费av片在线观看野外av| 午夜亚洲福利在线播放| 一级av片app| 国产精品野战在线观看| 国产极品精品免费视频能看的| 精华霜和精华液先用哪个| 国产精品三级大全| 久99久视频精品免费| 黄色丝袜av网址大全| 国产精品乱码一区二三区的特点| 亚洲成人中文字幕在线播放| 亚洲七黄色美女视频| 日本撒尿小便嘘嘘汇集6| 免费人成在线观看视频色| 小说图片视频综合网站| 久久精品夜夜夜夜夜久久蜜豆| 国产精品女同一区二区软件 | 国产成人aa在线观看| 国产aⅴ精品一区二区三区波| 少妇高潮的动态图| 婷婷六月久久综合丁香| 久久午夜福利片| 精品午夜福利视频在线观看一区| 757午夜福利合集在线观看| av天堂在线播放| 色哟哟·www| 午夜精品在线福利| 国产探花在线观看一区二区| 悠悠久久av| 久久中文看片网| 欧美成人a在线观看| 如何舔出高潮| 国产白丝娇喘喷水9色精品| 深夜a级毛片| 最近视频中文字幕2019在线8| 亚洲人成电影免费在线| 国产精品野战在线观看| 国产乱人视频| av在线天堂中文字幕| 真人一进一出gif抽搐免费| 国产精品亚洲av一区麻豆| 午夜福利在线观看吧| 久久久久久国产a免费观看| 五月玫瑰六月丁香| 午夜影院日韩av| 国产成人啪精品午夜网站| av女优亚洲男人天堂| 日本黄色片子视频| 国产成人a区在线观看| 日本一本二区三区精品| 亚洲av不卡在线观看| 亚洲成av人片免费观看| 两个人视频免费观看高清| 免费高清视频大片| 91字幕亚洲| 变态另类成人亚洲欧美熟女| 午夜免费男女啪啪视频观看 | 一级黄色大片毛片| 欧美+日韩+精品| 99精品在免费线老司机午夜| 欧美一级a爱片免费观看看| 婷婷丁香在线五月| 热99re8久久精品国产| 日本 欧美在线| 亚洲性夜色夜夜综合| 欧美黄色片欧美黄色片| 亚洲成人中文字幕在线播放| 中文字幕人成人乱码亚洲影| 国产黄a三级三级三级人| 欧美在线一区亚洲| 97热精品久久久久久| 国产亚洲精品久久久com| 简卡轻食公司| 欧美丝袜亚洲另类 | 欧美激情在线99| 一a级毛片在线观看| 91av网一区二区| 黄色配什么色好看| 亚洲无线观看免费| 国产白丝娇喘喷水9色精品| 不卡一级毛片| av中文乱码字幕在线| 91av网一区二区| 欧美精品国产亚洲| 欧美日韩乱码在线| 俺也久久电影网| 欧美色欧美亚洲另类二区| 亚洲久久久久久中文字幕| 最近最新中文字幕大全电影3| 伊人久久精品亚洲午夜| 伦理电影大哥的女人| 一级a爱片免费观看的视频| 狠狠狠狠99中文字幕| 精品午夜福利视频在线观看一区| 欧美最新免费一区二区三区 | 男人狂女人下面高潮的视频| 天天一区二区日本电影三级| 日韩欧美三级三区| xxxwww97欧美| 国语自产精品视频在线第100页| 亚洲av.av天堂| 午夜福利视频1000在线观看| 成人精品一区二区免费| 色在线成人网| 18美女黄网站色大片免费观看| 天堂影院成人在线观看| 亚洲专区中文字幕在线| 欧美在线一区亚洲| 欧美一级a爱片免费观看看| 久久久久久九九精品二区国产| 中文字幕熟女人妻在线| 精品日产1卡2卡| 精品福利观看| 国产av不卡久久| 久久久久性生活片| 亚洲经典国产精华液单 | 国产精品野战在线观看| eeuss影院久久| 久久久久国内视频| 成人精品一区二区免费| 国产主播在线观看一区二区| 久久九九热精品免费| 精品久久久久久久人妻蜜臀av| 亚洲自拍偷在线| 老鸭窝网址在线观看| 国产aⅴ精品一区二区三区波| 