石元,陳偉,曾勇慶,祝洪磊,徐正剛,張哲,楊云,張?zhí)礻柹綎|農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院 動(dòng)物育種學(xué)實(shí)驗(yàn)室,山東 泰安 271018
豬CuZnSOD基因啟動(dòng)子的克隆鑒定及分析
石元*,陳偉*,曾勇慶,祝洪磊,徐正剛,張哲,楊云,張?zhí)礻?br/>山東農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院 動(dòng)物育種學(xué)實(shí)驗(yàn)室,山東 泰安 271018
豬銅鋅超氧化物歧化酶 (CuZnSOD) 是一種重要的抗氧化酶,其功能已被廣泛研究,但CuZnSOD基因的轉(zhuǎn)錄調(diào)控尚不明確。為了研究豬CuZnSOD基因的核心啟動(dòng)子區(qū)域,并對(duì)其轉(zhuǎn)錄調(diào)控機(jī)制進(jìn)行探討,運(yùn)用PCR方法從豬基因組克隆CuZnSOD基因5′上游調(diào)控區(qū)853 bp的片段,然后通過巢式PCR方法獲得5′末端逐漸缺失的啟動(dòng)子系列片段,并將這些片段定向插入到熒光素酶報(bào)告基因表達(dá)載體 (pGL3-Basic) 中。瞬時(shí)轉(zhuǎn)染小鼠胚胎細(xì)胞 (NIH/3T3),利用雙熒光素酶報(bào)告基因檢測(cè)不同長(zhǎng)度啟動(dòng)子活性。檢測(cè)結(jié)果顯示,在CuZnSOD基因5′上游調(diào)控區(qū)-87 bp和-266 bp處分別存在2個(gè)潛在轉(zhuǎn)錄起始位點(diǎn),-383 bp~+67 bp啟動(dòng)區(qū)活性最強(qiáng),進(jìn)一步缺失分析發(fā)現(xiàn)-75 bp~-32 bp區(qū)域內(nèi)含有豬CuZnSOD基因轉(zhuǎn)錄所必需的基礎(chǔ)啟動(dòng)子序列,其中存在多個(gè)潛在的轉(zhuǎn)錄因子結(jié)合位點(diǎn),研究結(jié)果提示這些轉(zhuǎn)錄因子結(jié)合位點(diǎn)可能是參與CuZnSOD基因轉(zhuǎn)錄的重要調(diào)控序列。關(guān)鍵詞: 豬,CuZnSOD基因,啟動(dòng)子,雙熒光素酶報(bào)告基因
超氧化物歧化酶 (Superoxide dismutase, SOD) 是一種廣泛存在于生物體中的金屬酶,能夠清除機(jī)體內(nèi)氧化過程中產(chǎn)生的多余的超氧陰離子自由基,因此在維持生物體內(nèi)氧自由基平衡方面起著重要作用[1]。SOD可緩解或者抑制自由基的負(fù)面效應(yīng),提高商品豬的抗氧化能力,進(jìn)而改善商品豬的肉質(zhì)[2-3]。目前,已從哺乳動(dòng)物體內(nèi)分離出3種SOD:位于細(xì)胞質(zhì)基質(zhì)的CuZnSOD (SOD1)、位于線粒體的MnSOD (SOD2) 和位于細(xì)胞外基質(zhì)的EC-SOD (SOD3)[4]。CuZnSOD廣泛分布于細(xì)胞質(zhì)基質(zhì)中,約占SOD總量的90%[5]。隨著生物技術(shù)的發(fā)展,許多物種的CuZnSOD基因組序列已被克隆出來。杜金芳等[6]利用RACE的方法克隆得到了豬CuZnSOD基因的cDNA全長(zhǎng)序列。Fridovich[7]的研究發(fā)現(xiàn)在小鼠、大鼠、人的CuZnSOD基因近端啟動(dòng)子區(qū)存在TATA-box、CCAAT-box以及幾個(gè)富含GC的高度保守區(qū)域。人類的CuZnSOD基因的啟動(dòng)子已得到研究并發(fā)現(xiàn)了許多假定轉(zhuǎn)錄因子結(jié)合位點(diǎn)[8]。