李旭艷 邵淑麗 張偉偉 惲東澤 付博 張珍珠
摘要:通過(guò)pSilencer 2.1質(zhì)粒介導(dǎo)的RNAi技術(shù)沉默急性早幼粒白血病耐藥HT9細(xì)胞的耐藥基因mdr1表達(dá),可提高耐藥細(xì)胞對(duì)姜黃素的敏感性。通過(guò)設(shè)計(jì)合成靶向mdr1基因的shRNA干擾片段,定向克隆到pSilencer 2.1-U6 neo質(zhì)粒中,成功構(gòu)建沉默mdr1基因特異表達(dá)的shRNA表達(dá)載體,電轉(zhuǎn)染HT9細(xì)胞后篩選陽(yáng)性克隆擴(kuò)大培養(yǎng)。采用實(shí)時(shí)熒光定量PCR、Western blot檢測(cè)細(xì)胞mdr1基因表達(dá)情況,流式細(xì)胞術(shù)檢測(cè)P-糖蛋白外排泵功能,MTT法和流式細(xì)胞技術(shù)檢測(cè)細(xì)胞對(duì)藥物敏感性和細(xì)胞周期分布。結(jié)果顯示,構(gòu)建的shRNA表達(dá)載體pU6/shRNA/mdr1轉(zhuǎn)染HT9細(xì)胞后,HT9/pU6/shRNA細(xì)胞mdr1 mRNA表達(dá)降低了78.84%(P<0.01),P-糖蛋白的表達(dá)量降低了48.27%(P<0.05),細(xì)胞內(nèi)Rho123相對(duì)熒光強(qiáng)度由10.8%±058%升高至73.56%±1.37%;轉(zhuǎn)染細(xì)胞對(duì)姜黃素敏感性明顯增強(qiáng),IC50由(24.10±0. 83) μmol/L降至(5.10±014) μmol/L;耐藥相對(duì)逆轉(zhuǎn)率為84.74%±1.86%,與HT9細(xì)胞相比,經(jīng)姜黃素處理的穩(wěn)定轉(zhuǎn)染細(xì)胞HT9/pU6/shRNA細(xì)胞周期阻滯在S、G2/M期。說(shuō)明質(zhì)粒介導(dǎo)的shRNA表達(dá)載體pU6/shRNA/mdr1能夠穩(wěn)定、持久地抑制mdr1基因表達(dá),能有效增強(qiáng)HT9細(xì)胞對(duì)姜黃素的敏感性。
關(guān)鍵詞:shRNA;pSilencer 2.1-U6 neo質(zhì)粒;多藥耐藥性;HT9細(xì)胞;姜黃素
中圖分類號(hào):R961文獻(xiàn)標(biāo)志碼:A文章編號(hào):1002-1302(2014)01-0022-04
收稿日期:2013-06-06
基金項(xiàng)目:黑龍江省自然科學(xué)基金(編號(hào):C200624);黑龍江省教育廳科技項(xiàng)目(編號(hào):11511447、12511611)。
作者簡(jiǎn)介:李旭艷(1982—),女,山東陽(yáng)谷人,碩士,講師,從事分子生物學(xué)研究。Tel:(0452)2742695;E-mail:lxy0702@126.com。
通信作者:邵淑麗,博士,教授,從事分子生物學(xué)研究。Tel:(0452)2738219;E-mail:shshl32@163.com。近年來(lái),白血病的治愈率已有明顯提高,但由于白血病細(xì)胞中存在多種耐藥相關(guān)基因異常的高表達(dá),致使白血病細(xì)胞對(duì)抗癌藥物產(chǎn)生耐藥性,導(dǎo)致部分白血病患者治療失敗或在化療后復(fù)發(fā)。研究表明,多藥耐藥基因mdr1的過(guò)表達(dá)成為經(jīng)典的多藥耐藥表型[1-2]。mdr1基因的表達(dá)產(chǎn)物P-糖蛋白(P-glycoprotein,P-gp)可以利用ATP水解釋放的能量將化療藥物泵出細(xì)胞外,使細(xì)胞內(nèi)藥物濃度始終維持在低水平,使藥物的細(xì)胞毒作用減弱,從而導(dǎo)致細(xì)胞產(chǎn)生耐藥性[1]。