12—13女人毛片做爰片一| a级毛片免费高清观看在线播放| xxxwww97欧美| 日韩中文字幕欧美一区二区| 变态另类丝袜制服| 免费在线观看亚洲国产| 九九在线视频观看精品| 丰满乱子伦码专区| 一级av片app| 一级黄色大片毛片| 亚洲性夜色夜夜综合| 欧美极品一区二区三区四区| 成年女人看的毛片在线观看| 日本免费a在线| 亚洲男人的天堂狠狠| 日韩中文字幕欧美一区二区| 国内毛片毛片毛片毛片毛片| 天堂影院成人在线观看| 亚洲美女黄片视频| 午夜精品在线福利| 内射极品少妇av片p| 亚洲综合色惰| 精品人妻熟女av久视频| 特级一级黄色大片| 亚洲18禁久久av| 国产成人aa在线观看| 99国产精品一区二区三区| 久久久久久久久大av| 国产淫片久久久久久久久 | 精品久久国产蜜桃| 99热这里只有精品一区| 久久欧美精品欧美久久欧美| 国产在线精品亚洲第一网站| 永久网站在线| 我要搜黄色片| 啦啦啦韩国在线观看视频| 亚洲精品一区av在线观看| 国产高清有码在线观看视频| 日韩大尺度精品在线看网址| 精华霜和精华液先用哪个| 桃红色精品国产亚洲av| 色综合婷婷激情| 一区福利在线观看| 少妇人妻精品综合一区二区 | 国产一区二区在线av高清观看| 99热这里只有是精品在线观看 | 久99久视频精品免费| 99久久99久久久精品蜜桃| 久久这里只有精品中国| 熟女人妻精品中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 一二三四社区在线视频社区8| 国产精品亚洲av一区麻豆| 欧美区成人在线视频| 亚洲国产欧美人成| 精品久久久久久成人av| 亚洲精品一区av在线观看| 一区二区三区免费毛片| 欧美绝顶高潮抽搐喷水| 久久精品综合一区二区三区| av黄色大香蕉| 国产真实伦视频高清在线观看 | 亚洲久久久久久中文字幕| 免费在线观看影片大全网站| 性插视频无遮挡在线免费观看| 亚洲欧美日韩高清在线视频| 国产一区二区在线观看日韩| 国产精华一区二区三区| 人妻制服诱惑在线中文字幕| 九色成人免费人妻av| 亚洲欧美精品综合久久99| 日本黄色视频三级网站网址| 69人妻影院| 国产色婷婷99| 热99在线观看视频| 成人性生交大片免费视频hd| 三级男女做爰猛烈吃奶摸视频| 女生性感内裤真人,穿戴方法视频| 亚洲av电影不卡..在线观看| 此物有八面人人有两片| 在现免费观看毛片| 国产探花极品一区二区| 国产精品三级大全| 久久人妻av系列| 国产av在哪里看| 嫩草影院入口| 99久久99久久久精品蜜桃| 久久婷婷人人爽人人干人人爱| 非洲黑人性xxxx精品又粗又长| 又紧又爽又黄一区二区| 两个人视频免费观看高清| 成人一区二区视频在线观看| 国产精品久久久久久精品电影| 亚洲欧美激情综合另类| 国产精品一区二区性色av| 嫩草影院精品99| 美女黄网站色视频| 国产精品久久视频播放| 亚洲国产日韩欧美精品在线观看| 色吧在线观看| 欧美日韩福利视频一区二区| 日韩欧美在线乱码| 国产欧美日韩精品亚洲av| 亚洲欧美日韩高清专用| 99热精品在线国产| 久久久久久久久大av| 国产视频内射| 国产午夜福利久久久久久| 淫秽高清视频在线观看| 天堂网av新在线| 国产黄片美女视频| 听说在线观看完整版免费高清| 国产成人欧美在线观看| 国产三级中文精品| 欧美日韩黄片免| 黄色视频,在线免费观看| 99热这里只有精品一区| 亚洲国产精品999在线| 欧美色视频一区免费| 国内精品一区二区在线观看| 国产一区二区三区在线臀色熟女| 