• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Surface Functionalization of Microporous Polypropylene Membrane with Polyols for Removal of Boron Acid from Aqueous Solution*

    2014-07-18 11:56:05ZHOURong周蓉DILing狄玲WANGCang王蒼FANGYan方艷WUJian吳健andXUZhikang徐志康

    ZHOU Rong (周蓉), DI Ling (狄玲), WANG Cang (王蒼), FANG Yan (方艷), WU Jian (吳健)and XU Zhikang (徐志康),**

    1MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China

    2Department of Chemistry, Zhejiang University, Hangzhou 310027, China

    Surface Functionalization of Microporous Polypropylene Membrane with Polyols for Removal of Boron Acid from Aqueous Solution*

    ZHOU Rong (周蓉)1, DI Ling (狄玲)2, WANG Cang (王蒼)2, FANG Yan (方艷)1, WU Jian (吳健)2and XU Zhikang (徐志康)1,**

    1MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China

    2Department of Chemistry, Zhejiang University, Hangzhou 310027, China

    Affinity membranes are fabricated for boric acid removal by the surface functionalization of microporous polypropylene membrane (MPPM) with lactose-based polyols. The affinity is based on specific complexation between boric acid and saccharide polyols. A photoinduced grafting-chemical reaction sequence was used to prepare these affinity membranes. Poly(2-aminoethyl methacrylate hydrochloride) [poly(AEMA)] was grafted on the surfaces of MPPM by UV-induced graft polymerization. Grafting in the membrane pores was visualized by dying the cross-section of poly(AEMA)-grafted MPPM with fluorescein disodium and imaging with confocal laser scanning microscopy. It is concluded that lactose ligands can be covalently immobilized on the external surface and in the pores by the subsequent coupling of poly(AEMA) with lactobionic acid (LA). Physical and chemical properties of the affinity membranes were characterized by field emission scanning electron microscopy and Fourier Transform Infrared/Attenuated Total Refraction spectroscopy (FT-IR/ATR). 3-Aminophenyl boric acid (3-APBA) was removed from aqueous solution by a single piece of lactose-functionalized MPPM in a dynamic filtration system. The results show that the 3-APBA removal reaches an optimal efficiency (39.5%) under the alkaline condition (pH 9.1), which can be improved by increasing the immobilization density of LA. Regeneration of these affinity membranes can be easily realized through acid-base washing because the complexation of boric acid and saccharide polyol is reversible.

    surface functionalization, affinity membrane, microporous polypropylene membrane, boron removal, polyols

    1 INTRODUCTION

    Boron contamination of water is recognized as a serious environmental problem in recent years [1-3]. In aqueous solutions, dissolved boron is usually presentfound in seawater and wastewater at a concentration level of 5-100 mg·L?1or higher, far beyond the upper limit of 2.4 mg·L?1suggested by the World Health Organization (WHO) for drinking water and 0.5 mg·L?1for irrigation water [4]. Although a minute amount of boron plays an important role in human diet, an excessive level of boron will be toxic to human beings. Overdose of boron intake may cause symptoms such as nausea, vomiting, diarrhoea, dematitis, lethargy, poor appetite, mass loss, and decreased sexual activity [5]. “Boron poisoning” will result from boron concentration only a slightly higher than 0.5 mg·L?1for plants [6]. Therefore, it is a pressing challenge to develop ecological-economical technologies for removing boron compounds from water. Current methods include adsorption with various adsorbents [7-11], coagulation/precipitation [12], anion-exchange with boron selective resin (BSR) [13-23], and membrane processes (nanofiltration/reverse osmosis [24-31], adsorption membrane filtration [3, 32-34], electrodialysis [35], and direct contact membrane distillation [36]). The advantages and disadvantages of these methods have been commented in detail [1-3]. With the increasing demand for good quality water, more attention is paid to effective ways for boron removal at low cost with less energy consumption [19, 24, 26-29].

    Boric acids/borates are complex compounds containing multiple hydroxyl groups (polyols) [37-42]. It was reported 50 years ago saccharides-based polyols form complexes with phenylboric acids [37]. This pioneering work led to a series of fundamental studies and potential applications [38-42], one of which was to remove boron with commercial BSR, synthesized from macroporous polystyrene matrix and modified with a polyol, N-methyl-D-glucamine [13-18]. Membrane processes were also used to integrate with specific complexation of polyols [33, 34]. For example, poly(vinyl alcohol) was used as boron complexant and separation of boron/polymer complexes was achieved with an ultrafiltration process [33]. More recently, Kabay et al. demonstrated an effective hybrid system to remove boron by economical treatment of reverse osmosis permeates [3, 32], in which BSR was combined with microfiltration polypropylene membrane, named as adsorption-membrane filtration (AMF). Further work is needed for developing and optimizing the membrane processes on membrane materials, boron removal efficiency, fouling phenomena, cleaning protocols, and long term operation.

    It has been recognized that affinity membraneswith polyols can be used for water treatment [43, 44], such as a type of chitosan nanofibrous mats used as an efficient adsorbent for heavy metal ions in aqueous solutions [44]. The target pollutants are selectively captured by polyol ligands immobilized on the membrane surface. The affinity membranes with polyols as ligands can be utilized for boron removal [45]. We propose that the AMF system can be simplified to some extent by the surface functionalization of microporous polypropylene membrane (MPPM) with polyols. To confirm this idea, we explore the possibility of MPPM functionalized with saccharides as polyol ligands for boron removal from aqueous solutions. In this study, lactose is used because it has eight hydroxyl groups to give high binding capacity for boron compounds. Since the binding process of 3-aminophenyl boric acid (3-APBA) with polyols is analogous to that of boric acid, it is selected as a model compound of boric acid/borate due to its solubility in water for preparing aqueous solution and absorption at 281 nm for easy determination. We describe the fabrication, characterization and affinity filtration of these membranes for 3-APBA removal from aqueous solution. The affinity membranes based on saccharide functionalization may be promising for boron removal.

    2 EXPERIMENTAL

    2.1 Materials

    MPPM was purchased from Membrana GmbH (Germany). The average pore size is 0.20 μm and the porosity is 75%-80%. Each membrane sample was cut into round shape with a diameter of 2.50 cm (area=4.91 cm2). Benzophenone (BP), acetone, and heptane with analytical grade were used as received. 2-Aminoethyl methacrylate hydrochloride (AEMA) was synthesized as described in our previous work [46]. 3-APBA was bought from Ningbo Yingfa Pengna Co., Ltd (China) and recrystallized before use. 1-Ethyl-3-(dimethyl aminopropyl)-carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) were purchased from Shanghai Medpep and Sigma (China), respectively. Lactobionic acid (LA) and fluorescein disodium are commercial products of Sigma-Aldrich Ltd (China) and were used as received.