P-糖蛋白對(duì)藥物的特異性很小,能夠運(yùn)輸多種結(jié)構(gòu)不同的底物,如長(zhǎng)春新堿、蒽環(huán)類藥物(柔紅霉素、阿霉素)、姜黃素、紫杉醇等,因此耐藥細(xì)胞能對(duì)許多結(jié)構(gòu)和作用機(jī)制不同的藥物產(chǎn)生耐性。目前,RNA干擾(RNA interference,RNAi) 已用于沉默腫瘤細(xì)胞耐藥基因表達(dá),增強(qiáng)腫瘤細(xì)胞對(duì)化療藥物的敏感性[3-4]。本試驗(yàn)以質(zhì)粒pSilencer 2.1-U6 neo為基礎(chǔ),成功構(gòu)建了shRNA表達(dá)載體pU6/shRNA/mdr1,轉(zhuǎn)染早幼粒白血病耐藥HT9細(xì)胞,觀察細(xì)胞mdr1基因表達(dá)情況、蛋白功能及細(xì)胞對(duì)姜黃素敏感性的變化。
1材料與方法
1.1材料
pSilencer 2.1-U6 neo由北京鼎國(guó)生物技術(shù)有限責(zé)任公司惠贈(zèng),人急性早幼粒白血病細(xì)胞株HL60、耐三尖杉酯堿的HL60細(xì)胞株HT9由北京師范大學(xué)生命科學(xué)學(xué)院提供,RPMI1640培養(yǎng)基、胎牛血清購(gòu)自上海生工生物工程技術(shù)服務(wù)有限公司,鼠抗人單克隆抗體、HRP標(biāo)記山羊抗鼠二抗為北京中山金橋生物技術(shù)有限公司產(chǎn)品。ECM830型電穿孔儀(BTX);熒光定量RCP儀(Bio-Rad);流式細(xì)胞儀FC500(Beckman);7700 Real-Time PCR 儀(ABI)。
1.2方法
1.2.1pU6/shRNA/mdr1載體的構(gòu)建根據(jù)GenBank P-糖蛋白編碼基因mdr1 mRNA的已知序列(NM_000927),選擇1 個(gè)shRNA特異性靶位點(diǎn)序列,設(shè)計(jì)合成編碼shRNA的DNA模板序列:正義鏈GATCCGGAGGCCAACATACATGCCTTCAAGAGAGGCATGTATGTTGGCCTCCTTTTTTGGAAA;反義鏈AGCTTTTCCAAAAAAGGAGGCCAACATACATGCCTCTCTTGAAGGCATGTATGTTGGCCTCCG,退火形成雙鏈,將其定向克隆到 pSilencer2.1-U6 neo載體上,shRNA重組質(zhì)粒命名為 pU6/shRNA/mdr1。連接產(chǎn)物轉(zhuǎn)化大腸桿菌DH5α,提取質(zhì)粒,測(cè)序驗(yàn)證插入序列無(wú)突變。大量提取純化質(zhì)粒,待轉(zhuǎn)染。
1.2.2細(xì)胞培養(yǎng)及轉(zhuǎn)染HT9細(xì)胞用含1.0 μg/mL三尖杉酯堿的培養(yǎng)液常規(guī)培養(yǎng),試驗(yàn)前2 周取出三尖杉酯堿培養(yǎng)細(xì)胞。取對(duì)數(shù)生長(zhǎng)期的HT9細(xì)胞,利用線性化的 pEGFP-N1質(zhì)粒優(yōu)化電轉(zhuǎn)染條件,線性化的pSilencer 2.1-U6 neo 空質(zhì)粒、pU6/shRNA/mdr1重組質(zhì)粒于最佳電轉(zhuǎn)染條件下轉(zhuǎn)染HT9細(xì)胞,轉(zhuǎn)染后的細(xì)胞為HT9/pU6(空載體對(duì)照轉(zhuǎn)染細(xì)胞)、HT9/pU6/shRNA(轉(zhuǎn)染重組質(zhì)粒細(xì)胞),轉(zhuǎn)染后用 600 μg/mL G418篩選建立穩(wěn)定轉(zhuǎn)染的HT9細(xì)胞克隆,有限稀釋法挑取單克隆轉(zhuǎn)染細(xì)胞。試驗(yàn)另設(shè)非耐藥對(duì)照細(xì)胞HL60,耐藥非轉(zhuǎn)染對(duì)照細(xì)胞HT9。
