• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    青藏高原春季感熱異常對(duì)中國(guó)北方雨季降水影響的數(shù)值研究

    2014-07-02 00:26:45李新周劉曉東
    地球環(huán)境學(xué)報(bào) 2014年3期
    關(guān)鍵詞:劉曉東青藏高原中國(guó)科學(xué)院

    李新周,劉曉東

    (1. 中國(guó)科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國(guó)家重點(diǎn)實(shí)驗(yàn)室,西安 710075;2.中國(guó)科學(xué)院青藏高原地球科學(xué)卓越創(chuàng)新中心,北京 100101)

    青藏高原春季感熱異常對(duì)中國(guó)北方雨季降水影響的數(shù)值研究

    李新周1,2,劉曉東1,2

    (1. 中國(guó)科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國(guó)家重點(diǎn)實(shí)驗(yàn)室,西安 710075;2.中國(guó)科學(xué)院青藏高原地球科學(xué)卓越創(chuàng)新中心,北京 100101)

    青藏高原作為一個(gè)抬升的熱源對(duì)亞洲季風(fēng)演化及其周邊區(qū)域降水都有著深刻影響,近年來(lái)高原春季冷暖異常引起學(xué)者們的高度關(guān)注。本文利用NCEP II和NOAA資料分析了近33年春季高原感熱通量、東亞夏季風(fēng)北緣及中國(guó)北方雨季降水年際年代際變化特征,進(jìn)而利用公用大氣模式CAM5進(jìn)行了關(guān)閉春季高原感熱的敏感性數(shù)值試驗(yàn)。主要結(jié)論如下:近33年來(lái)春季高原感熱通量呈下降趨勢(shì),與中國(guó)北方雨季(7—8月)降水顯著正相關(guān),達(dá)到95%顯著性水平。春季高原冷(2000—2011年,簡(jiǎn)稱CTP)較暖時(shí)段(1986—1997年,簡(jiǎn)稱WTP)感熱通量平均降低20 W·m?2左右。相應(yīng)地,夏季風(fēng)北緣平均南退3個(gè)緯度左右,導(dǎo)致中國(guó)北方雨季大氣可降水和降水率也分別減少2.44 kg·m?2和1.09 mm·d?1。數(shù)值試驗(yàn)結(jié)果顯示,當(dāng)關(guān)閉春季(3月1日至5月15日)高原感熱對(duì)大氣加熱時(shí),東亞夏季風(fēng)整體爆發(fā)時(shí)間明顯推遲,夏季風(fēng)最北位置偏南2~3個(gè)緯度,中國(guó)北方整體降水減弱。這種因春季高原熱源異常引起大氣環(huán)流的改變是中國(guó)北方雨季降水多寡的主要原因之一,可以作為中國(guó)北方區(qū)域雨季降水的關(guān)鍵因子。

    青藏高原;春季感熱加熱;雨季降水;東亞夏季風(fēng);數(shù)值模擬

    1 Introduction

    As an elevated heat source, the Tibetan Plateau (TP) plays a important role in regulating the outbreak and development of Asian monsoons, which have received significant attention from meteorological scholars. As early as the 1950s, Ye et al(1957) recognized TP as a heat source in summer and a heat sink in winter. An in-depth study conducted over the past several decades, and has achieved fruitful outcomes based on the datum of the 1stand 2ndscientif c experiments on TP, instrumental observations and satellite remote sensing. The studies have explicitly noted that TP play a significant role in the outbreak and development of the Asian monsoon, and the formation and maintenance of summer circulation (Luo and Yanai, 1984; Huang, 1985; Wu, 2004; Duan et al, 2005; Zhao et al, 2007; Zhou et al, 2009; Liu et al, 2011). Recent studies continue to emphasize that the thermo-dynamic effect of TP during the spring not only provides a favorable background condition for the outbreak of the Asian monsoon (Liu et al, 2002), but also can be used as a factor to predict the July precipitation in the Yangtze River area of China (Duan et al, 2005), with a significant impact on the spring and summer precipitation in southeast China (Wen et al, 2010; Liu and Wang, 2011).

    The Asian monsoon is the most powerful and complicated system in the world, and affects the survival of more than half of the world’s population. Therefore, it is both scientifically significant and of practical value to accurately understand the development of the Asian monsoon. The East Asian summer monsoon (EASM) is an important circulation system of the Asian monsoon, and its strength and north margin (NSM) determine the amount of rainy season precipitation in North China. Jiang et al. (2008) considered that the strong EASM causes more precipitation in North China, Huaihe River Basin and Meiyu region, based on the station observations and normalized datum. The weak EASM results in more precipitation in the Yangtze River basin and less precipitation at the NSM (Qian et al, 2009). The north-south swing of the NSM marks the transition zone between wet and dry in China , where the annual precipitation is 200 ~ 400 mm (Qiang et al, 2004; Li et al, 2012).

    The outbreak and development of the EASM and its northward are closely related to the spring heat source over TP. The studies by Wu and Zhang (1998) and Ueda and Yasunari (1998) suggest that the development of the EASM is determined by the meridional temperature gradient over TP and its surrounding area. Atmospheric warming over TP during the spring is mainly attributed to the surface sensible heat flux (SSHF) (Li and Yanai, 1996). The SSHF over TP presents a signif cant downward trend during the past 30 years based on NCEP II (Duan and Wu, 2008; Guo et al, 2011); correspondingly, the rainy season precipitation significantly has a decreasing trend in North China (Liu et al, 2006; Ma, 2007). There seems to be some correspondence in them. Accordingly, in this study, the correlations betweenSSHF over TP, NSM and rainy season precipitation in North China are analyzed, using the NCEP-DOE Reanalysis II (NCEP II) and National Oceanic and Atmospheric Administration (NOAA) datum. Further, the effects of the SSHF over TP on the EASM onset, the location of NSM, and the precipitation in North China, are checked by the latest global atmospheric circulation model, to f nd the prediction factor of the rainy season precipitation in North China.