    2.2 Graft polymerization of AEMA on MPPM

    AEMA was grafted onto MPPM by UV-irradiation with a 500 W high-pressure mercury lamp. First, a preweighted MPPM sample was soaked in 5 ml of photoinitiator solution (BP in heptane with a concentration of 3.64 g·L?1) for 60 min and dried in air for 30 min. Then the membrane was pre-wetted with acetone for 10 s to improve the accessibility of monomer aqueous solution onto the MPPM surface, and wiped with filter paper quickly. Each sample with pores wetted was immediately fixed between two filter papers and immersed into 1.0 ml of AEMA aqueous solution (pre-deaerated by bubbling with N2for 10 min) in a Petri dish. After 5 min of equilibration, the sample was put into an ultraviolet processor. UV irradiation was carried out for certain time under nitrogen gas environment. A constant-temperature water bath was connected to the system and maintained the grafting process at room temperature. Finally, the poly(AEMA)-grafted MPPM [designated as MPPM-g-poly(AEMA)] was thoroughly washed with deionized water for 24 h using a vibrator. After dried in a vacuum oven at 50 °C to constant mass, the grafting density (GD, μmol·cm?2) of the modified MPPM is calculated by the following equation

    where m0is the mass of MPPM (mg), m1is the mass of MPPM-g-poly(AEMA) (mg), Amis the surface area of membrane (4.91 cm2), and 165.5 is the molar mass of AEMA. All the results are the average of three parallel experiments.

    2.3 Lactose immobilization on MPPM-g-poly (AEMA)

    Lactose ligands were immobilized onto the membrane surface by a reaction between amino groups of poly(AEMA) and carboxyl groups of LA via an EDC/NHS activation procedure as presented in Fig. 1. The amino groups of poly(AEMA) were first deprotonated by dipping MPPM-g-poly(AEMA) into a solution of triethylamine (TEA) (1.5%, by mass) for 2 h. Then the membrane sample was submerged into a LA solution [5-fold molar quantity of poly(AEMA) grafted on the membrane surfaces] at 4 °C in the presence of EDC/NHS (2 mg·L?1) with gentle vibration for 24 h. After washed with deionized water drastically with a vibrator for 24 h, the membrane was dried under vacuum at 50 °C. The immobilization density (ID, μmol·cm?2) of LA is defined as

    where m2is the mass of membrane bound with lactose (designated as MPPM-g-LA) (mg), and 304.8 is the molar mass of LA. All the results are the average of three parallel experiments.

    2.4 Characterization

    Figure 1 Schematic diagram for UV-induced graft polymerization of AEMA and immobilization of lactose-based polyols on MPPM surface

    Figure 2 Set up of filtration system with the lactose-based polyol-functionalized affinity membrane

    Fourier Transform Infrared/Attenuated Total Refraction spectra (FT-IR/ATR) were collected on Nicolet FT-IR/Nexus 470 spectrometer equipped with an ATR accessory (ZnSe crystal, 45°). Sixteen scans were taken for each spectrum at a resolution of 4 cm?1. Field emission scanning electron microscopy (FESEM, SIRION, FEI, USA) was used to observe the morphology of membrane surface after the sample was coated with a 20-nm-thick gold layer. Fluorescein disodium was used to stain the MPPM-g-poly(AEMA). Samples were incubated with 4 mL of aqueous solution of fluorescein disodium (0.5%, by mass) for 0.5 h at room temperature. After that, the membranes were washed with deionized water (6 times, 10 min each), dried at 50 °C under vacuum for 24 h, frozen in liquid nitrogen and fractured to obtain a tidy cross-section. Confocal laser scanning microscopy (CLSM) was used with a TCS SP5 confocal setup mounted on a Leica DMI 6000 CS inverted microscope (Leica Microsystems, Wetzlar, Germany) and operated under the Leica Application Suite Advanced Fluorescence (LAS AF) program. Confocal illumination was provided by an argon-ion laser at 488 nm for exciting. Fluorescence emission of fluorescein disodium on the membrane was recorded at 500-535 nm.

    2.5 Filtration experiment

    The filtration experiment with polyols-functionalized affinity membrane was performed with freshly prepared aqueous solution of 3-APBA in Tris-HCl buffer. As shown in Fig. 2, 20 ml 3-APBA solution was kept in a vessel and delivered in the loop at certain flow rate by a microinfusion pump. Before cycling, the filtration system was fed with 3-APBA solution (boron concentration of 7.89 mg·L?1) and then washed with Tris-HCl buffer to eliminate nonspecific adsorption of 3-APBA. One piece of MPPM-g-LA membrane was wetted with ethanol and exchanged with enough Tris-HCl buffer solution and put into the stainless steel module (Millipore, USA). The membrane holder was mounted in the filtration system. Finally, 3-APBA solution in Tris-HCl with boron concentration of 7.89mg·L?1was injected into the membrane holder with a constant flow rate (0.8 ml·min?1), and the 3-APBA concentration was determined from the UV absorbance at 281 nm with an online UV spectrometry detector. After the filtration, the system was washed with Tris-HCl buffer solution at a flow rate of 1.5 ml·min?1until 3-APBA was not detected in the solution. Then, the membrane was taken out from the membrane module, eluted with 0.3 mol·L?1HCl for 5 h and washed with deionized water for 24 h, dried, preserved, and used in the next circle.

    To eliminate the influence of residual buffer solution in the pipeline, the concentration of boron after filtration is corrected by the following equation where C′ is the concentration of boron recorded by online UV spectrometry (mg·L?1), V is the initial volume of 3-APBA solution (ml), and Vris the residual volume of Tris-HCl buffer (ml).

    The 3-APBA removal is described by removal efficiency of boron (REB), defined as where C0and C are the concentrations of boron in aqueous solution before and after filtration, respectively (mg·L?1).

    The binding capacity (BC, μmol·cm?2) of 3-APBA to the polyols-functionalized MPPM is calculated by

    where 10.81 is the molar mass of boron.

    3 RESULTS AND DISCUSSION

    3.1 Surface functionalization of MPPM with lactosebased polyols

    Ligands should be immobilized on both external surface and pore surface of membrane [43]. As shown in Fig. 1, lactose-based polyols are introduced on these surfaces of MPPM by a photoinduced graftingchemical reaction sequence. Amino-functionalized layer is resulted from the UV-induced grafting polymerization of AEMA. Since the grafting density of poly(AEMA) increases with AEMA concentration and UV irradiation time [46], the grafting density on the membrane surface is adjustable by controlling the monomer concentration and photoinduced grafting time in the experiment. Fluorescein disodium is used to visually verify the functionalization of the external and pore surfaces of MPPM with poly(AEMA). As the amino groups of poly(AEMA) are protected in a hydrochloride form, the poly(AEMA)-grafted membrane surfaces are positively charged. Therefore, these surfaces can be stained by fluorescein disodium, which is a negatively charged dye [47]. Fig. 3 displays typical photos taken from the external membrane surface and CLSM images taken from the membrane cross-section for MPPM-g-poly(AEMA) with various grafting densities treated with fluorescein disodium. The plain MPPM can not be stained by fluorescein disodium [Figs. 3 (a), 3 (e)]. Color intensity of the external surface increases with grafting density [Figs. 3 (b), 3 (c), 3 (d)]. The distribution of poly(AEMA) along the cross-sectionof membrane is characterized by CLSM [Figs. 3 (f), 3 (g), 3 (h)]. It indicates that the grafting of poly(AEMA) occurs on the external and pore surfaces of MPPM.