Minc等[9]已經(jīng)證明sp1和Egr-1轉(zhuǎn)錄因子對(duì)人的CuZnSOD基因的基礎(chǔ)表達(dá)和誘導(dǎo)表達(dá)發(fā)揮重要作用。目前對(duì)豬CuZnSOD基因的表達(dá)調(diào)控機(jī)制還未見報(bào)道。本研究以萊蕪豬為試驗(yàn)對(duì)象,克隆了豬CuZnSOD基因啟動(dòng)子區(qū)不同長(zhǎng)度的缺失序列,通過雙熒光素酶表達(dá)載體分析啟動(dòng)子區(qū)的活性,旨在進(jìn)一步探索CuZnSOD基因的結(jié)構(gòu)與功能,為揭示CuZnSOD基因?qū)ωi抗氧化性能的影響,以及為研究其轉(zhuǎn)錄調(diào)控機(jī)制提供科學(xué)依據(jù)。
1.1 材料
載體pGL3-Basic、pGL 4.74及熒光素酶檢測(cè)試劑盒Dual-Luciferase? Reporter Assay System均購自Promega公司。轉(zhuǎn)染試劑X-tremeGENE HP購于Roche公司。限制性內(nèi)切酶和Taq DNA聚合酶等常用分子生物學(xué)試劑均購自TaKaRa公司。膠回收與質(zhì)粒提取試劑盒購自天根生化科技有限公司。DMEM-F12細(xì)胞培養(yǎng)基和新生牛血清購自Gibco公司 (美國(guó))。萊蕪豬耳組織基因組DNA、大腸桿菌DH5α和小鼠NIH/3T3細(xì)胞株均由本實(shí)驗(yàn)室保存。
1.2 方法
1.2.1 生物信息學(xué)分析
使用Web Promoter Scan Service (http://wwwbimas.cit.nih.gov/molbio/proscan/) 預(yù)測(cè)CuZnSOD 5′端轉(zhuǎn)錄起始位點(diǎn);使用Primer5.0軟件里的motif模塊進(jìn)行TATA-box、CAAT-box、GC-box的預(yù)測(cè);使用Transcription Element Search System (http://www.cbil.upenn.edu/cgibin/tess/tess) 預(yù)測(cè)潛在的轉(zhuǎn)錄因子結(jié)合位點(diǎn);使用TFSEARCH (http://www.cbrc.jp/htbin/nphtfsearch) 在線軟件對(duì)潛在的轉(zhuǎn)錄因子結(jié)合位點(diǎn)進(jìn)行預(yù)測(cè)。
1.2.2 豬CuZnSOD基因5′上游853 bp啟動(dòng)子序列的克隆擴(kuò)增
根據(jù)NCBI基因數(shù)據(jù)庫中豬CuZnSOD基因5′上游序列,設(shè)計(jì)合適的引物。上游引物SOD-F:5′-ACTCTAACCTCCTTGACGGC-3′,下游引物SOD-R:5′-AGCTCGAAGTAG ATGGTGCC-3′。使用PrimeSTAR HS DNA Polymerase,以豬基因組DNA為模板,PCR擴(kuò)增CuZnSOD基因5′上游853 bp片段。
PCR擴(kuò)增體系:5×PrimeSTAR緩沖液10 μL,dNTP Mixture (各2.5 mmol/L) 4 μL,上游引物(10 μmol/L) 1 μL,下游引物 (10 μmol/L) 1 μL,DNA聚合酶0.5 μL,模板DNA 1 μL,滅菌蒸餾水32.5 μL。反應(yīng)條件:94 ℃預(yù)變性5 min;94 ℃變性30 s,66 ℃退火30 s,72 ℃延伸60 s,共計(jì)30個(gè)循環(huán);最后72 ℃延伸10 min。使用膠回收試劑盒回收目的PCR片段,連接到pMD18-T載體上,構(gòu)建重組質(zhì)粒pMD18-T-SOD1,轉(zhuǎn)化至大腸桿菌DH5α中,氨芐青霉素平板涂板后培養(yǎng)過夜進(jìn)行抗性篩選,陽性克隆經(jīng)酶切鑒定,使用通用引物對(duì)其進(jìn)行測(cè)序。