1.2.3Real-time PCR檢測(cè)mdr1 mRNA表達(dá)量采用UNIQ-10柱式Trizol總RNA抽提試劑盒提取各組細(xì)胞總RNA,用Real-time PCR檢測(cè)以上細(xì)胞mdr1基因的表達(dá)量。反應(yīng)體系為25 μL:上、下游引物各0.25 μL,SYBR Green Ⅰ 1 μL,ddH2O 18 μL,cDNA 0.5 μL。循環(huán)參數(shù):94 ℃預(yù)變性 3 min;94 ℃ 1 min,58 ℃ 1 min,72 ℃ 1 min,循環(huán)35次;72 ℃延伸。反應(yīng)在ABI 7700 Real Time PCR儀上進(jìn)行,以β-actin作為內(nèi)參對(duì)照,引物序列具體情況見(jiàn)表1。表1引物序列與擴(kuò)增片段長(zhǎng)度
引物名稱1引物序列(5′→3′)1擴(kuò)增片段長(zhǎng)度(bp)mdr11F:ATATCAGCAGCCCACATCAT;R:GAAGCACTGGGATGTCCGGT1154β-actin1F:ATCATGTTTGAGACCTTCAACA;R:CATCTCTTGCTCGAAGTCCA1318
1.2.4P-糖蛋白表達(dá)量的Western blot檢測(cè)提取各組細(xì)胞總蛋白,測(cè)定樣品純度,再進(jìn)行SDS-PAGE凝膠電泳,將蛋白電轉(zhuǎn)移到PVDF膜上,5%脫脂奶粉封閉1 h,加入鼠抗人P-糖蛋白單克隆抗體C219(1 ∶40),室溫孵育1.5 h,PBS洗膜,HRP標(biāo)記的山羊抗鼠二抗(1 ∶5 000),室溫孵育1.5 h,ECL發(fā)光液顯影、定影、洗片,用凝膠圖像分析軟件分析X光片灰度值。
1.2.5FCM檢測(cè)P-糖蛋白外排泵功能收集對(duì)數(shù)生長(zhǎng)期各組細(xì)胞,分別與10 μg/mL Rho123混勻,37 ℃孵育 30 min,用預(yù)冷的PBS洗細(xì)胞,再重懸于預(yù)冷的PBS中,用流式細(xì)胞儀檢測(cè)細(xì)胞內(nèi)Rho123熒光強(qiáng)度。
1.2.6MTT法檢測(cè)耐藥細(xì)胞對(duì)姜黃素敏感性收集對(duì)數(shù)生長(zhǎng)期的各組細(xì)胞,按接種量1萬(wàn)個(gè)/孔接種于96 孔中,常規(guī)條件下分別與8個(gè)濃度梯度的姜黃素培養(yǎng)48 h,每個(gè)濃度3個(gè)平行,采用常規(guī)四甲基偶氮唑鹽微量酶反應(yīng)比色法(MTT法)于570 nm下測(cè)定吸光度D,計(jì)算細(xì)胞存活率:細(xì)胞存活率=D試驗(yàn)組/D對(duì)照組×100%,以藥物濃度為橫軸,細(xì)胞存活率為縱軸繪制濃度效應(yīng)曲線,求出回歸方程,確定半數(shù)抑制濃度(IC50),并計(jì)算相對(duì)逆轉(zhuǎn)率:逆轉(zhuǎn)率=[IC50(A)-IC50(B)]/[IC50(A)-IC50(C)]×100%,IC50(A)、IC50(B)、IC50(C)分別代表逆轉(zhuǎn)前耐藥細(xì)胞、逆轉(zhuǎn)后耐藥細(xì)胞和親本敏感細(xì)胞的IC50。