    Figure 3 Photographs of external surface (a)-(d) and CLSM pictures of cross-section of pores (e)-(h) for the membranes stained by fluorescein disodium(a) MPPM; (b), (c), (d) MPPM-g-poly(AEMA) with GD = 0.56, 1.55, 2.45 μmol·cm?2;(e) MPPM; (f), (g), (h) MPPM-g-poly(AEMA) with GD = 0.53, 1.42, 2.56 μmol·cm?2

    It is expected that lactose-based polyols can be immobilized on the surface with following steps. Lactose ligands are covalently bound with grafted poly(AEMA) chains through a reaction between the amino group of AEMA and the carboxyl group of LA. Before the reaction with LA, MPPM-g-poly(AEMA) sample is dipped in a TEA solution to neutralize hydrochloride to protect the amino group. When the membrane is transferred in a LA solution in the presence of EDC/NHS, the MPPM-g-poly(AEMA) sample reacts with LA under the same reaction condition (time, temperature, and concentration of TEA). Fig. 4 shows that the immobilization degree of LA increases almost linearly with the increase of GD. Therefore, more lactose ligands can be bound to poly(AEMA) chains when the GD of poly(AEMA) increases.

    Figure 4 Dependence of lactose ID on GD of poly (AEMA)

    3.2 Chemical and morphological changes of membrane surface

    Chemical and physical properties of membrane surfaces are very important to separation characteristics. Fig. 5 shows the FT-IR/ATR spectra for MPPM, MPPM-g-poly(AEMA), and MPPM-g-LA to confirm the functionalization of membranes. After grafting, a new peak appears at 1720 cm?1in both MPPM-g-poly (AEMA) and MPPM-g-LA, attributed to the ester CO stretching vibration in COO?. The spectra of MPPM-g-poly(AEMA) and MPPM-g-LA show that two characteristic peaks at 1646 and 1543 cm?1for amide and 3360 cm?1for OH stretching vibration appear after functionalization with lactobionic acid. All these data indicate successful immobilization of lactose ligands. Fig. 6 shows the morphological change of membrane surfaces characterized by FESEM. These typical images demonstrate that the functional layer almost uniformly and conformably adheres to external membrane surfaces and covers part of membrane pores.

    Figure 5 FT-IR/ATR spectra of MPPMs(a) MPPM; (b) MPPM-g-poly(AEMA) with GD of 0.31 μmol·cm?2; (c) MPPM-g-LA with GD of 0.85 μmol·cm?2and ID of 0.38 μmol·cm?2; (d) MPPM-g-LA with GD of 2.13 μmol·cm?2and ID of 0.95 μmol·cm?2

    Figure 6 FESEM images of MPPMs(a) MPPM; (b) MPPM-g-poly(AEMA) with GD of 0.81 μmol·cm?2; (c) MPPM-g-LA with GD of 0.76 μmol·cm?2and ID of 0.31 μmol·cm?2; (d) MPPM-g-LA with GD of 4.03 μmol·cm?2and ID of 1.98 μmol·cm?2

    Figure 7 Mechanism for complexation of boric acid and 3-APBA with polyols1, 5—boric acid; 2, 6—borate; 3, 4, 8—borate esters in tetrahedral; 7—borate ester in trigonal

    Figure 8 Effect of pH value (a) and ID of lactose ligand (b) on the breakthrough curve for 3-APBA removal by the MPPM-g-LA

    3.3 Removal of 3-APBA from aqueous solution by MPPM-g-LA

    As shown in Fig. 7, boric acid and its derivatives (such as 3-APBA) react with compounds containing diol moieties with high affinity through reversible ester formation. Fig. 8 (a) shows the breakthrough curves of MPPM-g-LA with ID of 0.75 μmol·cm?2and Table 1 summarizes the removal efficiency of 3-APBA at different pH values (from 5.5 to 9.1). The effluent concentration increases rapidly to the maximum in the early stage. The maximal concentration is usually lower than the concentration of the original solution, which is diluted by residual Tris-HCl in the system. Then, affinity adsorption reduces the effluent concentration to a constant value. The pH value plays a significant role in the 3-APBA removal. Generally, the removal efficiency and binding capacity for 3-APBA increase with the pH value of aqueous solution. This isattributed to the equilibrium of boric acid and boronate ester in the solution. It is suggested that the complexation of boric acid with diol is related to the equilibrium between trigonal and tetrahedral borate esters formed [38]. The formation of tetrahedral ester brings about hydronium ion as a byproduct. Lowering the solution pH tends to reverse the complexation. It is reported that the optimum pH for the complexation isabove the pKaof boric acids [41, 42]. However, under strong basic condition, direct competition between hydroxyl ions and borate ions will result in low removal efficiency for boron [7, 45, 48]. The pKavalue of 3-APBA is 8.9, so pH of 9.1 is suitable for its removal in the present study. Further experiments were conducted under this pH value.

    Table 1 Effect of pH value on the removal efficiency and binding capacity of 3-APBA by MPPM-g-LA membrane with an ID of 0.75 μmol·cm?2

    The ID of lactose ligands on/in MPPM-g-LA has a great influence on 3-APBA removal, because the target binding depends on the number of ligands on the external surface and in the pores in affinity membrane chromatography [43, 44, 49]. Results calculated from the curves are listed in Table 2, showing that as the ID increases, the binding capacity is enhanced as expected. Fig. 8 (b) exhibits kinetic performance of MPPM-g-LA with different IDs. The curves are similar for ID of 0.30, 0.61 and 1.71 μmol·cm?2, but for ID of 2.01 μmol·cm?2, the effluent concentration decreases continuously in the whole experimental cycle. It implies unsaturation adsorption of 3-APBA by the affinity membrane. Most of lactose ligands locate on the outer layer of grafted poly(AEMA) chains and are easy to bind with 3-APBA when the ID is relatively low. However, when the ID of lactose is as high as 2.01 μmol·cm?2, the ligands may locate on the whole chains of poly(AEMA). 3-APBA adsorbed on the outer layer of flexible polyols chains can be transferred into the inner layer through the reversible binding between 3-APBA and lactose ligand [49]. Therefore, the effluent concentration decreases with adsorption time and takes longer time to reach adsorption equilibrium.