    2 Data analysis

    2.1 Data description

    This study employs the NCEP II including the daily surface sensible heat flux, atmospheric precipitation, and wind speed (Kanamitsu et al, 2002). Additionally, the daily precipitation data (0.5°×0.5°) is provided by NOAA (Chen et al, 2008). The time span is from 1979 to 2011. The definition of NSM is referenced Tang et al(2010). The atmospheric precipitation provided by the NCEP II data is less than that given by the data of the European Centre for Medium-Range Weather Forecasts (ECMWF) adopted by Tang et al.; thus, this study uses the difference of 35~45 kg·m?2between the maximum and minimum of the daily atmospheric precipitable water to represent the NSM (see the shaded area in Fig. 1d).

    Fig.1 The SSHF anomaly over TP and its relationship with the rainy season precipitation in North China(a) The sequence of the variation in SSHF over TP (W·m?2); (b) The sequences of atmospheric precipitation (mm) and the precipitable water (kg·m?2) for July-August in North China; (c) The distribution of the correlation coeff cients between the SSHF over TP and the atmospheric precipitation for July-August; (d) The NSM (shaded area) and the wind f eld of July averaged for 1979—2011.

    2.2 Relationships between the SSHF and the precipitation

    Generally, the SSHF is the main contributor to TP which determines the outbreak and development of the EASM. Latent heating dominates after mid-May. Therefore, the average of SSHF is selected during March 1stto May 15thto reflect the heating intensity of TP (Liu and Wang, 2011). The range of TP is 80o~100oE, 25o~36oN. Figure 1a shows the evolving sequence of the SSHF over TP during 1979—2011. The SSHF is higher during 1980s to 1990s than 2000s, and the average of SSHF decreases from 47.97 W·m?2in 1990s to 29 W·m?2in 2000s. This study defines the 12 consecutive years from 1986 to 1997 with a relatively high SSHF as the warm time period (WTP) of TP; correspondingly, the12 consecutive years from 2000 to 2011 are def ned as the cold time period (CTP). In the following analysis, the values used refer to the average of the 12 years of WTP and CTP unless otherwise specif ed. A linear trend analysis of 1979—2011 (not shown) indicates that the SSHF in most parts of TP (2000 meters or more above sea level) has a downward trend, which is most pronounced in the middle and eastern parts of TP. The average SSHF in the CTP is lower than the WTP by approximately 20 W·m?2.

    The rainy season precipitation in North China is mainly concentrated from July—August and accounts for approximately 40% of the annual total precipitation. The sequences of average atmospheric precipitation and precipitable water of July—August in North China (113o~125oS, 37o~43oN) (Fig. 1b) exhibit similar characteristics with the SSHF over TP. The average atmospheric precipitation (precipitable water) for July—August in the WTP is 4.25 mm·d?1(34.26 kg·m?2); in the CTP, the value is 3.91 mm·d?1(31.82 kg·m?2). The difference of atmospheric precipitation (precipitable water) between the CTP and WTP is 1.09 mm·d?1(2.44 kg·m?2). The correlation coefficients between the SSHF over TP and monthly average atmospheric precipitation and precipitable water are computed during 1979 to 2011, a positive for July—August (Fig. 1c) in North China, with a significance level of 95%, irrelevant for other seasons (not shown). Figure 1d shows the characteristics of the NSM averaged for 1979—2011, where the shaded area in the f g.1d is the NSM (with an atmospheric precipitation of 35~45 kg·m?2). Meanwhile, the f g.1d also shows the average 850hPa wind field in July for 1979—2011. The position of the NSM is consistent with the wind field, which indicates that it is reasonable to define the NSM based on the atmospheric precipitable water. This result suggests that there is a close relationship between the SSHF over TP, the NSM, and the rainy season precipitation in North China, which is worth further analysis and study.

    2.3 Decadal relationships

    The strength of the EASM and its farthest position determine the spatial characteristics of the NSM. The average NSM and the wind field of July (Figs. 2a and b) in the WTP and CTP indicate that the 850 hPa wind field of July is generally consistent with the NSM. The overall NSM in the WTP is shifted northward, while southward in the CTP. The average NSM in the CTP retreats southward by approximately 2 latitudes, and the maximum difference between CTP and WTP is up to 3 latitudes. There is northerly wind anomaly over eastern China based on differences between CTP and WTP (Fig. 2c). The difference in atmospheric precipitable water between the CTP and WTP near the NSM is as large as 3 kg·m?2; moreover, the precipitation decreases by approximately 2 mm·d?1(Fig. 2d). Therefore, the warmth and coldness over TP in spring directly affect the position of the NSM and play a regulatory role with respect to the precipitation, can be used to predict the rainy season precipitation in North China.

    3 Numerical experiments

    3.1 Descriptions

    The global atmospheric circulation model used in this study is the community atmosphere model version 5 (CAM5) (Neale et al, 2010), including the atmosphere and land modules, which is a sub-module of the Community Earth System Model (CESM1.0), released by the U.S. National Center for Atmospheric Research (NCAR) in the summer of 2010 (Vertenstein et al, 2010). Following the development in the past decades, CAM5 has achieved significant improvements, especially with respect to the impact of anthropogenic emissions on the climate in the boundary layer and radiation process, which could not be carefully considered in the previous versions.

    Based on the above analysis, to further clarify the main contribution of the SSHF over TP to the NSM and the rainy season precipitation in North China, we use the up-to-date version of CAM5 to conduct a control experiment (without any changing parameters, referred to as CTL) and a sensitive experiment in which the SSHF over TP is shut off (referred to asTPoff). In TPoff experiment, the sensible heat flux is zero in TP area with elevations above 2000 meters from March 1stto May 15th. That is, TP surface does not transfer sensible heat to the atmosphere in the numerical integration, and the land-atmosphere heat exchange stops (Guo et al, 2011). In both numerical experiments, the horizontal resolutions are 1.9 o×2.5o, with 30 vertical layers. Every experiment integrates over 12 consecutive years, and the average for the last 10 years is used for the analysis.

    Fig.2 The results of reanalysis(a) The average NSM and the wind f eld at 850 hPa in July in the WTP; (b) The same as (a) but for CTP;(c) The difference in the wind f eld at 850 hPa between CTP and WTP in July over TP;(d) The difference in atmospheric precipitation (shaded area, mm·d?1) and the precipitable water (contour, kg·m?2) between CTP and WTP.