午夜精品一区二区三区免费看| 亚洲国产精品999在线| 别揉我奶头~嗯~啊~动态视频| 看十八女毛片水多多多| 亚洲av第一区精品v没综合| 怎么达到女性高潮| 丰满的人妻完整版| 哪里可以看免费的av片| 69av精品久久久久久| 亚洲中文日韩欧美视频| 国产精品久久久久久精品电影| 欧美色欧美亚洲另类二区| 国产极品精品免费视频能看的| 嫩草影院精品99| 精品一区二区三区av网在线观看| 久久亚洲精品不卡| 国产单亲对白刺激| 2021天堂中文幕一二区在线观| 男插女下体视频免费在线播放| 日韩国内少妇激情av| 国产精品日韩av在线免费观看| 日本三级黄在线观看| 2021天堂中文幕一二区在线观| 亚洲欧美日韩高清专用| 亚洲 欧美 日韩 在线 免费| 性插视频无遮挡在线免费观看| 欧美日韩国产亚洲二区| 欧美日韩中文字幕国产精品一区二区三区| 最近最新中文字幕大全电影3| www日本黄色视频网| 国产美女午夜福利| 身体一侧抽搐| 青草久久国产| 人妻制服诱惑在线中文字幕| 天美传媒精品一区二区| 在线播放无遮挡| 国产主播在线观看一区二区| 午夜精品久久久久久毛片777| 国产色爽女视频免费观看| 国产免费一级a男人的天堂| 精品午夜福利在线看| 男人和女人高潮做爰伦理| 免费在线观看日本一区| 国产精品久久视频播放| 51午夜福利影视在线观看| 色视频www国产| 国产亚洲精品综合一区在线观看| 亚洲国产精品sss在线观看| 美女xxoo啪啪120秒动态图 | 国产精品影院久久| 男女之事视频高清在线观看| 如何舔出高潮| 一区二区三区激情视频| 国产精品日韩av在线免费观看| 午夜激情福利司机影院| 亚洲,欧美,日韩| 亚洲精品日韩av片在线观看| 一区二区三区免费毛片| 日日摸夜夜添夜夜添小说| 亚洲专区中文字幕在线| 一夜夜www| 亚洲精品乱码久久久v下载方式| 午夜福利高清视频| 久久久久久国产a免费观看| 国产综合懂色| 国产欧美日韩一区二区三| 欧美丝袜亚洲另类 | 亚洲av成人av| 高清在线国产一区| 一a级毛片在线观看| 夜夜夜夜夜久久久久| 老熟妇仑乱视频hdxx| 国模一区二区三区四区视频| 免费一级毛片在线播放高清视频| 长腿黑丝高跟| 亚洲欧美日韩高清在线视频| 亚州av有码| 亚洲第一电影网av| 九九久久精品国产亚洲av麻豆| 国产亚洲欧美98| 久久热精品热| 欧美色视频一区免费| 在线观看免费视频日本深夜| 欧美黑人巨大hd| 在线十欧美十亚洲十日本专区| 色综合站精品国产| 天堂av国产一区二区熟女人妻| 亚洲av免费在线观看| 亚洲人成网站在线播| av中文乱码字幕在线| 51国产日韩欧美| 757午夜福利合集在线观看| 噜噜噜噜噜久久久久久91| 亚洲在线自拍视频| 色综合亚洲欧美另类图片| 蜜桃亚洲精品一区二区三区| 人人妻,人人澡人人爽秒播| 国产亚洲精品久久久com| 久久国产精品影院| 亚洲精品久久国产高清桃花| 欧美日韩综合久久久久久 | 亚洲av免费高清在线观看| 日本成人三级电影网站| www.www免费av| 欧美日韩瑟瑟在线播放| 欧美zozozo另类| 国产精品亚洲美女久久久| av在线蜜桃| 亚洲av.av天堂| 日韩欧美三级三区| 美女xxoo啪啪120秒动态图 | 亚洲成人精品中文字幕电影| 九九久久精品国产亚洲av麻豆| 999久久久精品免费观看国产| av在线蜜桃| 97超视频在线观看视频| 男人的好看免费观看在线视频| 99热这里只有是精品在线观看 | 成人毛片a级毛片在线播放| 亚洲18禁久久av| 