梁興華,曾帥波,劉于斯,史琳,葉超超
(廣西科技大學(xué)廣西汽車(chē)零部件與整車(chē)技術(shù)重點(diǎn)實(shí)驗(yàn)室車(chē)輛動(dòng)力與新能源重點(diǎn)研發(fā)中心,廣西 柳州 545006)
鋰離子電池正極材料LiLaxMn2-xO4的高溫固相合成及其電化學(xué)性能*
梁興華,曾帥波,劉于斯,史琳,葉超超
(廣西科技大學(xué)廣西汽車(chē)零部件與整車(chē)技術(shù)重點(diǎn)實(shí)驗(yàn)室車(chē)輛動(dòng)力與新能源重點(diǎn)研發(fā)中心,廣西 柳州 545006)
以LiAc,MnAc2和LaCl3為原料,通過(guò)高溫固相兩段燒結(jié)合成法制備了4種LiLaxMn2-xO4(Fx,x=0,0.02,0.04,0.06),其結(jié)構(gòu)和形貌經(jīng)XRD和SEM表征。結(jié)果表明,LiLa0.02Mn1.98O4(即F0.02)為純尖晶石結(jié)構(gòu),表面形貌為球形。采用活性炭為導(dǎo)電劑制備了Fx的鋰離子電池正極材料(Ex),并用循環(huán)伏安法研究了Ex的電化學(xué)性能。結(jié)果表明,E0.02在0.1 C倍率充放電時(shí)的首次放電容量為75 mAh·g-1;0.5 C倍率循環(huán)充放電時(shí),放電比容量為79 mAh·g-1;經(jīng)過(guò)20次0.2 C倍率循環(huán)充放電時(shí),容量保持在80 mAh·g-1。
鋰離子電池;制備;電化學(xué)性能
近年來(lái),由石油危機(jī)而引發(fā)的能源危機(jī)迫使人們?nèi)ふ倚碌奶娲茉?。金屬鋰,由于其質(zhì)量最輕、儲(chǔ)量豐富、成本低、環(huán)境友好[1-2]和較高倍率充放電性能[3-4]等在手機(jī)、電腦等各類(lèi)便攜式設(shè)備中有廣泛應(yīng)用,并將成為混合動(dòng)力車(chē)和純電動(dòng)汽車(chē)的主要?jiǎng)恿υ?,被認(rèn)為是21世紀(jì)最有發(fā)展前景的二次電池。二次電池中正極材料的好壞直接影響電池的整體性能。已有的鋰電池正極材料有:鈦酸鋰、鈷酸鋰、磷酸鐵鋰、錳酸鋰、鋰硫化合物等[5-8],其中錳酸鋰的儲(chǔ)量豐富、無(wú)毒、壽命長(zhǎng)[9-10]、低溫性能好,使其倍受關(guān)注。
高溫固相合成方法盡管合成材料的充放電性能比液相法稍差,但工藝簡(jiǎn)單,制備條件容易控制,對(duì)設(shè)備的要求不高。溶膠凝膠的方式可合成性能優(yōu)越的鋰電池正極材料,但是工藝較為復(fù)雜,成本較高,條件不易控制,故固相法是鋰電池材料大規(guī)模生產(chǎn)普遍采用的一種方式。但是,錳酸鋰的高溫循環(huán)性能較差,在大電流放電時(shí),易發(fā)生歧化反應(yīng)[2Mn3+(s)→Mn4+(s)+Mn2+(aq)],產(chǎn)生的Mn2+溶于電解液,John-Teller加劇,導(dǎo)致容量大幅衰減。故需要找到合適的金屬離子,實(shí)現(xiàn)Mn3+的有效替代。大量研究表明,在錳酸鋰中加入Cr,Al,Cu,Co,Mg,Ti,Ni等金屬離子的一種或幾種可有效改善其充放電特性[11-17]。但是這些金屬離子的加入減小了4 V的充放電平臺(tái)容量。而La3+的加入,一方面取代Mn3+從而減小了Mn3+→Mn4++Mn2+的反應(yīng),另一方面拓寬了4 V附近的充放電平臺(tái)容量。
本文以LiAc,MnAc2和LaCl3為原料,通過(guò)高溫固相兩段燒結(jié)合成法制備了4種LiLaxMn2-xO4(Fx,x=0,0.02,0.04,0.06),其結(jié)構(gòu)和形貌經(jīng)XRD和SEM表征。采用活性炭為導(dǎo)電劑制備了Fx的鋰離子電池正極材料(Ex),并用循環(huán)伏安法研究了Ex的電化學(xué)性能。
在高溫固相法中,本文獨(dú)創(chuàng)性地加入La3+,使其制備的Ex在循環(huán)性能上有較大改善,提高了電池的使用壽命,能受較大電流充放電,拓寬了電池的使用范圍。
1.1 儀器與試劑
DX-2700型X-射線衍射儀(XRD);EVO18型掃描電子顯微鏡(SEM);CT3008W-5V5mA-S4型高精度電池性能測(cè)試系統(tǒng)[電流輸出:±(5 mA~100 mA);電流測(cè)試精度:±(0.05%+0.1%);電壓測(cè)試精度:±(0.05%+0.1%)];ZKTBJ-01型自動(dòng)涂覆烘干機(jī);ZKCG-02型沖隔膜機(jī);ZKZPJ12300H型電動(dòng)對(duì)輥機(jī)。