    Table 2 Binding capacity and removal efficiency of 3-APBA by MPPM-g-LA with different IDs of lactose at pH 9.1

    Durability and reusability of the affinity membrane can be evaluated from adsorption/elution cycles. The stability of boric acid-polyols complex is pH-dependent and under the acid condition the complex is easy to be hydrolyzed, which makes the regeneration of the affinity membrane possible. With extensive acid washing (300 mmol·L?1HCl for 3 h) to remove 3-APBA bound on the MPPM-g-LA, the membrane can be regenerated for further use. Fig. 9 displays the breakthrough curves for 3 continuous cycles, in which the breakthrough curves are similar, showing the durability and reusability of MPPM-g-LA.

    Figure 9 Breakthrough curves for 3-APBA removal by MPPM-g-LA with ID of lactose ligand 0.61 μmol·cm?2for three cycles

    4 CONCLUSIONS

    Microporous polypropylene membrane can be functionalized with poly(AEMA) grafting followed with immobilization of lactose-based polyols. These lactose-based polyols-functionalized membranes exhibit reasonable efficiency in the affinity adsorption of boric acid from aqueous solution. The removal efficiency can be improved by increasing the immobilization degree of lactose ligands on the external membrane surface and in the membrane pores. To further reduce boron concentration, subsequent work, such as filtration through multi-membranes, is ongoing in our laboratory and the results will be further reported.

    REFERENCES

    1 Hilal, N., Kim, G.J., Somerfield, C., “Boron removal from saline water: a comprehensive review”, Desalination, 273, 23-35 (2011).

    2 Tu, K.L., Nghiem, L.D., Chivas, A.R., “Boron removal by reverse osmosis membranes in seawater desalination applications”, Sep. Purif. Technol., 75, 87-101 (2010).

    3 Kabay, N., Bryjak, M., Schlosser, S., Kitis, M., Avlonitis, S., Matejka, Z., Al-Mutaz, I., Yuksel, M., “Adsorption-membrane filtration (AMF) hybrid process for boron removal from seawater: an overview”, Desalination, 223, 38-48 (2008).

    4 World Health Organization, “Boron in drinking water—background document for development of WHO guidelines for drinking water quality”, WHO (2009).

    5 Hunt, C.D., Benjamin, C., Boron, in Encyclopedia of Food Science and Nutrition, Academic Press, Oxford, 566-574 (2003).

    6 Boncukcuoglu, R., Yilmaz, A.E., Kocakerim, M.M., Copur, M., “An emprical model for kinetics of boron removal from boron containing wastewaters by ion exchange in a batch reactor”, Desalination, 160, 159-166 (2004).

    7 Karahan, S., Yurdakoc, M., Seki, Y., Yurdakoc, K., “Removal of boron from aqueous solution by clays and modified clays”, J. Colloid Interface Sci., 293, 36-42 (2006).

    8 Ozturk, N., Kavak, D., “Boron removal from aqueous solutions by adsorption using full factorial design”, Fresenius Environ. Bull., 12, 1450-1456 (2003).

    9 Garcia-Soto, M.M.F., Camachob, E.M., “Boron removal by means of adsorption with magnesium oxide”, Sep. Purif. Technol., 48, 36-44 (2006).

    10 Ozturk, N., Kavak, D., “Boron removal from aqueous solutions by batch adsorption onto cerium oxide using full factorial design”, Desalination, 223, 106-112 (2008).

    11 Chong, M.F., Lee, K.P., Chieng, H.J., Ramli, I., “Removal of boron from ceramic industry wastewater by adsorption-flocculationmechanism using palm oil mill boiler (POMB) bottom ash and polymer”, Water Res., 43, 3326-3334 (2009).

    12 Yilmaz, A.E., Boncukcuo?lu, R., Kocakerim, M.M., “A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution”, J. Hazard. Mater., 149, 475-481 (2007).

    13 Simonnot, M.O., Castel, C., Nicolai, M., Rosin, C., Sardin, M., Jauffret, H., “Boron removal from drinking water with a boron selective resin: is the treatment really selective?”, Water Res., 34, 109-116 (2000).

    14 Kabay, N., Y?lmaz, I., Yamac, S., Samatya, S., Yuksel, M., Yuksel, U., Arda, M., Saglam, M., Iwanaga, T., Hirowatari, K., “Removal and recovery of boron from geothermal wastewater by selective ion exchange resins. I. Laboratory tests”, React. Funct. Polym., 60, 163-170 (2004).

    15 Kabay, N., Y?lmaz, I., Yamac, S., Yuksel, M., Yuksel, U., Yildirim, N., Aydogdu, O., Iwanaga, T., Hirowatari, K., “Removal and recovery of boron from geothermal wastewater by selective ion-exchange resins. II. Field tests”, Desalination, 167, 427-438 (2004).

    16 Kabay, N., Sarp, S., Yuksel, M., Kitis, M., Koseo?lu, H., Arar, O., Bryjak, M., Semiat, R., “Removal of boron from SWRO permeate by boron selective ion exchange resins containing N-methyl glucamine groups”, Desalination, 223, 49-56 (2008).

    17 Kabay, N., Sarp, S., Yuksel, M., Arar, O., Bryjak, M., “Removal of boron from seawater by selective ion exchange resins”, React. Funct. Polym., 67, 1643-1650 (2007).

    18 Jacob, C., “Seawater desalination: boron removal by ion exchange technology”, Desalination, 205, 47-52 (2007).

    19 Samatya, S., Orhan, E., Kabay, N., Tuncel, A., “Comparative boron removal performance of monodisperse-porous particles with molecular brushes via ‘click chemistry’ and direct coupling”, Colloids Surf A: Physicochem. Eng. Aspects, 372, 102-106 (2010).

    20 Bicak, N., Gazi, M., Senkal, B.F., “Polymer supported amino bis-(cis-propan 2,3-diol) functions for removal of trace boron from water”, React. & Funct. Polym., 65, 143-148 (2005).

    21 Senkal, B.F., Bicak, N., “Polymer supported iminodipropylene glycol functions for removal of boron”, React. & Funct. Polym., 55, 27-33 (2003).

    22 Wang, L., Qi, T., Gao, Z., Zhang, Y., Chu, J., “Synthesis of N-methylglucamine modified macroporous poly(GMA-co-TRIM) and its performance as a boron sorbent”, React. & Funct. Polym., 67, 202-209 (2007).

    23 Liu, H.N., Ye, X.S., Li, Q., Kim, T., Qing, B.J., Guo, M., Ge, F., Wu, Z.J., Lee, K., “Boron adsorption using a new boron-selective hybrid gel and the commercial resin D564”, Colloid Surf., A, 341, 118-126 (2009).

    24 Oo, M.H., Ong, S.L., “Implication of zeta potential at different salinities on boron removal by RO membranes”, J. Membr. Sci., 352, 1-6 (2010).