1.2.7FCM檢測(cè)細(xì)胞周期取對(duì)數(shù)生長(zhǎng)期各組細(xì)胞100萬(wàn)個(gè),接種100 mL 培養(yǎng)瓶?jī)?nèi),分別加入終濃度為8.0 μmol/L姜黃素,培養(yǎng)48 h,800 r/min離心10 min收集細(xì)胞,與1 mL預(yù)冷的70%乙醇充分混勻,4 ℃保存,至少固定18 h,細(xì)胞濃度調(diào)整為100萬(wàn)個(gè)/mL,洗滌,重懸于1 mL含 20 μg/mL RNase A和50 μg/mL PI的染液中,37 ℃孵育30 min,用流式細(xì)胞儀檢測(cè)細(xì)胞周期分布。
1.3數(shù)據(jù)處理
用SPSS 17.0進(jìn)行數(shù)據(jù)處理,進(jìn)行單因素方差分析,組間差異性分析采用LSD法,數(shù)據(jù)均以“平均數(shù)±標(biāo)準(zhǔn)差”表示。
2結(jié)果與分析
2.1pU6/shRNA/mdr1重組載體對(duì)mdr1-mRNA表達(dá)的影響
熒光定量PCR結(jié)果(圖1)顯示,HT9/pU6/shRNA細(xì)胞的mRNA 相對(duì)表達(dá)量極顯著低于HT9 細(xì)胞、HT9/pU6細(xì)胞;與HT9 細(xì)胞相比,HT9/pU6/shRNA 細(xì)胞mdr1基因的相對(duì)表達(dá)量降低了78.84% (P<0.01);HT9/pU6與HT9 細(xì)胞的mRNA 相對(duì)表達(dá)量差異不顯著(P>0.05);HT9/pU6/shRN與HL60細(xì)胞mRNA 相對(duì)表達(dá)量差異顯著(P<0.05)。說(shuō)明
重組質(zhì)粒pU6/shRNA/mdr1對(duì)HT9 細(xì)胞目的基因mdr1的表達(dá)有一定的干擾作用,而空載體對(duì)目的基因表達(dá)無(wú)干擾作用。
2.2pU6/shRNA/mdr1重組載體對(duì)P-糖蛋白表達(dá)的影響
用Western blot檢測(cè)各組細(xì)胞內(nèi)P-糖蛋白水平,以其與內(nèi)參β-actin的比值表示蛋白相對(duì)表達(dá)量。結(jié)果(圖2)顯示,HT9/pU6/shRNA細(xì)胞的P-糖蛋白表達(dá)量比HT9細(xì)胞低48.27%(P<0.05),HT9/pU6細(xì)胞與HT9 細(xì)胞蛋白相對(duì)表達(dá)量差異不顯著(P>0.05),HT9/pU6/shRNA細(xì)胞與HL60細(xì)胞蛋白相對(duì)表達(dá)量差異顯著(P<0.05)。證實(shí)了重組質(zhì)粒pU6/shRNA/mdr1對(duì)HT9 細(xì)胞mdr1基因沉默的有效性。
2.3pU6/shRNA/mdr1重組載體對(duì)P-糖蛋白外排泵功能的影響
經(jīng)流式細(xì)胞術(shù)分析(表2)可知,與HT9細(xì)胞相比,HT9/pU6/shRNA 細(xì)胞的Rho123熒光強(qiáng)度極顯著增強(qiáng)(P<001),而HT9/pU6細(xì)胞內(nèi)Rho123熒光強(qiáng)度變化不顯著(P>005);HT9/pU6/shRNA細(xì)胞與 HL60細(xì)胞內(nèi)熒光強(qiáng)度差異極顯著(P<0.01)。說(shuō)明轉(zhuǎn)染后的單克隆細(xì)胞 HT9/pU6/shRNA 的P-糖蛋白外排泵功能極顯著增強(qiáng)。
2.4RNAi對(duì)HT9細(xì)胞的影響
HT9細(xì)胞的IC50與HL60細(xì)胞差異顯著,進(jìn)一步說(shuō)明HT9 細(xì)胞具有高度耐藥性。姜黃素藥物濃度與細(xì)胞存活率呈負(fù)相關(guān)關(guān)系,相同作用條件下,HT9/pU6/shRNA細(xì)胞存活率降低最明顯。與HT9 細(xì)胞相比,HT9/pU6/shRNA細(xì)胞對(duì)姜黃素的IC50極顯著降低(P<0.01),而HT9/pU6細(xì)胞對(duì)姜黃素的IC50降低但差異不顯著(P>0.05);HT9/pU6/shRNA細(xì)胞對(duì)姜黃素的IC50與HL60細(xì)胞差異極顯著(P<001),干擾片段對(duì)耐藥細(xì)胞的耐藥相對(duì)逆轉(zhuǎn)率為(84.74±186)%(表3)。