    3.2 Experimental results

    The CAM5 numerical model significantly reproduces the spatial and temporal distribution of the SSHF over TP, and the values are slightly larger than the NCEP II data. The spatial and temporal variations in the atmospheric precipitation and precipitable water in East Asia are generally consistent with the reanalysis data (not shown). So, CAM5 can be used to conduct the numerical sensitivity experiment over TP.

    The SSHF over TP is one of the main factors affecting the outbreak of the Asian monsoon and its advancing. Figures 3a and b show the NSM (the shaded area) and the 850 hPa wind f eld in July in CTL and TPoff. The position of the NSM in the CTL is shifted farther to the north in comparison with NCEP, and the northward advance of the EASM in July is also stronger, while the general distribution is consistent with the NCEP II. In comparison with the CTL, the NSM in TPoff is shifted significantly southward by 2~3 latitude degrees, and the wind field of July isalso weaker, which is consistent with the results of the reanalysis of the NCEP II. The difference between the wind f elds of TPoff and CTL (Fig. 3c) indicates that the strength of the EASM in July signif cantly decreases, a northerly wind anomaly appearing in North China. For July—August, the atmospheric precipitation and precipitable water decrease by 2 mm·d?1and 2 kg·m?2, respectively, due to the impact of the SSHF over TP (Fig. 3d), which is consistent with the results of the reanalysis data. The center of the largest difference is slightly different from the NCEP II data, which most likely occurs as a result of the systematic error of the CAM5. A comparison of numerical experiments clearly indicates that the SSHF over TP has a signif cant regulatory impact on the NSM and rainy season precipitation in North China and can be considered comprehensively in future climate predictions as a factor affecting rainy season precipitation in North China.

    Fig.3 The results of numerical experiments The characteristics of the variations in the multi-year average NSM and the rainy season precipitation in North China, simulated by the CAM5.(a) The CTL; (b) TPoff; (c) wind f eld anomaly (TPoff-CTL);(d) atmospheric precipitation (shaded area, mm·d?1) and the precipitable water (contour, kg·m?2) anomaly.

    In Asia, the summer monsoon first outbreaks in early to mid-April in the area of the Bay of Bengal (Wu and Zhang, 1998); then, the South China Sea monsoon develops in early May. The CTL simulated the outbreak of the summer monsoon well (Fig. 4a), which is consistent with the observational data. But, in the TPoff, the timing of the outbreak of the summer monsoon in the Bay of Bengal is postponed to late April (Fig. 4b), and the development of the South China Sea monsoon is also delayed to late May. This conf rm that the SSHF over TP plays a key role in determining the outbreak time of the EASM. The advancing of the EASM is also constrained by the SSHF over TP. The cross-equatorial airflow issignificantly weakened in TPoff. A northerly wind anomaly appears in eastern China, with significant weakening of EASM. In summary, the SSHF over TP plays a key role in determining the outbreak time, the advancing, and the north margin position of the EASM. Therefore, the change in atmospheric circulation caused by the heat source anomaly over TP in spring is one of the key factors of the rainy season in North China.

    Fig.4 The timing of the EASM onset, as shown by the CAM5(a) The CTL; (b) TPoff

    4 Conclusions

    The main conclusions are described in the following:

    1) The reanalysis data indicates that in 1979—2011, the SSHF over TP exhibits a significant downward trend, has a positive correlation with atmospheric precipitation and the precipitable water for July—August in North China. The significance level of this correlation is 95% for July—August, while the correlation for other seasons is not significant. The SSHF decreased from 47.97 W·m?2in 1990s to 29 W·m?2in 2000s. On average, the SSHF in the CTP decreased by approximately 20 W·m?2in comparison with the WTP. The reanalyzed data indicate that the average atmospheric precipitation and the precipitable water of the rainy season (July—August) in the CTP decrease by 1.09 mm·d?1and 2.44 kg·m?2in North China, respectively, compared with the WTP. The rainy season precipitation in North China is closely related to the SSHF anomaly over TP.

    2) The NCEP II indicates that the maximum difference of the NSM between the WTP and CTP is as much as 3 degrees of latitude. When TP is warm during spring, the EASM is stronger with significantly more northward advancement, and the opposite situation occurs when TP is cold during spring. The fluctuations of the EASM and northsouth swing of the NSM caused by the coldness and warmth of TP in spring are the main reasons for the rainy season precipitation anomaly in North China.

    3) The numerical experiments indicate that when the SSHF over TP is shut off, that is, when heat is no longer transferred from the surface of TP to the atmosphere from March 1stto May 15th, the timing of the EASM onset is postponed, and the strength of the monsoon is weakened. The EASM also retreats further to the south, and its North edge is shifted southward by 2~3 degrees of latitude. Due to the shut-off of the SSHF over TP, the rainy season atmospheric precipitation and the precipitable water in North China are decreased by 2 mm·d?1and 2 kg·m?2, respectively. The analysis of the circulation field indicates that the SSHF anomaly over TP is the primary contributor to the outbreak time and the magnitude of northward advancement of the EASM. The change of this circulation field is one of the factors that ultimately determine the rainy season precipitation in North China. It can be observed that the SSHF over TP is the main factor affecting the outbreak and development of the EASM, and can be used as a key factor for the prediction of rainy seasonprecipitation in North China.

    4) This study only comparatively analyzed the impact of the SSHF anomaly over TP on the EASM and rainy season precipitation in North China. The analysis was performed by means of shutting off the atmospheric heating by the SSHF over TP, while it remains unknown how the SSHF anomaly over TP contiguously affects the development of the EASM. It is necessary to apply various observational data and high-resolution numerical experiments to explain the impact mechanism, which is the main focus of our future works.

    Chen M Y, Shi W, Xie P P, et al. 2008. Assessing objective techniques for gauge-based analyses of global daily precipitation [J]. Journal of Geophysical Research, 113, D04110: 1–13.

    Duan A M, Wu G X. 2008. Weaking trend in the atmospheric heat source over the Tibetan Plateau during recent decades. part I: observations [J]. Journal of Climate, 21: 3149–3164.