    25 Oo, M.H., Song, L.F., “Effect of pH and ionic strength on boron removal by RO membranes”, Desalination, 246, 605-612 (2009).

    26 Richards, L.A., Vuachère, M., Sch?fer, A.I., “Impact of pH on the removal of fluoride, nitrate and boron by nanofiltration/reverse osmosis”, Desalination, 261, 331-337 (2010).

    27 Kir, E., Gurler, B., Gulec, A., “Boron removal from aqueous solution by using plasma-modified and unmodified anion-exchange membranes”, Desalination, 267, 114-117 (2011).

    28 Dominguez-Tagle, C., Romero-Ternero, V.J., Delgado-Torres, A.M.,“Boron removal efficiency in small seawater reverse osmosis systems”, Desalination, 265, 43-48 (2011).

    29 Koseoglu, H., Harman, B.I., Yigit, N.O., Guler, E., Kabay, N., Kitis, M., “The effects of operating conditions on boron removal from geothermal waters by membrane processes”, Desalination, 258, 72-78 (2010).

    30 Mane, P.P., Park, P.K., Hyung, H., Brown, J.C., Kim, J.H., “Modeling boron rejection in pilot- and full-scale reverse osmosis desalination processes”, J. Membr. Sci., 338, 119-127 (2009).

    31 Cengeloglu, Y., Arslan, G., Tor, A., Kocak, I., Dursun, N., “Removal of boron from water by using reverse osmosis”, Sep. Purif. Technol., 64, 141-146 (2008).

    32 Kabay, N., Yilmaz, I., Bryjak, M., Kabay, N., Yilmaz, I., Bryjak, M., Yuksel, M., “Removal of boron from aqueous solutions by a hybrid ion exchange-membrane process”, Desalination, 198, 158-165 (2006).

    33 Dilek, C., Ozbelge, H.O., Bicak, N., Yilmaz, L., “Removal of boron from aqueous solutions by continuous polymer-enhanced ultrafiltration with polyvinyl alcohol”, Sep. Sci. Technol., 37, 1257-1271 (2002).

    34 Melnyk, L., Goncharuk, V., Butnyk, I., Tsapiuk, E., “Boron removal from natural and wastewaters using combined sorption/membrane process”, Desalination, 185, 147-157 (2005).

    35 Yazicigil, Z., Oztekin, Y., “Boron removal by electrodialysis with anion-exchange membranes”, Desalination, 190, 71-78 (2006).

    36 Hou, D.Y., Wang, J., Sun, X.C., Luan, Z.K., Zhao, C.W., Ren, X.J.,“Boron removal from aqueous solution by direct contact membrane distillation”, J. Hazard. Mater., 177, 613-619 (2010).

    37 Lorand, J.P., Edwards, J.O., “Polyol complexes and structure of the benzeneboronate ion”, J. Org. Chem., 24, 769-774 (1959).

    38 Edwards, N.Y., Sager, T.W., McDevitt, J.T., Anslyn, E.V., “Boric acid based peptidic receptors for pattern-based saccharide sensing in neutral aqueous media, an application in real-life samples”, J. Am. Chem. Soc., 129, 13575-13583 (2007).

    39 Kim, K.T., Cornelissen, J., Nolte, R.J.M., van Hest, J.C.M., “Polymeric monosaccharide receptors responsive at neutral pH”, J. Am. Chem. Soc., 131, 13908-13909 (2009).

    40 Lu, C., Kostanski, L., Ketelson, H., Meadows, D., Pelton, R., “Hydroxypropyl guar-borate interactions with tear film mucin and lysozyme”, Langmuir, 21, 10032-10037 (2005).

    41 Geffen, N., Semiat, R., Eisen, M.S., Balazs, Y., Katz, I., Dosoretz, C.G., “Boron removal from water by complexation to polyol compounds”, J. Membr. Sci., 286, 45-51 (2006).

    42 Ivanov, A.E., Galaev, I.Y., Mattiasson, B., “Interaction of sugars, polysaccharides and cells with borate-containing copolymers: from solution to polymer brushes”, J. Mol. Recognit., 19, 322-331 (2006). 43 Klein, E., “Affinity membranes: a 10-year review”, J. Membr. Sci., 179, 1-27 (2000).

    44 Haider, S., Park, S.Y., “Preparation of the electrospun chitosan nanofibers and their applications to the adsorption of Cu(II) and Pb(II) ions from an aqueous solution”, J. Membr. Sci., 328, 90-96 (2009).

    45 Meng, J.Q., Yuan, J., Kang, Y.L., Zhang, Y.F., Du, Q.Y., “Surface glycosylation of polysulfone membrane towards a novel complexing membrane for boron removal”, J. Colloid Interface Sci., 368, 197-207 (2012).

    46 Yang, Q., Xu, Z.K., Hu, M.X., Li, J.J., Wu, J., “Novel sequence for generating glycopolymer tethered on a membrane surface”, Langmuir, 21, 10717-10723 (2005).

    47 Huang, J.Y., Murata, H., Koepsel, R.R., Russell, A.J., Matyjaszewski, K., “Antibacterial polypropylene via surface-initiated atom transfer radical polymerization”, Biomacromolecules, 8, 1396-1399 (2007).

    48 Wei, Y.T., Zheng, Y.M., Chen, J.P., “Functionalization of regenerated cellulose membrane via surface initiated atom transfer radical polymerization for boron removal from aqueous solution”, Langmuir, 27, 6018-6025 (2011).

    49 Hu, M.X., Wan, L.S., Xu, Z.K., “Multilayer adsorption of lectins on glycosylated microporous polypropylene membranes”, J. Membr. Sci., 335, 111-117 (2009).

    10.1016/S1004-9541(14)60012-4

    2012-11-21, accepted 2013-06-16.

    * Supported by the National Natural Science Foundation of China (50933006), and the National Basic Research Program of China (2009CB623401).