1.2.3 CuZnSOD基因啟動(dòng)子不同長(zhǎng)度片段重組載體的構(gòu)建
以測(cè)序鑒定正確的重組質(zhì)粒pMD18-T-SOD1為模板,設(shè)計(jì)7條上游引物,在其上、下游引物的5'端分別引入了MluⅠ和BglⅡ酶切位點(diǎn),用巢式PCR的方法擴(kuò)增不同長(zhǎng)度的5′端缺失序列,引物信息見表1。PCR擴(kuò)增體系如1.2.2。反應(yīng)條件:94 ℃預(yù)變性5 min;94 ℃變性30 s,60 ℃退火30 s,72 ℃延伸60 s,共計(jì)30個(gè)循環(huán);最后72 ℃延伸10 min。PCR產(chǎn)物經(jīng)分離純化后,用限制性內(nèi)切酶MluⅠ和BglⅡ進(jìn)行雙酶切,然后連接到同樣經(jīng)過MluⅠ和BglⅡ雙酶切處理過的pGL3-Basic線性載體上,陽性重組子經(jīng)雙酶切鑒定及測(cè)序保證正確。獲得7個(gè)插入CuZnSOD基因啟動(dòng)子不同長(zhǎng)度片段的重組表達(dá)質(zhì)粒,分別命名為pGL3-A、pGL3-B、pGL3-C、pGL3-D、pGL3-E、pGL3-F和pGL3-G。
1.2.4 細(xì)胞培養(yǎng)及轉(zhuǎn)染
NIH/3T3細(xì)胞在含有10%新生牛血清的DMEM-F12培養(yǎng)基中,于37 ℃、含5%的CO2的條件下培養(yǎng)。轉(zhuǎn)染前,將所培養(yǎng)細(xì)胞按照大約每孔1×105細(xì)胞接種到24孔板,待細(xì)胞完全貼壁生長(zhǎng)至70%–90%密度時(shí)可用于轉(zhuǎn)染試驗(yàn)。
按照Roche公司的X-tremeGENE HP轉(zhuǎn)染試劑盒說明書進(jìn)行轉(zhuǎn)染,將豬CuZnSOD啟動(dòng)子報(bào)告基因質(zhì)粒與內(nèi)參照質(zhì)粒pGL 4.74共轉(zhuǎn)染至NIH/3T3細(xì)胞中。轉(zhuǎn)染時(shí)每孔加入報(bào)告基因質(zhì)粒0.5 μg,內(nèi)參照質(zhì)粒pGL 4.74 0.012 5 μg,脂質(zhì)體1.5 μL,每個(gè)實(shí)驗(yàn)組設(shè)置4個(gè)重復(fù),pGL3-Basic質(zhì)粒和內(nèi)參照質(zhì)粒pGL 4.74共轉(zhuǎn)染作為陰性對(duì)照。轉(zhuǎn)染48 h后收集細(xì)胞,檢測(cè)熒光素酶活性。
1.2.5 雙熒光素酶活性測(cè)定
按Promega公司提供的Dual-luceferase Assay System試劑盒進(jìn)行雙熒光素酶的檢測(cè),啟動(dòng)子活性用相對(duì)熒光素酶值 (螢火蟲熒光素酶激發(fā)底物釋放熒光的數(shù)值M1與內(nèi)參照海腎熒光素酶釋放熒光的數(shù)值M2的比) 表示。
1.2.6 數(shù)據(jù)統(tǒng)計(jì)分析
各組試驗(yàn)數(shù)據(jù)均計(jì)算平均值及標(biāo)準(zhǔn)誤,應(yīng)用SAS 8.2軟件進(jìn)行方差分析,采用Duncan法進(jìn)行均數(shù)間多重比較,統(tǒng)計(jì)學(xué)分析P<0.05為差異顯著。
表1 PCR引物序列Table1 Primers sequence of PCR
2.1 豬CuZnSOD基因5′端序列的生物信息學(xué)分析