2.5pU6/shRNA/mdr1重組載體對(duì)HT9細(xì)胞周期的影響
用流式細(xì)胞儀檢測(cè)經(jīng)姜黃素作用48 h的各組細(xì)胞周期顯示,與HT9細(xì)胞相比,HT9/pU6/shRNA和HL60細(xì)胞周期
表2各組細(xì)胞內(nèi) Rho123的相對(duì)熒光強(qiáng)度情況
細(xì)胞1Rho123 相對(duì)應(yīng)光強(qiáng)度(%)HT9110.80±0.58aAHT9/pU6110.44±0.45aAHT9/pU6/shRNA173.56±1.37bBHL60195.13±1.12cC注:同列數(shù)據(jù)后不同小寫、大寫字母表示差異顯著(P<0.05)、極顯著(P<0.01)(n=3)。下同。
發(fā)生了明顯變化,表現(xiàn)為S、G2/M期細(xì)胞增多,HT9/pU6細(xì)胞周期未發(fā)生明顯變化,說(shuō)明轉(zhuǎn)染細(xì)胞HT9/pU6/shRNA和HL60細(xì)胞周期經(jīng)姜黃素處理后阻滯在S、G2/M期(圖3)。
3結(jié)論與討論
白血病是最常見(jiàn)的造血系統(tǒng)惡性腫瘤之一,目前聯(lián)合化療仍然是白血病治療的重要措施,而白血病細(xì)胞多藥耐藥性的產(chǎn)生則使部分白血病的化療或預(yù)后最終失敗。研究表明,在經(jīng)典的白血病多藥耐藥表型中,通過(guò)對(duì)P-糖蛋白的檢測(cè)可以判斷白血病病人對(duì)當(dāng)前化療藥物是否具有抗性,以選擇恰當(dāng)?shù)闹委煼桨浮D退幠孓D(zhuǎn)劑、免疫治療、基因治療等技術(shù)已被臨床應(yīng)用于提高腫瘤細(xì)胞對(duì)藥物的敏感性,輔助提高腫瘤治愈率。RNA干擾技術(shù)是近年來(lái)發(fā)展起來(lái)的一項(xiàng)特異性抑制基因表達(dá)的基因治療方法,這一特異、有效的基因沉默技術(shù)現(xiàn)已被廣泛應(yīng)用于腫瘤多藥耐藥等方面的研究[5-6]。Yague等將設(shè)計(jì)的2對(duì)pSUPER-shRNA質(zhì)粒表達(dá)載體轉(zhuǎn)染給白血病耐藥細(xì)胞K562/ADR后,對(duì)mdr1基因表達(dá)的抑制率達(dá)95%、97%,細(xì)胞對(duì)藥物的敏感性恢復(fù)至與K562細(xì)胞幾乎相同的水平[7]。Alexandra等應(yīng)用H1啟動(dòng)子介導(dǎo)的RNA干擾載體抑制胃癌EPG85-257RDB細(xì)胞mdr1基因表達(dá),細(xì)胞耐藥逆轉(zhuǎn)率達(dá)74%[8]。
本試驗(yàn)成功構(gòu)建了RNA干擾pU6/shRNA/mdr1重組質(zhì)粒,該重組質(zhì)粒利用RNA聚合酶Ⅲ U6啟動(dòng)子表達(dá)siRNA分子,有利于對(duì)靶基因表達(dá)受到抑制后細(xì)胞表型的長(zhǎng)期變化進(jìn)行觀察,該重組質(zhì)粒轉(zhuǎn)染HT9細(xì)胞后,構(gòu)建了長(zhǎng)期有效的基因沉默細(xì)胞模型。經(jīng)熒光定量PCR和Western檢測(cè)可知,與HT9細(xì)胞相比,單克隆細(xì)胞HT9/pU6/shRNA的 mdr1基因表達(dá)量降低了78.84%(P<0.01),P-糖蛋白表達(dá)量降低了48.27%(P<0.05),RNAi對(duì)mdr1基因的表達(dá)起到了一定的抑制作用。