    ** To whom correspondence should be addressed. E-mail: xuzk@zju.edu.cn

    成人18禁在线播放| 精品一区二区三区视频在线观看免费 | 高清欧美精品videossex| 国产亚洲欧美精品永久| 欧美乱妇无乱码| 香蕉丝袜av| 天堂动漫精品| 一a级毛片在线观看| 麻豆久久精品国产亚洲av | 老熟妇乱子伦视频在线观看| 黄色a级毛片大全视频| 亚洲在线自拍视频| 欧美乱色亚洲激情| 香蕉久久夜色| 少妇粗大呻吟视频| 波多野结衣av一区二区av| 岛国视频午夜一区免费看| 国产三级黄色录像| 久久性视频一级片| 正在播放国产对白刺激| 亚洲欧美精品综合一区二区三区| 一级a爱片免费观看的视频| 国产精品一区二区三区四区久久 | 亚洲熟女毛片儿| 国产亚洲精品第一综合不卡| 成人免费观看视频高清| 午夜精品久久久久久毛片777| 国产成人啪精品午夜网站| 亚洲午夜理论影院| 好男人电影高清在线观看| 91麻豆精品激情在线观看国产 | 成人亚洲精品av一区二区 | 亚洲中文av在线| 国产三级黄色录像| 中文字幕人妻熟女乱码| 黄色丝袜av网址大全| 91大片在线观看| 热re99久久国产66热| a级毛片黄视频| 不卡av一区二区三区| 午夜精品国产一区二区电影| 国产一区二区三区综合在线观看| 麻豆av在线久日| 久久精品国产99精品国产亚洲性色 | 亚洲av第一区精品v没综合| www.www免费av| 婷婷丁香在线五月| 丁香六月欧美| 午夜91福利影院| 每晚都被弄得嗷嗷叫到高潮| 国产免费av片在线观看野外av| 亚洲中文av在线| 亚洲黑人精品在线| 午夜久久久在线观看| 美女福利国产在线| 久久久久久免费高清国产稀缺| 亚洲精品久久成人aⅴ小说| 丰满的人妻完整版| 天天躁狠狠躁夜夜躁狠狠躁| 久久精品aⅴ一区二区三区四区| 欧美国产精品va在线观看不卡| 91国产中文字幕| 国产精品一区二区三区四区久久 | 国产99白浆流出| 国产亚洲av高清不卡| 亚洲精品久久午夜乱码| 国产成人系列免费观看| www.自偷自拍.com| 伊人久久大香线蕉亚洲五| 午夜影院日韩av| 欧美av亚洲av综合av国产av| 老汉色∧v一级毛片| 咕卡用的链子| 国产成人av教育| 一级,二级,三级黄色视频| videosex国产| 国产高清激情床上av| 真人一进一出gif抽搐免费| 久久久久久大精品| 黄色视频不卡| 国产一区二区三区综合在线观看| 五月开心婷婷网| 天堂动漫精品| www.999成人在线观看| av在线播放免费不卡| 一a级毛片在线观看| 国产高清激情床上av| 精品国产乱子伦一区二区三区| 黑人欧美特级aaaaaa片| 国产人伦9x9x在线观看| 操美女的视频在线观看| 国产熟女午夜一区二区三区| 女生性感内裤真人,穿戴方法视频| 欧美老熟妇乱子伦牲交| 午夜影院日韩av| 老熟妇乱子伦视频在线观看| 国产成+人综合+亚洲专区| 久久精品亚洲熟妇少妇任你| 女性被躁到高潮视频| 欧美精品啪啪一区二区三区| 亚洲国产精品合色在线| 又黄又粗又硬又大视频| 亚洲色图综合在线观看| 国产精品一区二区在线不卡| 老司机靠b影院| 一二三四在线观看免费中文在| 麻豆一二三区av精品| 亚洲成国产人片在线观看| 电影成人av| 如日韩欧美国产精品一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 久久久久久久久中文| 国产av又大| 99热只有精品国产| 日韩欧美三级三区| 亚洲激情在线av| 欧美日本亚洲视频在线播放| 日本五十路高清| 久久婷婷成人综合色麻豆| 麻豆久久精品国产亚洲av | 久久 成人 亚洲| 久久久国产成人精品二区 | 亚洲 欧美一区二区三区| 国产精品av久久久久免费| 天天躁夜夜躁狠狠躁躁| av免费在线观看网站| 成年版毛片免费区| ponron亚洲| 日韩欧美国产一区二区入口| 99re在线观看精品视频| 五月开心婷婷网| 51午夜福利影视在线观看| 久久99一区二区三区| 51午夜福利影视在线观看| 一进一出抽搐动态| 精品久久久久久成人av| 99精品久久久久人妻精品| 成人黄色视频免费在线看| 色精品久久人妻99蜜桃| 狠狠狠狠99中文字幕| 在线看a的网站| 51午夜福利影视在线观看| 亚洲狠狠婷婷综合久久图片| 免费观看人在逋| 日韩人妻精品一区2区三区| 国产精品偷伦视频观看了| 亚洲国产毛片av蜜桃av| 国产精品九九99| 久久精品国产亚洲av高清一级| 麻豆av在线久日| 精品久久久久久久毛片微露脸| 亚洲久久久国产精品| 亚洲中文av在线| 俄罗斯特黄特色一大片| 亚洲精品av麻豆狂野| 校园春色视频在线观看| 日韩欧美在线二视频| 国产精品一区二区在线不卡| 成人三级做爰电影| 99riav亚洲国产免费| 欧美日韩亚洲综合一区二区三区_| 中文字幕另类日韩欧美亚洲嫩草| 美女高潮到喷水免费观看| 1024香蕉在线观看| 日韩欧美一区二区三区在线观看| 精品久久久久久,| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av熟女| 黄片小视频在线播放| 国产99白浆流出| 老熟妇乱子伦视频在线观看| 国产免费男女视频| 夜夜看夜夜爽夜夜摸 | 好男人电影高清在线观看| 成人三级黄色视频| 亚洲激情在线av| 五月开心婷婷网| 亚洲av熟女| 亚洲色图 男人天堂 中文字幕| 亚洲欧美激情综合另类| 免费av中文字幕在线| av天堂久久9| 久久精品国产综合久久久| 在线观看66精品国产| netflix在线观看网站| 真人做人爱边吃奶动态| 黄色毛片三级朝国网站| 亚洲五月色婷婷综合| 国产三级在线视频| a级片在线免费高清观看视频| 他把我摸到了高潮在线观看| 日本黄色视频三级网站网址| 精品人妻1区二区| 亚洲成人国产一区在线观看| 叶爱在线成人免费视频播放| 亚洲五月婷婷丁香| 欧美日韩亚洲国产一区二区在线观看| 精品欧美一区二区三区在线| www.