本研究采用PCR方法從豬基因組克隆得到CuZnSOD基因5′上游調(diào)控區(qū)853 bp的片段,用生物信息學(xué)軟件分析發(fā)現(xiàn),在豬CuZnSOD基因5′端-87 bp和-266 bp處存在2個(gè)潛在轉(zhuǎn)錄起始位點(diǎn) (TSS),缺乏經(jīng)典的CAAT-box和GC-box保守序列,但檢測(cè)到一個(gè)TATA-box (圖1)。
圖1 豬CuZnSOD基因5′端調(diào)控序列及預(yù)測(cè)分析Fig. 1 Prediction of potential regulatory sequences of pig CuZnSOD 5'-flanking region. TSS: transcriptional start site.
圖2 PCR擴(kuò)增CuZnSOD基因5′端不同長(zhǎng)度缺失片段Fig. 2 PCR amplification of various length deletion fragments of CuZnSOD gene promoter. M: 2 000 bp DNA marker; 1: 853 bp; 2: 753 bp; 3: 653 bp; 4: 533 bp; 5: 453 bp; 6: 353 bp; 7: 233 bp.
2.2 CuZnSOD基因啟動(dòng)子及缺失片段的克隆
以重組質(zhì)粒pMD 18-T-SOD1為模板,以不同的引物擴(kuò)增不同長(zhǎng)度的5′側(cè)翼序列,片段預(yù)期長(zhǎng)度分別為853 bp、753 bp、653 bp、533 bp、453 bp、353 bp和233 bp,瓊脂糖凝膠電泳分析顯示得到了預(yù)期大小的片段 (圖2),PCR擴(kuò)增產(chǎn)物與預(yù)期片段大小相符。
2.3 熒光素酶表達(dá)載體的構(gòu)建及酶切鑒定
構(gòu)建的熒光素酶報(bào)告基因載體經(jīng)限制性內(nèi)切酶MluⅠ和BglⅡ雙酶切,酶切產(chǎn)物經(jīng)1.2%瓊脂糖凝膠電泳分離 (圖3)。檢測(cè)結(jié)果表明,酶切下的目的片段大小與預(yù)期吻合。將重組載體進(jìn)行測(cè)序,測(cè)序結(jié)果亦表明插入片段序列及方向正確無誤。
2.4 5′端缺失片段的雙螢光素酶活性檢測(cè)
將上述構(gòu)建的含CuZnSOD不同長(zhǎng)度啟動(dòng)子的7種表達(dá)載體與內(nèi)參照pGL 4.74載體分別共轉(zhuǎn)染NIH/3T3細(xì)胞,以pGL3-Basic和pGL 4.74共轉(zhuǎn)染作為陰性對(duì)照,48 h后收集細(xì)胞,測(cè)定熒光素酶的相對(duì)表達(dá)活性。結(jié)果表明,pGL3-E活性最強(qiáng),啟動(dòng)子活性都顯著性高于其他載體 (P<0.05)。從pGL3-E到pGL3-G,相對(duì)活性出現(xiàn)了顯著下降 (P<0.05),pGL3-F的相對(duì)熒光素酶活性是pGL3-E的75%,pGL3-G的相對(duì)熒光素酶活性是pGL3-E的33%。pGL3-F和pGL3-G相對(duì)于pGL3-E都缺少了-385~-285 bp區(qū)域,提示-385~-285 bp區(qū)域內(nèi)存在正調(diào)控區(qū)域或增強(qiáng)子。
圖3 重組載體的酶切鑒定Fig. 3 Identification of recombinant plasmids with digestion. M1: 2 000 bp DNA marker; M2: 10 000 bp DNA marker; 1: 853 bp; 2: 753 bp; 3: 653 bp; 4: 533 bp; 5: 453 bp; 6: 353 bp; 7: 233 bp.