    Duan A M, Liu Y M, Wu G X. 2005. Heating status of the Tibetan Plateau from April to June and rainfall and atmospheric circulation anomaly over East Asia in midsummer [J]. Science China Earth Sciences, 48(2): 250–257.

    橫向的基層農(nóng)技人員輪崗制度,有別于“轉(zhuǎn)崗”從事行政工作,“轉(zhuǎn)崗”會(huì)有意無(wú)意中淡化了其農(nóng)機(jī)人員本職身份。輪崗制度是通過(guò)縣農(nóng)口有關(guān)部門統(tǒng)籌安排,根據(jù)工作需要,優(yōu)化配置基層農(nóng)技人員人力資源,保證基層農(nóng)技人才在鄉(xiāng)鄉(xiāng)之間、縣鄉(xiāng)之間的橫向縱向流動(dòng),本質(zhì)是強(qiáng)調(diào)專業(yè)全面化,從更廣視角做精做細(xì)農(nóng)技推廣工作。

    Guo X F, Yang K, Chen Y Y. 2011. Weakening sensible heat source over the Tibetan Plateau revisited: effects of the land-atmosphere thermal coupling [J]. Theoretical and Applied Climatology, 104: 1–12.

    Huang R H. 1985. The Inf uence of the heat source anomaly over Tibetan Plateau on the northern Hemispheric circulation anomalies [J]. Acta Meteorologica Sinica, 43(2): 208 –220. (in Chinese)

    Jiang Z, Yang S, He J, et al. 2008. Interdecadal variations of East Asian summer monsoon northward propagation and inf uences on summer precipitation over East China [J]. Meteorology and Atmospheric Physics, 100: 101–119.

    Kanamitsu M, Ebisuzaki W, Woollen J, et al. 2002. NCEP/ DOE AMIP-II Reanalysis (R-2) [J]. American Meteorological Society, 83: 1631–1643.

    Li C, Yanai M. 1996. The onset and interannual variability of the Asian summer monsoon in relation to land-sea thermal contrast [J]. Journal of Climate, 9: 358 –375.

    Li X Z, Ma Z G, Liu X D, et al. 2006, Inter-decadal Characteristics of Aridification over Northern China in Association with variations of the Atmospheric Circulation during the Last Fifty Years [J]. Chinese Journal of Atmospheric Sciences, 30(4):401– 409.

    Li Y, Wang N A, Li Z L, et al. 2012. Holocene climate cycles in northwest margin of Asian monsoon [J]. Chinese Geograph Science, 22(4): 450 – 461.

    Liu C L, Xie G D, Huang H Q. 2006. Shring and drying up of Baiyangdian lake wetland: a natural or human cause? [J]. Chinese Geographical Scence, 16(4): 314 –319.

    Liu P, Qian Y F, Yan M. 2011. The relation between the underlying surface thermal anomalies and the onset and intensity of the south China sea summer monsoon [J]. Journal of Tropical Meteorology , 27(2): 209–218. (in Chinese)

    Liu X, Wu G X, Liu Y M, et al. 2002. Diabatic heating over the Tibetan Plateau and the seasonal variations of the Asian circulation and summer monsoon onset [J]. Chinese Journal of Atmospheric Sciences, 26(6): 781–793. (in Chinese)

    Luo H B, Yanai M. 1984. The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part I: precipitation and Kinematic analyses [J]. Monthly Weather Review, 112: 966 – 989.

    Ma Z G. 2007. The interdecadal trend and shift of dry/wet over the central part of North China and their relationship to the Pacific Decadal Oscillation (PDO) [J]. Chinese Science Bulletin, 52: 2130–2139.

    Neale R B, Chen C C, Gettelman A, et al. 2010. Description of the NCAR Community Atmosphere Model (CAM5.0) [R]. Technical Report, NCAR.

    Qian W H, Ding T, Hu H R, et al. 2009. An overview of drywet climate variability among monsoon-westerly regionsand the monsoon northernmost marginal active zone in China [J]. Adavances in Atmospheric Sciences, 26(4): 630 – 641.

    Qiang M R, Li S, Gao S Y. 2004. Evidence for abrupt cliamtic changes on northwstern margin of East Asian monsoon region during last deglaciation [J]. Chinese Geographical Science, 14(2): 117–121.

    Tang X, Chen B D, Liang P, et al. 2010. Definition and features of the north edeg of the East Asian summer monsoon [J]. Acta Meteorologica Sinica, 24(1): 43 – 49.

    Ueda H, Yasunari T. 1998. Role of warming over the Tibetan Plateau in early onset of the summer monsoon over the Bay of Bengal and the South China Sea [J]. Journal of the Meteorological Society of Japan, 76: 1–12.

    Vertenstein M, Craig T, Middleton A, et al. 2010. CESM1.0.3 User’s Guide [OL]. http://www.cesm.ucar.edu/models/ cesm1.0/cesm/cesm doc/book1.html.

    Wen L, Cui P, Li Y, et al. 2010. The inf uence of sensible heat on monsoon precipitation in central and eastern Tibet [J]. Meteorological Applications, 17(4): 452– 462.

    Wu G X, Zhang Y S. 1998. Tibetan Plateau forcing and the timing of the monsoon onset over south Asia and the south China sea [J]. Monthly Weather Review, 126: 913–927.

    Wu G X. 2004. Recent progress in the study of the Qinghai-Xizang Plateau climate dynamics in China [J]. Quaternary Sciences, 24(1): 1 – 9. (in Chinese)

    Ye D Z, Luo S W, Zhu B Z. 1957. The wind structure and heat balance in the lower troposhere over Tibetan Plateau and its surroudings [J]. Acta Meteorologica Sinica, 2(2): 108 –121. (in Chinese)

    Zhao P, Zhou Z, Liu J. 2007. Variability of Tibetan spring snow and its associations with the hemispheric extratropical circulation and East Asian summer monsoon rainfall: an observational investigation [J]. Journal of Climate, 20: 3942–3955.

    Zhou X J, Zhao P, Chen J M, et al. 2009. Impacts of thermodynamic processes over the Tibetan Plateau on the Northern Hemispheric climate [J]. Science China Earth Sciences, 52(11): 1679–1693.