熟女人妻精品国产| 最近最新中文字幕大全电影3 | 久久欧美精品欧美久久欧美| 欧美在线黄色| 亚洲av日韩精品久久久久久密| 人成视频在线观看免费观看| 国产欧美日韩一区二区精品| 国产精品亚洲av一区麻豆| 久久久久国产一级毛片高清牌| 91国产中文字幕| 两人在一起打扑克的视频| 男女高潮啪啪啪动态图| 精品卡一卡二卡四卡免费| 国产精品免费视频内射| 欧美在线黄色| 俄罗斯特黄特色一大片| 两性夫妻黄色片| 国产激情久久老熟女| 成年人黄色毛片网站| 久久国产精品男人的天堂亚洲| 亚洲av成人不卡在线观看播放网| 亚洲片人在线观看| 国产一区二区在线av高清观看| 国产欧美日韩精品亚洲av| 精品国产美女av久久久久小说| 97碰自拍视频| 新久久久久国产一级毛片| av视频免费观看在线观看| 一二三四社区在线视频社区8| 中文字幕另类日韩欧美亚洲嫩草| 欧美乱妇无乱码| 自拍欧美九色日韩亚洲蝌蚪91| 人人妻人人添人人爽欧美一区卜| 亚洲专区国产一区二区| 人人妻,人人澡人人爽秒播| 在线免费观看的www视频| 少妇裸体淫交视频免费看高清 | 狠狠狠狠99中文字幕| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜久久久在线观看| 香蕉久久夜色| 欧美日韩黄片免| 欧美黑人欧美精品刺激| 丁香六月欧美| 久久国产亚洲av麻豆专区| 女性被躁到高潮视频| 日韩免费av在线播放| 亚洲视频免费观看视频| 久久中文字幕人妻熟女| 制服诱惑二区| 无人区码免费观看不卡| 黑人猛操日本美女一级片| 欧美日韩国产mv在线观看视频| 欧美激情久久久久久爽电影 | 日日爽夜夜爽网站| 亚洲欧美精品综合一区二区三区| 一级a爱片免费观看的视频| 国产一区二区激情短视频| 这个男人来自地球电影免费观看| 女人精品久久久久毛片| 国产亚洲欧美精品永久| 国产精品1区2区在线观看.| 日韩成人在线观看一区二区三区| 亚洲精品中文字幕在线视频| 亚洲国产欧美网| 欧美性长视频在线观看| 无限看片的www在线观看| 母亲3免费完整高清在线观看| 日本精品一区二区三区蜜桃| 99re在线观看精品视频| 亚洲成av片中文字幕在线观看| 国产精品av久久久久免费| 亚洲色图 男人天堂 中文字幕| 熟女少妇亚洲综合色aaa.| 亚洲国产欧美网| 国产99白浆流出| 两个人免费观看高清视频| 国产成人影院久久av| 美女福利国产在线| 亚洲美女黄片视频| 亚洲九九香蕉| 精品午夜福利视频在线观看一区| 一级毛片精品| 久久久精品国产亚洲av高清涩受| 黄色丝袜av网址大全| 亚洲 国产 在线| 国产成人精品在线电影| 十分钟在线观看高清视频www| 女性被躁到高潮视频| 91麻豆精品激情在线观看国产 | 免费久久久久久久精品成人欧美视频| 啦啦啦在线免费观看视频4| 看片在线看免费视频| 欧美日韩av久久| 男女午夜视频在线观看| 午夜福利,免费看| 一级片免费观看大全| 操美女的视频在线观看| 啦啦啦在线免费观看视频4| 亚洲专区国产一区二区| 欧美在线黄色| 日韩欧美免费精品| 真人一进一出gif抽搐免费| 国产亚洲欧美精品永久| 中文字幕av电影在线播放| 欧美 亚洲 国产 日韩一| www.自偷自拍.com| 欧美日本中文国产一区发布| 成人黄色视频免费在线看| 我的亚洲天堂| 亚洲专区中文字幕在线| 淫秽高清视频在线观看| 日本一区二区免费在线视频| www日本在线高清视频| 免费少妇av软件| 欧美日韩乱码在线| 少妇粗大呻吟视频| 悠悠久久av| 在线永久观看黄色视频| 国产成人精品在线电影| 男人操女人黄网站| 国产片内射在线| 91九色精品人成在线观看| 一边摸一边做爽爽视频免费| 欧美黑人精品巨大| 最近最新免费中文字幕在线| 国产麻豆69| 欧美人与性动交α欧美软件| 日韩成人在线观看一区二区三区| 十八禁网站免费在线| 免费搜索国产男女视频| 午夜福利免费观看在线| 后天国语完整版免费观看| 免费在线观看日本一区| 成人国产一区最新在线观看| 精品国产乱码久久久久久男人| 性欧美人与动物交配| 久久精品国产综合久久久| 在线十欧美十亚洲十日本专区| 久久精品91蜜桃| 午夜福利欧美成人| 久久中文字幕一级| 免费看十八禁软件| e午夜精品久久久久久久| x7x7x7水蜜桃| 黑人猛操日本美女一级片| 亚洲国产精品合色在线| 男女下面进入的视频免费午夜 | 岛国视频午夜一区免费看| 亚洲人成电影观看| 多毛熟女@视频| 国产精品98久久久久久宅男小说| 国产一区在线观看成人免费| 国产亚洲欧美在线一区二区| 999久久久国产精品视频| 久久精品国产亚洲av香蕉五月| 中文字幕人妻丝袜制服| 国产单亲对白刺激| 欧美精品亚洲一区二区| 久热这里只有精品99| 大香蕉久久成人网| 黄色丝袜av网址大全| 亚洲 欧美 日韩 在线 免费| 亚洲精品美女久久久久99蜜臀| 99热国产这里只有精品6| 久久 成人 亚洲| 男人舔女人下体高潮全视频| 午夜福利在线观看吧| 久久人妻av系列| 国产精品综合久久久久久久免费 | 欧洲精品卡2卡3卡4卡5卡区| 国产精品 欧美亚洲| 视频在线观看一区二区三区| 桃色一区二区三区在线观看| 午夜久久久在线观看| 久久久久久久久中文| 韩国精品一区二区三区| 国产欧美日韩精品亚洲av| 日本一区二区免费在线视频| 不卡av一区二区三区| 亚洲,欧美精品.| 免费在线观看亚洲国产| 老熟妇乱子伦视频在线观看| 国产成年人精品一区二区 | 精品久久久久久成人av| 十分钟在线观看高清视频www| 亚洲精品国产一区二区精华液| 黄网站色视频无遮挡免费观看| 国产精品免费一区二区三区在线| 99久久国产精品久久久| 91大片在线观看| 黄网站色视频无遮挡免费观看| 亚洲精品久久成人aⅴ小说| 十八禁人妻一区二区| 男女下面插进去视频免费观看| 狂野欧美激情性xxxx| 岛国在线观看网站| 97碰自拍视频| 国产一区二区激情短视频| 在线观看免费午夜福利视频| 夫妻午夜视频| 成人永久免费在线观看视频| 国产又爽黄色视频| 人人妻人人澡人人看| 精品国产亚洲在线| 久久中文字幕人妻熟女| 成人精品一区二区免费| 国产精品自产拍在线观看55亚洲| 黑人欧美特级aaaaaa片| 国产精品国产av在线观看| 久久久久国产一级毛片高清牌| 午夜影院日韩av| 三级毛片av免费| 