經(jīng)流式細(xì)胞術(shù)檢測(cè)可知,轉(zhuǎn)染后的HT9細(xì)胞內(nèi)熒光強(qiáng)度由10.8%±0.58%增強(qiáng)到73.5%±1.37%,因Rho123是多藥抗性細(xì)胞P-糖蛋白的底物,能被蛋白水解釋放的能量從細(xì)胞內(nèi)泵出,HT9/pU6/shRNA細(xì)胞內(nèi)Rho123熒光強(qiáng)度的增強(qiáng)反映該細(xì)胞藥物外排功能減弱。轉(zhuǎn)染后,HT9細(xì)胞經(jīng)姜黃素處理的IC50由(24.10±0.83) μmol/L降至(510±0.14) μmol/L,耐藥相對(duì)逆轉(zhuǎn)率為(84.74±186)%,經(jīng)姜黃素作用48 h后,細(xì)胞周期阻滯在S、G2/M期。姜黃素的抗癌機(jī)制還未完全清楚,目前已發(fā)現(xiàn)它通過(guò)延長(zhǎng)細(xì)胞周期使細(xì)胞在S 期和(或)G2/M期集聚,達(dá)到抗增殖的作用[9-10],在本試驗(yàn)中已得到證實(shí)。
RNAi技術(shù)可通過(guò)雙鏈短RNA(double-stranded RNA,dsRNA)觸發(fā)同源性mRNA降解[11],目前有2種方式可以獲得雙鏈短RNA。其一,體外合成siRNA分子后采用轉(zhuǎn)染、電轉(zhuǎn)化等方法將其導(dǎo)入細(xì)胞內(nèi)發(fā)揮作用[12];其二,利用表達(dá)載體或siRNA表達(dá)框轉(zhuǎn)染細(xì)胞,在體內(nèi)合成所需要的siRNA分子。體外合成siRNA易被降解,并需專門的RNA轉(zhuǎn)染試劑轉(zhuǎn)染細(xì)胞,在細(xì)胞內(nèi)的干擾效應(yīng)持續(xù)時(shí)間短,利用質(zhì)粒、病毒類載體介導(dǎo)的siRNA表達(dá)載體克服了以上缺點(diǎn)[13],同時(shí)載體上的抗性標(biāo)記有助于快速篩選出轉(zhuǎn)染的陽(yáng)性單克隆細(xì)胞。目前,用于表達(dá)siRNA的啟動(dòng)子有RNA聚合酶Ⅲ類啟動(dòng)子(pol Ⅲ)及RNA聚合酶Ⅱ類啟動(dòng)子(pol Ⅱ)。這些啟動(dòng)子可以在體內(nèi)高效轉(zhuǎn)錄小的、非編碼的、在5′端無(wú)帽狀結(jié)構(gòu)、在3′端無(wú)多聚腺苷酸化的轉(zhuǎn)錄本,啟動(dòng)子總是在離啟動(dòng)子一個(gè)固定距離的位置開(kāi)始轉(zhuǎn)錄合成RNA,遇到4~5個(gè)連續(xù)的U即終止,轉(zhuǎn)錄產(chǎn)物在第2個(gè)尿嘧啶處被切下來(lái),非常精確,從而可以限制轉(zhuǎn)錄RNA的大?。涣硗?,這類啟動(dòng)子本身序列較短,不會(huì)形成復(fù)雜的空間結(jié)構(gòu)。目前U6、H1啟動(dòng)子介導(dǎo)的RNAi技術(shù)已在多種腫瘤耐藥細(xì)胞中應(yīng)用[14-15]。綜上所述,利用質(zhì)粒介導(dǎo)的RNAi可以有效抑制mdr1基因編碼蛋白的表達(dá)和功能,提高耐藥細(xì)胞對(duì)姜黃素的敏感性。本研究為白血病耐藥逆轉(zhuǎn)治療提供了理論基礎(chǔ)。
參考文獻(xiàn):
[1]Borst P,Elferink R O. Mammalian ABC transporters in health and disease[J]. Annual Review of Biochemistry,2002,71:537-592.