所用試劑和溶劑均為分析純。
1.2 Fx的制備[19]
將LiAc,MnAc2和LaCl3按n(Li)∶n(Mn)∶n(La)=1.3∶2-x∶x(x=0.02)混合均勻,充分研磨后置氣氛爐中,于450℃預(yù)加熱6 h(升溫速率10℃·min-1);隨爐冷卻,再升溫至750℃煅燒72 h(升溫速度10℃·min-1)。隨爐冷卻得黑色固體LiLa0.02Mn1.98O4,即F0.02。
僅改變x(x=0,0.04和0.06),用類(lèi)似的方法制備F0,F(xiàn)0.04和F0.06。
1.3 電池組裝
以Fx為正極活性材料,10%活性炭為導(dǎo)電劑,10%的PVDF-HFP為黏結(jié)劑,NMP(N-甲基吡咯烷酮)為溶劑,按m(Fx)∶m(炭)∶m(黏結(jié)劑)= 8∶1∶1的比例攪拌成糊狀,均勻涂布后進(jìn)行烘干壓片,裁片制成正極片。以金屬鋰片作為參比和輔助電極,1 mol·L-1的LiPF6的EC/DNC(體積比為1∶1)為電解液,隔膜為Celgard 2300,在含有氬氣氣氛的手操箱中組裝成鋰離子實(shí)驗(yàn)電池正極片Ex。
將Ex進(jìn)行充放電測(cè)試和CV分析。
2.1 表征
(1)XRD
LiMn2O4和未純化的Fx的XRD譜圖見(jiàn)圖1。由圖1可見(jiàn),F(xiàn)x均有尖銳的衍射峰,其結(jié)晶度較好。XRD的衍射峰屬于Fd-3m空間群。
圖1 LiMn2O4和Fx的XRD譜圖Figure 1 XRD spectra of LiMn2O4and Fx
從圖1還可見(jiàn),未摻雜La3+的LiMn2O4中有少量雜質(zhì)(Mn2O3)。F0.06有少量雜峰出現(xiàn),可能是La3+的過(guò)量加入改變了LiMn2O4的晶體結(jié)構(gòu)。
(2)SEM
F0.02的SEM照片見(jiàn)圖2。由圖2可見(jiàn),F(xiàn)0.02的平均粒徑為10 nm~500 nm,且表面為立方型和球形結(jié)構(gòu),La3+的加入使顆粒有部分團(tuán)聚的現(xiàn)象。
圖2 F0.02的SEM照片(×10 000)Figure 2 SEM images of F0.02
2.2 電化學(xué)性能
圖3為Ex在倍率充放電電流為0.1 C的首次循環(huán)充放電曲線。由圖3可知,E0,E0.02,E0.04和E0.06的放電比容量分別為83 mA·h·g-1,75 mA·h·g-1,40mA·h·g-1和30mA·h·g-1,其放電平臺(tái)在3.95 V附近。
圖3 Ex在0.1 C倍率時(shí)的首次充放電容量Figure 3 The first charg-discharge capacity of Exat the rate of 0.1 C
圖4為E0和E0.02在0.2 C時(shí)第20次循環(huán)充放電曲線。由圖4可知,E0的充放電比容量分別為73 mA·h·g-1和70 mA·h·g-1;E0.02的充放電比容量分別為83 mA·h·g-1和80 mA· h·g-1。兩者容量衰減并不明顯。
圖4 E0和E0.02在0.2 C倍率時(shí)第20次循環(huán)充放電容量Figure 4 Charg-discharge capacity of E0and E0.02at the rate of0.2 C after cyc 20 times
圖5 E0和E0.02在0.5 C倍率時(shí)第30次循環(huán)充放電容量Figure 5 Charg-discharge capacity of E0and E0.02at the rate of0.5 C after cyc 30 times
圖5為E0和E0.02在0.5 C時(shí)第30次循環(huán)充放電曲線。由圖5可見(jiàn),E0和充放電比容量分別為46 mAh·g-1和44 mA·h·g-1;E0.02的充放電比容量分別為82 mA·h·g-1和79 mA·h· g-1。E0容量衰減明顯,而E0.02的容量則基本沒(méi)有衰減。
圖6 E0和E0.02在0.2C倍率時(shí)的循環(huán)性能曲線Figure 6 Cycle performance curves of E0and E0.02at the rate of 0.2 C
圖7 E0和E0.02在0.5C倍率時(shí)的循環(huán)性能曲線Figure 7 Cycle performance curves of E0and E0.02at the rate of 0.5 C
圖6和圖7分別為E0和E0.02在0.2 C和0.5 C的循環(huán)性能圖。由圖6可知,E0和E0.02的電容量基本沒(méi)有衰減。由圖7可見(jiàn),在較大循環(huán)倍率充放電下,E0的電容量衰減明顯,E0.02的電容量衰減不明顯。