圖4 豬CuZnSOD基因5′側(cè)翼序列的啟動(dòng)子活性檢測(cè)Fig. 4 Results of 7 fragments analyzed with dual-luciferase reporter system. pGL3-A-G: the activity of A-G in pGL3-Basic vector, respectively; pGL3-Basic: negative control, the activity in blank vector. Different letters indicate significant difference (P<0.05).
2.5 核心啟動(dòng)子的確立
根據(jù)CuZnSOD基因調(diào)控區(qū)7個(gè)缺失片段相對(duì)活性的檢測(cè)結(jié)果,我們以重組載體pGL3-G為模板,再次設(shè)計(jì)4條上游引物SOD1-G1、SOD1-G2、SOD1-G3和SOD1-G4 (表1),預(yù)期得到片段大小分別為192 bp、174 bp、143 bp和100 bp,按照上述相同的方法構(gòu)建重組載體,依次命名為pGL3-G1、pGL3-G2、pGL3-G3和pGL3-G4 (圖5)。按照同樣的方法分別轉(zhuǎn)染細(xì)胞檢測(cè)熒光素酶活性。結(jié)果發(fā)現(xiàn),從pGL3-G到pGL3-G4,啟動(dòng)子相對(duì)活性出現(xiàn)了顯著下降(P<0.05),重組載體pGL3-G2與pGL3-G3相差了31個(gè)堿基,但兩者的相對(duì)活性差異不顯著(P>0.05)。pGL3-G3與pGL3-G4的啟動(dòng)子相對(duì)活性差異顯著 (P<0.05),但pGL3-G4的啟動(dòng)子活性與pGL3-Basic無顯著差異 (P>0.05) (圖6)。這表明在-75~-32 bp范圍內(nèi)存在調(diào)控基礎(chǔ)轉(zhuǎn)錄活性元件。為了進(jìn)一步確定該調(diào)控序列,使用在線軟件TESS對(duì)該區(qū)域進(jìn)行預(yù)測(cè),表明這一區(qū)域有RAF (TCGG)、T-Ag (GCGGC)、ADR1 (TCTCC)、MAZ (CCCTCCC)、CTCF (CCCTC)、 AP-2和AP-2α (CCMNSSS) 等重要轉(zhuǎn)錄因子的潛在結(jié)合位點(diǎn);用TFSEARCH分析這一序列含有HSF、Egr-1和ADR1等轉(zhuǎn)錄因子結(jié)合位點(diǎn)。
圖5 二次構(gòu)建的重組載體雙酶切鑒定Fig. 5 Identification of 4 recombinant plasmids with digestion. M1: 2 000 bp DNA marker;M2: 10 000 bp DNA marker; 1: 100 bp; 2: 143 bp; 3: 174 bp: 4: 192 bp.
圖6 二次構(gòu)建的重組載體的啟動(dòng)子活性Fig. 6 Results of 4 fragments analyzed with dual-luciferase reporter system. Different letters indicate significant difference (P<0.05).