[2]McKenna S,Padua R A. Multidrug resistance in leukaemia[J]. British Journal of Haematology,1997,96(4):659-674.
[3]Nieth C,Priebsch A,Stege A,et al. Modulation of the classical multidrug resistance (MDR) phenotype by RNA interference (RNAi)[J]. FEBS Letters,2003,545(2-3):144-150.
[4]Borel F,van Logtenstein R,Koornneef A,et al. In vivo knock-down of multidrug resistance transporters ABCC1 and ABCC2 by AAV-delivered shRNAs and by artificial miRNAs[J]. Journal of RNAi and Gene Silencing,2011,7:434-442.
[5]Kim D W,Kim K O,Shin M J,et al. siRNA-based targeting of antiapoptotic genes can reverse chemoresistance in P-glycoprotein expressing chondrosarcoma cells[J]. Molecular Cancer,2009,8(1):28-38.
[6]Rumpold H,Wolf A M,Gruenewald K,et al. RNAi-mediated knockdown of P-glycoprotein using a transposon-based vector system durably restores imatinib sensitivity in imatinib-resistant CML cell lines[J]. Experimental Hematology,2005,33(7):767-775.
[7]Yagüe E,Higgins C F,Raguz S. Complete reversal of multidrug resistance by stable expression of small interfering RNAs targeting MDR1[J]. Gene Therapy,2004,11(14):1170-1174.
[8]Stege A,Priebsch A,Nieth C,et al. Stable and complete overcoming of MDR1/P-glycoprotein-mediated multidrug resistance in human gastric carcinoma cells by RNA interference[J]. Cancer Gene Therapy,2004,11(11):699-706.
[9]厲紅元,車藝,湯為學(xué). 姜黃素對(duì)人實(shí)體瘤細(xì)胞和白血病細(xì)胞作用的比較[J]. 第三軍醫(yī)大學(xué)學(xué)報(bào),2004,26(9):770-773.
[10]Lu J J,Cai Y J,Ding J. The short-time treatment with curcumin sufficiently decreases cell viability,induces apoptosis and copper enhances these effects in multidrug-resistant K562/A02 cells[J]. Molecular and Cellular Biochemistry,2012,360(1/2):253-260.
[11]Pickford A S,Cogoni C. RNA-mediatedgene silencing[J]. Cellular and Molecular Life Sciences,2003,60(5):871-882.
[12]Lipardi C,Wei Q,Paterson B M. RNAi as random degradative PCR:siRNA primers convert mRNA into dsRNAs that are degraded generate new siRNA[J]. Cell,2001,107(3):297-307.
[13]Semizarov D,F(xiàn)rost L,Sarthy A,et al. Specificity of short interfering RNA determined through gene expression signatures[J]. Proceedings of the National Academy of Sciences of the United States of America,2003,100(11):6347-6352.
[14]K W K,Koike H,Sugaya K. RNA interference with small hairpin RNAs transcribed from a human U6 promotor-driven DNA vector[J]. Journal of Pharmacological Sciences,2003,93(2):214-217.
[15]Donzé O,Picard D. RNA interference in mammalian cells using siRNAs synthesized with T7 RNA polymerase[J]. Nucleic Acids Research,2002,30(10):e46.劉志祥,曾超珍,周永青,等.
[6]Rumpold H,Wolf A M,Gruenewald K,et al. RNAi-mediated knockdown of P-glycoprotein using a transposon-based vector system durably restores imatinib sensitivity in imatinib-resistant CML cell lines[J]. Experimental Hematology,2005,33(7):767-775.
[7]Yagüe E,Higgins C F,Raguz S. Complete reversal of multidrug resistance by stable expression of small interfering RNAs targeting MDR1[J]. Gene Therapy,2004,11(14):1170-1174.