采用高溫固相兩段煅燒法制備了鋰離子電極正極材料LiLaxMn2-xO4(x=0,0.02,0.04,0.06)。La3+的加入對(duì)LiMn2O4的表面特性和電化學(xué)性能均有影響。當(dāng)x=0.02時(shí),LiLa0.02Mn1.98O4為尖晶石結(jié)構(gòu),合成的顆粒粒徑為10 nm~500 nm的球形顆粒;首次充放電比容量分別78 mA· h·g-1和75 mA·h·g-1;20次循環(huán)充放電倍率為0.2 C時(shí),充放電比容量分別保持在83 mA· h·g-1和80 mA·h·g-1;30次循環(huán)充放電倍率為0.5 C時(shí),充放電比容量分別為82 mA·h· g-1和79 mA·h·g-1。
[1]Li Li,Jing Ge,Renjie Chen,et al.Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries[J].Waste Management,2010,12(30):2615-2621.
[2]M Mancini,F(xiàn)Nobili,R Tossici,et al.High performance,environmentally friendly and low cost anodes for lithium-ion battery based on TiO2anatase and water soluble binder carboxymethyl cellulose[J].Journal of Power Sources,2011,196(22):9665-9671.
[3]Shiro Seki,Nobuyuki Serizawa,Katsuhito Takei,et al.Charge/discharge performances of glyme-lithium salt equimolar complex electrolyte for lithium secondary batteries[J].Journal of Power Sources,2013,243 (1):323-327.
[4]Carla Dalmolin,Sonia R Biaggio,Romeu C Rocha-Filho,et al.Reticulated vitreous carbon/polypyrrole composites as electrodes for lithium batteries:Preparation,electrochemical characterization and charge-discharge performance[J].Synthetic Metals,2010,160 (1-2):173-179.
[5]HaiMing,Jun Ming,Xiaowei Li,et al.Hierarchical Li4Ti5O12particles co-modified with C&N towards enhanced performance in lithium-ion battery applications[J].Electrochimica Acta,2014,116(10):224-229.
[6]Yuanlu Yao,Huaicheng Liu,Guicun Li,et al.Synthesis and electrochemical performance of phosphatecoated porous LiNi1/3Co1/3Mn1/3O2cathodematerial for lithium ion batteries[J].Electrochimica Acta,2013,113(15):340-345.
[7]EM Genieès,SPicart.Is the use of polyaniline associated with sulfur compounds of interest for battery electrodes[J].Synthetic Metals,1995,69(1):165-166.
[8]趙銘姝,翟玉春,田彥文.鋰離子電池正極材料錳酸鋰合成的動(dòng)力學(xué)[J].物理化學(xué)學(xué)報(bào),2002,18 (2):188-192.
[9]Zhang SS,Read JA.A new direction for the performance improvement of rechargeable lithium/sulfur batteries[J].Journal of Power Sources,2012,200(1):77-82.