    Numerical simulation of the impact of spring sensible heat anomalies over Tibetan Plateau on rainy season precipitation in North China

    LI Xin-zhou1,2, LIU Xiao-dong1,2
    ( 1. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China; 2. CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China)

    As an elevated heat source, Tibetan Plateau (TP) has a signif cant impact on the evolution of Asian monsoons and the surrounding precipitation. Particularly in recent years, the occurrence of spring thermal anomalies over TP has attracted signif cant attention from scholars. This study uses the NCEP-DOE Reanalysis II (NCEP II) and National Oceanic and Atmospheric Administration (NOAA) to analyze the changes of spring (March to May) surface sensible heat f ux (SSHF) over TP, the interannual and inter-decadal variations of the North edge of the East Asian summer monsoon (NSM) and rainy season precipitation in North China within the past 33 years. Further, a numerical sensitivity experiment is conducted in which the SSHF is shut off over TP, employing the Common Atmospheric Model version 5 (CAM5). The main conclusions are as follows: the SSHF over TP during 1979—2011 exhibits a downward trend and has a significant positive correlation (at 95% significance level) with the rainy season (July—August) precipitation in North China. The averaged SSHF in spring decreases~20 W·m?2during the cold (2000—2011, CTP for short) than warm time period (1986—1997, WTP for short) over TP. Correspondingly, the north margin of East Asia summer monsoon (NSM) retreats southward by an average of 3 degrees of latitude, causes the rainy season atmospheric precipitation and precipitable water in North China to decrease by 1.09 mm·d?1and 2.44 kg·m?2, respectively. The results of the numerical experiments indicate when the SSHF over TP is closed in spring (March 1stto May 15th), the time of the EASM onset signif cantly delays, the NSM retreats southward by 2~3 degrees of latitude, and the rainy season precipitation in North China reduces by 1 mm·d?1. The change in atmospheric circulation caused by the spring sensible heat anomaly over TP is one of the main causes of the rainy season precipitation in North China, and can be used as a key factor.

    Tibetan Plateau; spring sensible heat; rainy season precipitation; East Asia summer monsoon; numerical simulation

    P461

    :A

    :1674-9901(2014)03-0207-09

    10.7515/JEE201403004

    2014-05-21

    國(guó)家自然科學(xué)基金項(xiàng)目(41290255,41472162);中國(guó)科學(xué)院戰(zhàn)略性先導(dǎo)科技專項(xiàng)(XDB03020601)