[8]Stege A,Priebsch A,Nieth C,et al. Stable and complete overcoming of MDR1/P-glycoprotein-mediated multidrug resistance in human gastric carcinoma cells by RNA interference[J]. Cancer Gene Therapy,2004,11(11):699-706.
[9]厲紅元,車藝,湯為學(xué). 姜黃素對(duì)人實(shí)體瘤細(xì)胞和白血病細(xì)胞作用的比較[J]. 第三軍醫(yī)大學(xué)學(xué)報(bào),2004,26(9):770-773.
[10]Lu J J,Cai Y J,Ding J. The short-time treatment with curcumin sufficiently decreases cell viability,induces apoptosis and copper enhances these effects in multidrug-resistant K562/A02 cells[J]. Molecular and Cellular Biochemistry,2012,360(1/2):253-260.
[11]Pickford A S,Cogoni C. RNA-mediatedgene silencing[J]. Cellular and Molecular Life Sciences,2003,60(5):871-882.
[12]Lipardi C,Wei Q,Paterson B M. RNAi as random degradative PCR:siRNA primers convert mRNA into dsRNAs that are degraded generate new siRNA[J]. Cell,2001,107(3):297-307.
[13]Semizarov D,F(xiàn)rost L,Sarthy A,et al. Specificity of short interfering RNA determined through gene expression signatures[J]. Proceedings of the National Academy of Sciences of the United States of America,2003,100(11):6347-6352.
[14]K W K,Koike H,Sugaya K. RNA interference with small hairpin RNAs transcribed from a human U6 promotor-driven DNA vector[J]. Journal of Pharmacological Sciences,2003,93(2):214-217.
[15]Donzé O,Picard D. RNA interference in mammalian cells using siRNAs synthesized with T7 RNA polymerase[J]. Nucleic Acids Research,2002,30(10):e46.劉志祥,曾超珍,周永青,等.
[6]Rumpold H,Wolf A M,Gruenewald K,et al. RNAi-mediated knockdown of P-glycoprotein using a transposon-based vector system durably restores imatinib sensitivity in imatinib-resistant CML cell lines[J]. Experimental Hematology,2005,33(7):767-775.
[7]Yagüe E,Higgins C F,Raguz S. Complete reversal of multidrug resistance by stable expression of small interfering RNAs targeting MDR1[J]. Gene Therapy,2004,11(14):1170-1174.
[8]Stege A,Priebsch A,Nieth C,et al. Stable and complete overcoming of MDR1/P-glycoprotein-mediated multidrug resistance in human gastric carcinoma cells by RNA interference[J]. Cancer Gene Therapy,2004,11(11):699-706.
[9]厲紅元,車藝,湯為學(xué). 姜黃素對(duì)人實(shí)體瘤細(xì)胞和白血病細(xì)胞作用的比較[J]. 第三軍醫(yī)大學(xué)學(xué)報(bào),2004,26(9):770-773.
[10]Lu J J,Cai Y J,Ding J. The short-time treatment with curcumin sufficiently decreases cell viability,induces apoptosis and copper enhances these effects in multidrug-resistant K562/A02 cells[J]. Molecular and Cellular Biochemistry,2012,360(1/2):253-260.
[11]Pickford A S,Cogoni C. RNA-mediatedgene silencing[J]. Cellular and Molecular Life Sciences,2003,60(5):871-882.
[12]Lipardi C,Wei Q,Paterson B M. RNAi as random degradative PCR:siRNA primers convert mRNA into dsRNAs that are degraded generate new siRNA[J]. Cell,2001,107(3):297-307.
[13]Semizarov D,F(xiàn)rost L,Sarthy A,et al. Specificity of short interfering RNA determined through gene expression signatures[J]. Proceedings of the National Academy of Sciences of the United States of America,2003,100(11):6347-6352.
[14]K W K,Koike H,Sugaya K. RNA interference with small hairpin RNAs transcribed from a human U6 promotor-driven DNA vector[J]. Journal of Pharmacological Sciences,2003,93(2):214-217.
[15]Donzé O,Picard D. RNA interference in mammalian cells using siRNAs synthesized with T7 RNA polymerase[J]. Nucleic Acids Research,2002,30(10):e46.劉志祥,曾超珍,周永青,等.