超氧化物歧化酶是一種重要的細(xì)胞內(nèi)抗氧化酶,能夠保護(hù)細(xì)胞以抵御超氧化物自由基的侵害,它能將超氧陰離子自由基快速歧化為H2O2和O2[10]。許多刺激都可以影響CuZnSOD基因的表達(dá),例如應(yīng)激、促炎性細(xì)胞因子、生長(zhǎng)因子[11-12]等。Park等[13]研究結(jié)果表明,CuZnSOD基因的5′側(cè)翼含有一個(gè)抗氧化反應(yīng)元件 (ARE);ARE是一個(gè)DNA基序,它存在于一些因應(yīng)答氧化應(yīng)激而被活化的解毒基因的上游調(diào)控區(qū)域中[14]。
真核生物啟動(dòng)子屬于mRNA基因啟動(dòng)子,相對(duì)復(fù)雜,位于結(jié)構(gòu)基因5′端上游,主要包括TATA-box、起始子、CAAT-box和GC-box等,其中的TATA-box和起始子被稱為核心啟動(dòng)子[15],TATA-box是轉(zhuǎn)錄因子TF II D的TBP亞基的結(jié)合位點(diǎn)。本研究利用PCR技術(shù)克隆了CuZnSOD基因5′上游啟動(dòng)子區(qū)853 bp (-785 bp~+67 bp)長(zhǎng)度的片段,并通過DNA序列分析證實(shí)了其序列無突變。生物信息學(xué)軟件分析發(fā)現(xiàn)距起始密碼子ATG上游105 bp處含有一個(gè)TATA-box,符合真核生物基因的典型啟動(dòng)子結(jié)構(gòu)。
分析啟動(dòng)子活性,需要將啟動(dòng)子插入到報(bào)告基因的上游構(gòu)建表達(dá)載體,通過轉(zhuǎn)染細(xì)胞來檢測(cè)啟動(dòng)子對(duì)報(bào)告基因表達(dá)水平的影響。韓鳳桐等[16]和張東杰等[17]采用這種方法分別對(duì)牛Sry基因和豬MC4R基因的核心啟動(dòng)子區(qū)進(jìn)行了分析,均發(fā)現(xiàn)了一段對(duì)目的基因基礎(chǔ)轉(zhuǎn)錄活性起重要作用的序列。Ruan等[18]對(duì)豬生長(zhǎng)激素基因啟動(dòng)子進(jìn)行了研究,發(fā)現(xiàn)該基因的最小啟動(dòng)子區(qū)為-110 bp~+61 bp;Ling等[19]研究表明在豬脂聯(lián)素基因啟動(dòng)子-1 671 bp~-1 455 bp區(qū)域內(nèi)存在著對(duì)脂聯(lián)素基因高表達(dá)所需的潛在調(diào)控元件。本研究利用巢式PCR的方法獲得一系列5′末端逐漸缺失的CuZnSOD基因啟動(dòng)子,并將這些片段定向連接到pGL3-Basic載體上,然后與內(nèi)參質(zhì)粒pGL 4.74共轉(zhuǎn)染細(xì)胞以檢測(cè)啟動(dòng)子的活性。pGL3-Basic含有螢火蟲熒光素酶報(bào)告基因,不含啟動(dòng)子,其熒光素酶活性直接反映了克隆區(qū)域內(nèi)啟動(dòng)子的活性;內(nèi)參質(zhì)粒pGL 4.74含有海腎熒光素酶報(bào)告基因,用來校正轉(zhuǎn)染效率。為消除實(shí)驗(yàn)誤差,每次轉(zhuǎn)染和測(cè)定都做重復(fù)樣。檢測(cè)結(jié)果表明:第一次構(gòu)建的7種載體中pGL3-E活性最強(qiáng),啟動(dòng)子活性都顯著性高于其他載體 (P<0.05),pGL3-A次之,pGL3-G活性最弱,但也顯著性高于pGL3-Basic (P<0.05),從pGL3-E到pGL3-G,相對(duì)活性逐漸下降。為進(jìn)一步縮小區(qū)域以確定該基因啟動(dòng)子重要調(diào)控區(qū)域,本研究利用相同方法又構(gòu)建了4個(gè)不同長(zhǎng)度啟動(dòng)子的重組載體。熒光素酶活性分析表明,從pGL3-G到pGL3-G4相對(duì)活性出現(xiàn)了顯著下降,pGL3-G3和pGL3-G4之間差異顯著 (P<0.05),但pGL3-G4已不再具有啟動(dòng)活性,因此認(rèn)為pGL3-G4相對(duì)pGL3-G3所缺少的-75 bp~-32 bp這一片段中包含著CuZnSOD基因的重要調(diào)控序列。