    李新周,E-mail: lixz@ieecas.cn

    猜你喜歡
    劉曉東青藏高原中國(guó)科學(xué)院
    Structure,electronic,and nonlinear optical properties of superalkaline M3O(M =Li,Na)doped cyclo[18]carbon
    《中國(guó)科學(xué)院院刊》新媒體
    青藏高原上的“含羞花”
    中國(guó)科學(xué)院院士
    ——李振聲
    《鐵單質(zhì)的化學(xué)性質(zhì)》教學(xué)設(shè)計(jì)
    祝賀戴永久編委當(dāng)選中國(guó)科學(xué)院院
    為了讓青藏高原的天更藍(lán)、水更綠、草原更美
    權(quán)力“變現(xiàn)”高手
    《中國(guó)科學(xué)院院刊》創(chuàng)刊30周年
    Optimal Control Strategy for Buck Converter Under Successive Load Current Change*
    国产在线精品亚洲第一网站| 亚洲成a人片在线一区二区| 99热网站在线观看| 一级片'在线观看视频| 欧美中文综合在线视频| 在线国产一区二区在线| 老熟妇乱子伦视频在线观看| 999精品在线视频| 涩涩av久久男人的天堂| 丰满的人妻完整版| 深夜精品福利| 国内毛片毛片毛片毛片毛片| 欧美色视频一区免费| 国产亚洲欧美98| 首页视频小说图片口味搜索| 精品国内亚洲2022精品成人 | 午夜老司机福利片| 99精品在免费线老司机午夜| 飞空精品影院首页| 亚洲av成人不卡在线观看播放网| 久久久国产成人免费| 男女免费视频国产| 嫁个100分男人电影在线观看| 免费看十八禁软件| 亚洲色图 男人天堂 中文字幕| 国产一区二区三区视频了| 久久香蕉精品热| 自线自在国产av| 在线观看一区二区三区激情| 亚洲精品美女久久久久99蜜臀| 久久久久久久午夜电影 | 50天的宝宝边吃奶边哭怎么回事| 热99国产精品久久久久久7| 亚洲专区国产一区二区| 无遮挡黄片免费观看| 美女午夜性视频免费| 亚洲精品美女久久久久99蜜臀| 一夜夜www| 久久精品亚洲av国产电影网| 国产亚洲欧美精品永久| 看片在线看免费视频| 亚洲午夜精品一区,二区,三区| 国产亚洲av高清不卡| 18禁观看日本| 丁香欧美五月| 亚洲成av片中文字幕在线观看| 一夜夜www| 久久香蕉激情| 欧美久久黑人一区二区| 欧美精品亚洲一区二区| tube8黄色片| 宅男免费午夜| 交换朋友夫妻互换小说| 欧美丝袜亚洲另类 | 三级毛片av免费| 久久久久国产一级毛片高清牌| 国产精品一区二区免费欧美| 香蕉久久夜色| 中文字幕制服av| 国产又爽黄色视频| 久久久国产精品麻豆| 夜夜爽天天搞| 十分钟在线观看高清视频www| 色综合欧美亚洲国产小说| 日日夜夜操网爽| 又黄又爽又免费观看的视频| 亚洲少妇的诱惑av| 日本黄色日本黄色录像| 丝袜人妻中文字幕| 在线观看免费午夜福利视频| 久久久久精品国产欧美久久久| 丝袜美足系列| 12—13女人毛片做爰片一| 国产真人三级小视频在线观看| 精品一品国产午夜福利视频| 国产亚洲精品久久久久5区| tocl精华| 两个人看的免费小视频| 精品少妇一区二区三区视频日本电影| 啦啦啦免费观看视频1| 日本黄色日本黄色录像| 欧美乱妇无乱码| 久久草成人影院| 亚洲在线自拍视频| 久久精品亚洲熟妇少妇任你| 中文亚洲av片在线观看爽 | 婷婷丁香在线五月| 窝窝影院91人妻| 久久精品亚洲精品国产色婷小说| 欧美+亚洲+日韩+国产| 一进一出好大好爽视频| cao死你这个sao货| 中文字幕色久视频| 国产成人啪精品午夜网站| 亚洲成人手机| 麻豆乱淫一区二区| 人妻 亚洲 视频| 亚洲美女黄片视频| 欧美一级毛片孕妇| 又紧又爽又黄一区二区| 99国产综合亚洲精品| 老司机深夜福利视频在线观看| 精品国产一区二区三区久久久樱花| 美女国产高潮福利片在线看| 精品无人区乱码1区二区| 久久中文看片网| 99国产精品一区二区三区| 老司机福利观看| 香蕉丝袜av| 亚洲专区中文字幕在线| 99精品在免费线老司机午夜| av福利片在线| 淫妇啪啪啪对白视频| 亚洲色图av天堂| 日本五十路高清| 中文字幕人妻丝袜一区二区| 又大又爽又粗| 成人18禁在线播放| 热99国产精品久久久久久7| 久久久久久久国产电影| 国产精品二区激情视频| 十八禁人妻一区二区| 午夜激情av网站| 99久久人妻综合| 国产精品免费一区二区三区在线 | av网站免费在线观看视频| 中文欧美无线码| 成年女人毛片免费观看观看9 | 又紧又爽又黄一区二区| 黄色怎么调成土黄色| 悠悠久久av| av片东京热男人的天堂| 国产又色又爽无遮挡免费看| 国产精品国产高清国产av | 亚洲精品一卡2卡三卡4卡5卡| 亚洲成人手机| 在线观看免费高清a一片| x7x7x7水蜜桃| 午夜免费观看网址| 亚洲 国产 在线| 亚洲情色 制服丝袜| 露出奶头的视频| 久久久久久久午夜电影 | 大香蕉久久成人网| 高清在线国产一区| 又紧又爽又黄一区二区| 最近最新中文字幕大全电影3 | 欧美亚洲日本最大视频资源| 91成年电影在线观看| 国产区一区二久久| 又黄又粗又硬又大视频| 涩涩av久久男人的天堂| 亚洲av第一区精品v没综合| 日本vs欧美在线观看视频| xxxhd国产人妻xxx| 久久精品国产a三级三级三级| 五月开心婷婷网| 精品福利永久在线观看| 国产人伦9x9x在线观看| 97人妻天天添夜夜摸| 国产成+人综合+亚洲专区| 一区二区三区国产精品乱码| 淫妇啪啪啪对白视频| 人人妻人人添人人爽欧美一区卜| 亚洲 欧美一区二区三区| 757午夜福利合集在线观看| 午夜免费成人在线视频| 中文字幕另类日韩欧美亚洲嫩草| 中出人妻视频一区二区| av不卡在线播放| 午夜免费成人在线视频| 精品免费久久久久久久清纯 | 50天的宝宝边吃奶边哭怎么回事| 中文字幕制服av| 在线天堂中文资源库| 亚洲一卡2卡3卡4卡5卡精品中文| 久久 成人 亚洲| 一进一出抽搐gif免费好疼 | 日韩 欧美 亚洲 中文字幕| 人成视频在线观看免费观看| 成人18禁在线播放| 