亚洲精品中文字幕在线视频| 高清毛片免费观看视频网站 | 亚洲三区欧美一区| www.999成人在线观看| 丰满人妻熟妇乱又伦精品不卡| 麻豆久久精品国产亚洲av | 黑人欧美特级aaaaaa片| 在线观看www视频免费| 日本黄色日本黄色录像| 国产成人av教育| 日韩精品中文字幕看吧| 亚洲激情在线av| 亚洲人成伊人成综合网2020| 国产日韩一区二区三区精品不卡| 一级黄色大片毛片| 成年人免费黄色播放视频| 一级片免费观看大全| 国产日韩一区二区三区精品不卡| 老司机靠b影院| 性色av乱码一区二区三区2| 高清av免费在线| 亚洲精品一卡2卡三卡4卡5卡| 80岁老熟妇乱子伦牲交| а√天堂www在线а√下载| 99热国产这里只有精品6| 在线观看免费高清a一片| 国产亚洲精品第一综合不卡| 亚洲国产精品一区二区三区在线| 97超级碰碰碰精品色视频在线观看| 精品福利永久在线观看| av网站在线播放免费| 99久久99久久久精品蜜桃| 91成人精品电影| 色精品久久人妻99蜜桃| 高潮久久久久久久久久久不卡| 老司机在亚洲福利影院| 伦理电影免费视频| 777久久人妻少妇嫩草av网站| 国产91精品成人一区二区三区| 日韩人妻精品一区2区三区| 一边摸一边抽搐一进一出视频| 中文字幕人妻丝袜制服| 久久草成人影院| 在线观看66精品国产| 欧美不卡视频在线免费观看 | 亚洲狠狠婷婷综合久久图片| 成人国语在线视频| 欧美精品亚洲一区二区| 国产成年人精品一区二区 | 老司机深夜福利视频在线观看| 免费高清在线观看日韩| 精品高清国产在线一区| 久久久久久亚洲精品国产蜜桃av| 国产又爽黄色视频| 校园春色视频在线观看| 99国产极品粉嫩在线观看| 色精品久久人妻99蜜桃| 后天国语完整版免费观看| 香蕉国产在线看| 午夜福利影视在线免费观看| 国产主播在线观看一区二区| a在线观看视频网站| 国产精品电影一区二区三区| 欧美人与性动交α欧美软件| 日本免费一区二区三区高清不卡 | 黄网站色视频无遮挡免费观看| 18禁美女被吸乳视频| 高清欧美精品videossex| 少妇裸体淫交视频免费看高清 | 老熟妇仑乱视频hdxx| 亚洲五月婷婷丁香| 超碰97精品在线观看| 色精品久久人妻99蜜桃| 999精品在线视频| 波多野结衣一区麻豆| 国产成人欧美| 国产成人av教育| 村上凉子中文字幕在线| 美女扒开内裤让男人捅视频| 国产高清激情床上av| 高清av免费在线| 男女下面进入的视频免费午夜 | 女人高潮潮喷娇喘18禁视频| 夜夜夜夜夜久久久久| 国产三级在线视频| 最新在线观看一区二区三区| 国产免费av片在线观看野外av| 高潮久久久久久久久久久不卡| 精品乱码久久久久久99久播| 99久久精品国产亚洲精品| 久久精品国产综合久久久| 亚洲国产毛片av蜜桃av| 色精品久久人妻99蜜桃| 50天的宝宝边吃奶边哭怎么回事| 国产欧美日韩一区二区三区在线| 男女下面插进去视频免费观看| 一级黄色大片毛片| 99精品欧美一区二区三区四区| 国产国语露脸激情在线看| 热99国产精品久久久久久7| 一a级毛片在线观看| bbb黄色大片| 变态另类成人亚洲欧美熟女 | 悠悠久久av| 欧美日韩亚洲综合一区二区三区_| 黄色丝袜av网址大全| 国产精品香港三级国产av潘金莲| 欧洲精品卡2卡3卡4卡5卡区| 国产在线观看jvid| 亚洲成国产人片在线观看| 男女下面进入的视频免费午夜 | 午夜精品国产一区二区电影| 热99re8久久精品国产| 日本五十路高清| 操美女的视频在线观看| 欧美av亚洲av综合av国产av| 免费久久久久久久精品成人欧美视频| 新久久久久国产一级毛片| 色尼玛亚洲综合影院| 久久久水蜜桃国产精品网| 又黄又粗又硬又大视频| 男人的好看免费观看在线视频 | 亚洲av成人av| 国产单亲对白刺激| 国产av在哪里看| 久久久久久久精品吃奶| 大型av网站在线播放| 黄色毛片三级朝国网站| 国产成年人精品一区二区 | 成人特级黄色片久久久久久久| 中亚洲国语对白在线视频| 欧美国产精品va在线观看不卡| 日本精品一区二区三区蜜桃| 国产有黄有色有爽视频| 一级毛片女人18水好多| 黄色视频不卡| 午夜91福利影院| 久久中文字幕一级| 国产成+人综合+亚洲专区| 日韩欧美免费精品| 欧美国产精品va在线观看不卡| 大陆偷拍与自拍| 精品高清国产在线一区| 嫩草影院精品99| 欧美乱码精品一区二区三区| 天天添夜夜摸| 国产免费男女视频| 日韩欧美免费精品| 日韩精品中文字幕看吧| 国产精品 国内视频| 又紧又爽又黄一区二区| 18美女黄网站色大片免费观看| 曰老女人黄片| 免费人成视频x8x8入口观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av第一区精品v没综合| 欧美性长视频在线观看| 欧美成人性av电影在线观看| 在线十欧美十亚洲十日本专区| 在线看a的网站| 美女国产高潮福利片在线看| a在线观看视频网站| 免费看a级黄色片| 久久热在线av| 久久中文字幕一级| 不卡一级毛片| 一级片'在线观看视频| 国产一区二区在线av高清观看| 成年版毛片免费区| 18禁裸乳无遮挡免费网站照片 | 极品人妻少妇av视频| 黄色 视频免费看| 电影成人av| 一边摸一边抽搐一进一出视频| 久久人妻熟女aⅴ| 一本大道久久a久久精品| 露出奶头的视频| 午夜91福利影院| 亚洲av成人av| 亚洲精品中文字幕一二三四区| 精品国产国语对白av| 国产精品av久久久久免费| 国产伦一二天堂av在线观看| 久久人妻福利社区极品人妻图片| 午夜福利影视在线免费观看| 中文字幕人妻丝袜制服| a级毛片黄视频| 99国产精品一区二区蜜桃av| 亚洲一区二区三区不卡视频| 51午夜福利影视在线观看| 欧美日韩精品网址| 国产精品久久视频播放| 亚洲中文字幕日韩| 久9热在线精品视频| 久久人人97超碰香蕉20202| e午夜精品久久久久久久| 国产精品亚洲一级av第二区| av视频免费观看在线观看| 高清在线国产一区| 国产精品一区二区三区四区久久 | 在线观看www视频免费| 国产熟女午夜一区二区三区| 黄色 视频免费看| 欧美日韩一级在线毛片|