真人一进一出gif抽搐免费| 亚洲欧美日韩高清在线视频| 欧美区成人在线视频| 村上凉子中文字幕在线| 国产精品自产拍在线观看55亚洲| 精品一区二区三区视频在线| 国产精品久久电影中文字幕| 免费一级毛片在线播放高清视频| 亚洲真实伦在线观看| 免费搜索国产男女视频| 精品久久久久久久久久免费视频| 精品人妻偷拍中文字幕| 国产精品爽爽va在线观看网站| 美女cb高潮喷水在线观看| 亚洲午夜理论影院| 久久久久亚洲av毛片大全| 国产黄a三级三级三级人| 欧美乱妇无乱码| 免费黄网站久久成人精品 | 美女黄网站色视频| 黄片小视频在线播放| 婷婷色综合大香蕉| 少妇被粗大猛烈的视频| 搡女人真爽免费视频火全软件 | 国产伦一二天堂av在线观看| 亚洲男人的天堂狠狠| 嫩草影院新地址| 日韩欧美免费精品| 毛片一级片免费看久久久久 | 精品熟女少妇八av免费久了| 国产精品久久久久久人妻精品电影| 制服丝袜大香蕉在线| 女人十人毛片免费观看3o分钟| 欧美成人a在线观看| 男人的好看免费观看在线视频| 午夜免费激情av| 在线播放国产精品三级| 91在线观看av| 美女免费视频网站| 性插视频无遮挡在线免费观看| 真实男女啪啪啪动态图| 国产视频一区二区在线看| 亚洲乱码一区二区免费版| 久久精品国产自在天天线| 搡女人真爽免费视频火全软件 | 狠狠狠狠99中文字幕| 色视频www国产| 一个人看视频在线观看www免费| avwww免费| 日韩av在线大香蕉| 给我免费播放毛片高清在线观看| 日韩欧美国产在线观看| 亚洲无线观看免费| 91狼人影院| 欧美激情久久久久久爽电影| avwww免费| 欧美色视频一区免费| 夜夜躁狠狠躁天天躁| 熟女电影av网| 一个人免费在线观看的高清视频| 日本与韩国留学比较| 噜噜噜噜噜久久久久久91| 日本撒尿小便嘘嘘汇集6| 在线观看舔阴道视频| 成人国产一区最新在线观看| 国产一区二区激情短视频| 可以在线观看的亚洲视频| 国产免费男女视频| av视频在线观看入口| av天堂中文字幕网| 亚洲五月婷婷丁香| 久久久久久九九精品二区国产| 国内精品久久久久久久电影| 成人三级黄色视频| 日本三级黄在线观看| 精品乱码久久久久久99久播| 淫妇啪啪啪对白视频| 国产亚洲欧美在线一区二区| 一个人看视频在线观看www免费| 宅男免费午夜| 国产色婷婷99| 俄罗斯特黄特色一大片| 亚洲经典国产精华液单 | 高清在线国产一区| 五月玫瑰六月丁香| 欧美日本视频| 性色av乱码一区二区三区2| 黄色配什么色好看| 嫁个100分男人电影在线观看| 999久久久精品免费观看国产| 国产麻豆成人av免费视频| 精品久久久久久,| 久久伊人香网站| 久久中文看片网| 免费观看精品视频网站| 深爱激情五月婷婷| 99久久九九国产精品国产免费| 久久天躁狠狠躁夜夜2o2o| 久久精品91蜜桃| 午夜激情福利司机影院| 一a级毛片在线观看| 真实男女啪啪啪动态图| 久久久久久大精品| 欧美不卡视频在线免费观看| 男人和女人高潮做爰伦理| 亚洲av成人不卡在线观看播放网| 蜜桃亚洲精品一区二区三区| 色吧在线观看| 欧美高清成人免费视频www| 国产黄色小视频在线观看| 在线a可以看的网站| 99精品久久久久人妻精品| 日本五十路高清| 如何舔出高潮| 深夜精品福利| 波多野结衣巨乳人妻| 一个人免费在线观看电影| 在线观看66精品国产| 国产精品嫩草影院av在线观看 | 成人欧美大片| 久久精品国产亚洲av香蕉五月| 久9热在线精品视频| 人人妻人人看人人澡| 国产真实伦视频高清在线观看 | 