久久婷婷成人综合色麻豆| 天堂动漫精品| 制服诱惑二区| 搡老熟女国产l中国老女人| 日韩欧美国产一区二区入口| 久久中文字幕人妻熟女| 最新在线观看一区二区三区| 欧美人与性动交α欧美软件| 人妻 亚洲 视频| 中国美女看黄片| 国产成人啪精品午夜网站| 亚洲欧美一区二区三区久久| 欧美在线黄色| 久久人妻福利社区极品人妻图片| 欧美黄色淫秽网站| 男男h啪啪无遮挡| 精品卡一卡二卡四卡免费| 视频在线观看一区二区三区| 日本撒尿小便嘘嘘汇集6| 日韩一卡2卡3卡4卡2021年| 无人区码免费观看不卡| 首页视频小说图片口味搜索| 美女 人体艺术 gogo| netflix在线观看网站| 久久人人97超碰香蕉20202| 露出奶头的视频| 久9热在线精品视频| 精品少妇久久久久久888优播| 一级a爱视频在线免费观看| 他把我摸到了高潮在线观看| 午夜精品在线福利| 国产99久久九九免费精品| 亚洲精品中文字幕在线视频| 国产午夜精品久久久久久| 欧美人与性动交α欧美精品济南到| av国产精品久久久久影院| 亚洲专区中文字幕在线| 最近最新中文字幕大全免费视频| 亚洲情色 制服丝袜| 免费在线观看影片大全网站| 女人久久www免费人成看片| av福利片在线| av一本久久久久| 在线观看www视频免费| 啦啦啦 在线观看视频| 桃红色精品国产亚洲av| 真人做人爱边吃奶动态| 国产xxxxx性猛交| 交换朋友夫妻互换小说| 久久影院123| 老司机在亚洲福利影院| 国产精品免费一区二区三区在线 | av不卡在线播放| 亚洲第一青青草原| 久久香蕉国产精品| 亚洲欧美激情综合另类| 首页视频小说图片口味搜索| 色尼玛亚洲综合影院| 亚洲国产欧美网| 精品国产超薄肉色丝袜足j| 国产成人系列免费观看| 真人做人爱边吃奶动态| 好男人电影高清在线观看| 色在线成人网| 日韩欧美一区二区三区在线观看 | 十分钟在线观看高清视频www| 91九色精品人成在线观看| 免费少妇av软件| 中文字幕人妻丝袜制服| 免费不卡黄色视频| 黄色毛片三级朝国网站| 两个人免费观看高清视频| 亚洲av熟女| 亚洲在线自拍视频| 欧美+亚洲+日韩+国产| 一边摸一边抽搐一进一小说 | 亚洲精品自拍成人| 色婷婷久久久亚洲欧美| 久久中文字幕一级| 在线国产一区二区在线| 日本欧美视频一区| 99riav亚洲国产免费| 亚洲精品国产色婷婷电影| 亚洲五月色婷婷综合| 日韩 欧美 亚洲 中文字幕| 精品免费久久久久久久清纯 | 日韩成人在线观看一区二区三区| 中文字幕人妻丝袜制服| 成人三级做爰电影| 999精品在线视频| 亚洲精品粉嫩美女一区| 一进一出抽搐动态| 王馨瑶露胸无遮挡在线观看| 色在线成人网| 欧美日韩乱码在线| 校园春色视频在线观看| 亚洲欧美精品综合一区二区三区| 少妇被粗大的猛进出69影院| 欧美色视频一区免费| 在线观看免费高清a一片| 村上凉子中文字幕在线| 久久久久久免费高清国产稀缺| 香蕉久久夜色| 国产野战对白在线观看| 久久精品人人爽人人爽视色| av片东京热男人的天堂| 搡老熟女国产l中国老女人| 欧美精品高潮呻吟av久久| 久久99一区二区三区| 国产高清国产精品国产三级| 国产成人欧美| 国产精品自产拍在线观看55亚洲 | 国产亚洲av高清不卡| 精品人妻熟女毛片av久久网站| 国产麻豆69| 激情在线观看视频在线高清 | 精品一区二区三区av网在线观看| 纯流量卡能插随身wifi吗| av视频免费观看在线观看| 久久精品熟女亚洲av麻豆精品| 夜夜爽天天搞| 婷婷丁香在线五月| 亚洲欧美激情在线| 久久久水蜜桃国产精品网| 免费不卡黄色视频| 国产在视频线精品| 日韩 欧美 亚洲 中文字幕| 久久九九热精品免费| 丝袜美足系列| 日韩 欧美 亚洲 中文字幕| 大香蕉久久成人网| 亚洲成人手机| 精品人妻在线不人妻| 午夜精品久久久久久毛片777| 欧美乱色亚洲激情| 国产免费av片在线观看野外av| 国产熟女午夜一区二区三区| 香蕉久久夜色| 国产欧美日韩一区二区三| 人人妻人人澡人人看| 无限看片的www在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 一边摸一边做爽爽视频免费| 一边摸一边抽搐一进一出视频| 中文字幕制服av| 90打野战视频偷拍视频| 免费不卡黄色视频| 国产精品国产高清国产av | 女警被强在线播放| 亚洲自偷自拍图片 自拍| 1024香蕉在线观看| 无人区码免费观看不卡| 97人妻天天添夜夜摸| 久久久水蜜桃国产精品网| 欧美一级毛片孕妇| 超碰97精品在线观看| 中文字幕人妻丝袜制服| 国产精品一区二区免费欧美| 乱人伦中国视频| 亚洲五月天丁香| 久久 成人 亚洲| 国产又色又爽无遮挡免费看| 一级作爱视频免费观看| 不卡av一区二区三区| 国产成人精品在线电影| 欧美乱码精品一区二区三区| 狠狠婷婷综合久久久久久88av| 国产成人精品久久二区二区免费| 人人妻人人澡人人爽人人夜夜| 脱女人内裤的视频| 国产欧美亚洲国产| 丰满迷人的少妇在线观看| 1024香蕉在线观看| 黄色a级毛片大全视频| 久久中文看片网| 国产成人啪精品午夜网站| 极品少妇高潮喷水抽搐| 露出奶头的视频| www.精华液| 亚洲av成人不卡在线观看播放网| 欧美乱妇无乱码| 激情视频va一区二区三区| 在线观看午夜福利视频| 久久香蕉精品热| 亚洲人成电影观看| 久久久久久免费高清国产稀缺| 国产精华一区二区三区| 亚洲精品中文字幕在线视频| 国产精品美女特级片免费视频播放器 | 夜夜夜夜夜久久久久| 一进一出抽搐gif免费好疼 | 亚洲av成人一区二区三| 久久中文字幕人妻熟女| 欧美精品啪啪一区二区三区| 免费人成视频x8x8入口观看| 97人妻天天添夜夜摸| 在线看a的网站| 757午夜福利合集在线观看| 在线看a的网站| 亚洲午夜精品一区,二区,三区| 90打野战视频偷拍视频| 国产日韩一区二区三区精品不卡| 天天躁狠狠躁夜夜躁狠狠躁| 久99久视频精品免费| 757午夜福利合集在线观看| 亚洲精品美女久久av网站| 中文字幕色久视频| 身体一侧抽搐| 久久人妻熟女aⅴ| 窝窝影院91人妻| 国产精品一区二区免费欧美| 久久精品国产a三级三级三级| 黄片大片在线免费观看| 不卡av一区二区三区| 亚洲精品国产精品久久久不卡| 亚洲精品国产色婷婷电影| 国产在线观看jvid| 