[10]Shizhao Xiong,Kai Xie,Yan Diao,et al.On the role of polysufides for a stable solid electrolyte interphase on the lithium anode cycled in lithium-sulfur batteries[J].Journal of Power Sources,2013,236: 181-187.
[11]Jun Liu,Wei Liu,Shaomin Ji,et al.Electrospun spinel LiNi0.5Mn1.5O4hierarchical nanofibers as 5 V cathodematerials for lithium-ion batteries[J].Chem Plus Chem,2013,78:636-641.
[12]JArrebola,Caballero,Hernán,et al.Effects of coating with gold on the performance of nanosized LiNi0.5Mn1.5O4for lithium batteries[J].Journal of the Electrochemical Society,2007,154(3):178-184.
[13]李志敏,羅發(fā),張玲,等.Al離子摻雜正極材料LiMn2O4的高溫循環(huán)性能[J].稀有金屬材料與工程2007,36(2):623-626.
[14]Xuebu Hua,Zhenghua Deng,Jishuan Suo,et al.A high rate,high capacity and long life(LiMn2O4+ AC)/Li4Ti5O12hybrid battery-super capacitor[J].Journal of Power Sources,2009,187:635-639.
[15]Masaki Yoshio,HideyukiNoguchi,Hongyu Wang,et al.Correlation ofoxygen deficiency with discharge capacity at3.2 V for(LiMn)3O4-Z[J].Journal of Power Sources,2006,154:273-275.
[16]董殿全,鐘杰,柳敦雷,等.尖晶石結(jié)構(gòu)LiCu0.5Mn1.5O4的合成及其水溶液中對(duì)Li的抽出/嵌入反應(yīng)[J].應(yīng)用化學(xué),1998,6:114-115.
[17]李淵,劉恒,陳亮,等.高電壓正極材料LiCo0.2Ni0.4Mn1.4O4合成與性能研究[J].稀有金屬材料與工程,2012,41(2):280-284.
[18]D Arumugam,G Paruthimal Kalaignan,P Manisankar.Development of structural stability and the electrochemical performances of La-substituted spinel LiMn2O4cathode materials for rechargeable lithiumion batteries[J].Solid State,2008,179:580-586.
[19]李志光,劉素琴,黃可龍.不同錳源合成尖晶石型LixMn2O4及其性能[J].中國(guó)有色金屬學(xué)報(bào),2003,13(2):526-529.
High Temperature Solid Phase Synthesis and Electrochem ical Properties of LiLaxMn2-xO4as Cathode M aterials for Lithium Ion Batteries
LIANG Xing-hua,ZENG Shuai-bo,LIU Yu-si,SHILin,YE Chao-chao
(Key Laboratory of Guangxi Auto Parts and Vehicle Technology,R&D Center of Vehicle Power and New Energy,Guangxi Science and Technology University,Liuzhou 545006,China)
Four LiLaxMn2-xO4(Fx,x=0,0.02,0.04,0.06)were obtained by high temperature solid state two stage sinteringmethod.The structures and topography were characterized by XRD and SEM.LiLa0.02Mn1.98O4(F0.02)was pure spinel structure with spherical surfacemorphology.Lithium ion battery cathodematerials(Ex)were prepared from Fxby using active carbon as the conductor and the electrochemical propertieswere investigated by cyclic voltammetry.The results showed that properies of E0.02were as follows:the first discharge capacity at0.1 C rate discharge was75 mAh·g-1,discharge capacity at0.2 C rate after20 times dischargewas80mAh·g-1and the first discharge capacity at0.5 C rate discharge was 79 mAh·g-1.
lithium-ion battery;preparation;electrochemical property
O614.111
A
1005-1511(2014)02-0179-04
2013-11-18;
2014-01-04
廣西重點(diǎn)實(shí)驗(yàn)室開(kāi)放基金資助項(xiàng)目(2012KFMS04,2013KFMS01);廣西重點(diǎn)實(shí)驗(yàn)室建設(shè)項(xiàng)目(13-051-38);廣西車(chē)輛動(dòng)力與新能源研發(fā)中心建設(shè)項(xiàng)目
梁興華(1973-),男,漢族,廣西南寧人,副教授,主要從事汽車(chē)新能源及材料的研究。E-mail:LXH304@yahoo.com.cn