91在线精品国自产拍蜜月| 欧美最黄视频在线播放免费| 亚洲美女视频黄频| 三级毛片av免费| 亚洲人成网站在线播放欧美日韩| 性色av乱码一区二区三区2| 99久久精品一区二区三区| 免费电影在线观看免费观看| 成熟少妇高潮喷水视频| 国产午夜精品久久久久久一区二区三区 | 精品乱码久久久久久99久播| 蜜桃久久精品国产亚洲av| 亚洲欧美日韩无卡精品| 国产精品美女特级片免费视频播放器| 日本黄色视频三级网站网址| 日本 欧美在线| 757午夜福利合集在线观看| 国产精品精品国产色婷婷| 欧美高清成人免费视频www| 免费搜索国产男女视频| 全区人妻精品视频| 国产中年淑女户外野战色| 国产主播在线观看一区二区| 日日摸夜夜添夜夜添小说| 欧美成人性av电影在线观看| av天堂中文字幕网| 国产中年淑女户外野战色| 精品久久久久久久久亚洲 | 三级国产精品欧美在线观看| 国产精品伦人一区二区| 亚洲,欧美精品.| 日日摸夜夜添夜夜添av毛片 | 中文在线观看免费www的网站| 亚洲无线在线观看| 波野结衣二区三区在线| 成人性生交大片免费视频hd| 久久国产乱子伦精品免费另类| www.熟女人妻精品国产| or卡值多少钱| 99视频精品全部免费 在线| 欧美xxxx性猛交bbbb| 搡女人真爽免费视频火全软件 | x7x7x7水蜜桃| 99久久精品热视频| 99久久99久久久精品蜜桃| 在线观看午夜福利视频| av在线观看视频网站免费| 国产大屁股一区二区在线视频| 黄色视频,在线免费观看| 女同久久另类99精品国产91| bbb黄色大片| 男人舔女人下体高潮全视频| 国产激情偷乱视频一区二区| 亚洲精品影视一区二区三区av| 成人国产一区最新在线观看| 尤物成人国产欧美一区二区三区| 90打野战视频偷拍视频| 国语自产精品视频在线第100页| 狂野欧美白嫩少妇大欣赏| 一区福利在线观看| 窝窝影院91人妻| 天天躁日日操中文字幕| 久久久久亚洲av毛片大全| 乱码一卡2卡4卡精品| 我要搜黄色片| 1000部很黄的大片| 99热这里只有精品一区| 亚洲无线在线观看| 亚洲成人免费电影在线观看| 国内精品久久久久久久电影| 丰满人妻一区二区三区视频av| 在线观看舔阴道视频| 国产亚洲精品久久久com| 精华霜和精华液先用哪个| av专区在线播放| 日本 欧美在线| 国产男靠女视频免费网站| 国产 一区 欧美 日韩| 搡老妇女老女人老熟妇| 国产精品一区二区性色av| 精品99又大又爽又粗少妇毛片 | 亚洲欧美清纯卡通| 亚洲精品一卡2卡三卡4卡5卡| 久久人人精品亚洲av| 中出人妻视频一区二区| 婷婷六月久久综合丁香| 精品一区二区三区av网在线观看| 久久久久久国产a免费观看| 亚洲一区二区三区不卡视频| 亚洲欧美日韩卡通动漫| 久久精品91蜜桃| 国产成人aa在线观看| 午夜福利高清视频| 亚洲人成伊人成综合网2020| 3wmmmm亚洲av在线观看| 成熟少妇高潮喷水视频| 免费看光身美女| 一区二区三区四区激情视频 | 嫩草影视91久久| 国产精品久久久久久久久免 | 国产真实乱freesex| 亚洲国产精品sss在线观看| 国产又黄又爽又无遮挡在线| 色综合站精品国产| h日本视频在线播放| 国产精品嫩草影院av在线观看 | 亚洲精品在线观看二区| 日韩欧美在线二视频| 国产亚洲欧美在线一区二区| 国产精品国产高清国产av| 亚洲最大成人手机在线| 午夜影院日韩av| 欧美国产日韩亚洲一区| 亚洲熟妇熟女久久| 国产午夜精品论理片| 欧美在线一区亚洲| 国产精品一区二区性色av|