亚洲人成电影免费在线| 97人妻天天添夜夜摸| 亚洲av熟女| 又黄又粗又硬又大视频| 久久亚洲真实| 中文亚洲av片在线观看爽 | 身体一侧抽搐| 日韩有码中文字幕| 日本五十路高清| 久久久久久亚洲精品国产蜜桃av| 精品一区二区三卡| 亚洲欧洲精品一区二区精品久久久| 欧美激情 高清一区二区三区| 国产精品免费大片| 一区福利在线观看| 国产精品久久电影中文字幕 | 免费不卡黄色视频| 美女视频免费永久观看网站| 叶爱在线成人免费视频播放| 90打野战视频偷拍视频| 69精品国产乱码久久久| 变态另类成人亚洲欧美熟女 | 欧美中文综合在线视频| 18在线观看网站| 我的亚洲天堂| 久久久精品免费免费高清| 免费不卡黄色视频| 午夜视频精品福利| 国产成人影院久久av| 免费在线观看视频国产中文字幕亚洲| 19禁男女啪啪无遮挡网站| 久久久久精品国产欧美久久久| 搡老岳熟女国产| 性少妇av在线| 中文字幕制服av| 欧美成狂野欧美在线观看| 成年人午夜在线观看视频| 黑丝袜美女国产一区| 脱女人内裤的视频| 亚洲,欧美精品.| 国产激情久久老熟女| 男人舔女人的私密视频| 久久精品亚洲av国产电影网| 又黄又爽又免费观看的视频| 国产有黄有色有爽视频| 99国产精品99久久久久| 大香蕉久久网| 亚洲自偷自拍图片 自拍| 亚洲av欧美aⅴ国产| 亚洲三区欧美一区| 操出白浆在线播放| 日本欧美视频一区| 伦理电影免费视频| 久久久久精品人妻al黑| 午夜91福利影院| cao死你这个sao货| 亚洲中文字幕日韩| 极品人妻少妇av视频| 欧美在线黄色| 精品久久久久久久久久免费视频 | 欧美黑人欧美精品刺激| 午夜日韩欧美国产| 免费观看人在逋| 亚洲一区中文字幕在线| 香蕉国产在线看| 亚洲全国av大片| x7x7x7水蜜桃| 妹子高潮喷水视频| bbb黄色大片| 一级a爱片免费观看的视频| 黑人猛操日本美女一级片| 亚洲成av片中文字幕在线观看| 亚洲av片天天在线观看| 久久99一区二区三区| 久久久精品区二区三区| av片东京热男人的天堂| 另类亚洲欧美激情| 99精品在免费线老司机午夜| 男女之事视频高清在线观看| 国产亚洲av高清不卡| 免费在线观看黄色视频的| 国产在线一区二区三区精| 99久久综合精品五月天人人| 欧美激情 高清一区二区三区| 99国产精品99久久久久| 国产精品.久久久| 免费在线观看日本一区| 一级毛片女人18水好多| 99re在线观看精品视频| 欧洲精品卡2卡3卡4卡5卡区| 日韩 欧美 亚洲 中文字幕| 亚洲欧美激情综合另类| 欧美日韩亚洲高清精品| 久9热在线精品视频| 丰满饥渴人妻一区二区三| 啪啪无遮挡十八禁网站| 国产成人精品久久二区二区免费| 亚洲成人国产一区在线观看| 久久久久视频综合| 日韩制服丝袜自拍偷拍| tocl精华| 亚洲精品在线美女| 免费人成视频x8x8入口观看| 日韩免费高清中文字幕av| 精品乱码久久久久久99久播| 成年女人毛片免费观看观看9 | 精品乱码久久久久久99久播| 亚洲精品国产色婷婷电影| 国产淫语在线视频| 亚洲第一欧美日韩一区二区三区| 亚洲少妇的诱惑av| 国产成人av教育| 超碰97精品在线观看| 中文欧美无线码| 超碰97精品在线观看| 日本vs欧美在线观看视频| 日韩欧美一区二区三区在线观看 | 亚洲男人天堂网一区| 黄色怎么调成土黄色| 黄频高清免费视频| 妹子高潮喷水视频| 中出人妻视频一区二区| 中文字幕人妻丝袜一区二区| 美国免费a级毛片| 18在线观看网站| 婷婷精品国产亚洲av在线 | 亚洲成av片中文字幕在线观看| 成人18禁高潮啪啪吃奶动态图| 午夜免费观看网址| 久久人人爽av亚洲精品天堂| 日本黄色日本黄色录像| 亚洲一区二区三区不卡视频| 成人手机av| 天天躁狠狠躁夜夜躁狠狠躁| 50天的宝宝边吃奶边哭怎么回事| 18禁美女被吸乳视频| 欧美亚洲日本最大视频资源| 成人三级做爰电影| 国产一区二区激情短视频| 9热在线视频观看99| 国产极品粉嫩免费观看在线| 两个人免费观看高清视频| 热re99久久国产66热| 午夜福利在线观看吧| 黑人巨大精品欧美一区二区蜜桃| 国产高清videossex| 成在线人永久免费视频| 国产亚洲一区二区精品| 中文字幕色久视频| 成年人免费黄色播放视频| 亚洲午夜精品一区,二区,三区| 操出白浆在线播放| 国产精品久久久人人做人人爽| 亚洲成人手机| 超色免费av| 欧美av亚洲av综合av国产av| 人人妻人人添人人爽欧美一区卜| 高清黄色对白视频在线免费看| 国产高清视频在线播放一区| 午夜成年电影在线免费观看| 天天添夜夜摸| 国产亚洲一区二区精品| 精品欧美一区二区三区在线| 亚洲精品国产精品久久久不卡| 国产精品99久久99久久久不卡| 国产成人一区二区三区免费视频网站| 国产不卡av网站在线观看| netflix在线观看网站| 桃红色精品国产亚洲av| 天天影视国产精品| 91精品国产国语对白视频| 中国美女看黄片| 色在线成人网| 欧美最黄视频在线播放免费 | 91老司机精品| 男女下面插进去视频免费观看| 91字幕亚洲| 国产高清国产精品国产三级| 国产亚洲精品久久久久5区| 每晚都被弄得嗷嗷叫到高潮| 校园春色视频在线观看| 午夜福利在线免费观看网站| 麻豆乱淫一区二区| 老司机午夜福利在线观看视频| 亚洲精品国产精品久久久不卡| 少妇 在线观看| 女人精品久久久久毛片| 天堂√8在线中文| 国产精品98久久久久久宅男小说| 99热网站在线观看| 精品人妻熟女毛片av久久网站| 水蜜桃什么品种好| 日本撒尿小便嘘嘘汇集6| 中文字幕人妻丝袜一区二区| 老司机在亚洲福利影院| 免费不卡黄色视频| 国产欧美日韩精品亚洲av| av免费在线观看网站| 最新在线观看一区二区三区| 老汉色av国产亚洲站长工具| 老熟妇乱子伦视频在线观看| 久久这里只有精品19| 99精品欧美一区二区三区四区| 国产精品国产高清国产av | 国产精品久久久人人做人人爽| 成人永久免费在线观看视频| 精品熟女少妇八av免费久了| 久久精品国产清高在天天线| 在线十欧美十亚洲十日本专区| 国产成人一区二区三区免费视频网站| 精品乱码久久久久久99久播| 亚洲午夜精品一区,二区,三区| 色婷婷av一区二区三区视频| 捣出白浆h1v1| 国产精品免费视频内射| 久久草成人影院| 午夜福利在线免费观看网站|