Minc等[9]研究表明人CuZnSOD基因啟動(dòng)子-71~+1 bp區(qū)域?qū)A(chǔ)水平的轉(zhuǎn)錄是必需的,并且已經(jīng)確認(rèn)-59~-48 bp區(qū)域能夠結(jié)合SP-1和Egr-1。本研究利用TESS生物信息學(xué)軟件分析-75~-32 bp這一區(qū)域,發(fā)現(xiàn)在這44 bp的片段里存在多個(gè)潛在轉(zhuǎn)錄因子的結(jié)合位點(diǎn),如RAF (TCGG)、T-Ag (GCGGC)、ADR1 (TCTCC)、MAZ (CCCTCCC)、CTCF (CCCTC)、AP-2和AP-2α (CCMNSSS) 等潛在結(jié)合位點(diǎn);利用TFSEARCH軟件分析發(fā)現(xiàn)該區(qū)域含有HSF、Egr-1和ADR1等轉(zhuǎn)錄因子結(jié)合位點(diǎn),這提示乙醇脫氫酶基因調(diào)節(jié)因子ADR1可能參與豬CuZnSOD基因的轉(zhuǎn)錄調(diào)控。Kim等[20]研究表明AP2、CREB和HSF可能參與鼠CuZnSOD基因表達(dá);Gralla等[21]研究表明銅依賴性轉(zhuǎn)錄因子ACE1能夠激活酵母CuZnSOD基因的表達(dá);Minc等[9]和Seo等[22]研究都表明sp1在人CuZnSOD基因的表達(dá)調(diào)控中起著關(guān)鍵作用,說明不同物種CuZnSOD基因的表達(dá)中起關(guān)鍵轉(zhuǎn)錄調(diào)控因子可能有所不同。
本研究通過構(gòu)建缺失片段的熒光素酶報(bào)告基因重組載體,將豬的CuZnSOD基因啟動(dòng)子區(qū)核心元件定位在-75~-32 bp區(qū)域內(nèi),研究結(jié)果不僅為詳細(xì)闡明豬CuZnSOD基因的表達(dá)調(diào)控機(jī)制奠定了基礎(chǔ),而且也將為研究與豬CuZnSOD基因啟動(dòng)子區(qū)結(jié)合的轉(zhuǎn)錄因子提供數(shù)據(jù)參考。
REFERENCES
[1] Zyracka E, Zadrag R, Koziol S, et al. Yeast as a biosensor for antioxidants: simple growth tests employing a Saccharomyces cerevisiae mutant defective in superoxide dismutase. Acta Biochim Pol, 2005, 52(3): 679-684.
[2] Li H, Zeng YQ, Wei SD, et al. Changes of superoxide dismutase activity and malondialdehyde level in postmortem muscle and their association with meat quality in pigs. Acta Vet Zootech Sin, 2010, 41(3): 257-261 (in Chinese).李華, 曾勇慶, 魏述東, 等. 豬宰后肌肉SOD與MDA的變化及其對(duì)肉質(zhì)特性的影響. 畜牧獸醫(yī)學(xué)報(bào), 2010, 41(3): 257-261.
[3] Du JF, Zeng YQ, Wang H, et al. CuZnSOD gene expression and its relationship with anti-oxidative capacity and pork quality. S Afr J Anim Sci, 2010, 40(3): 265-272.
[4] Covarrubias L, Hernández-García D, Schnabel D, et al. Function of reactive oxygen species during animal development: passive or active. Dev Biol, 2008, 320(1): 1-11.
[5] Noor R, Mittal S, Iqbal J. Superoxide dismutase-applications and relevance to human diseases. Med Sci Moint, 2002, 8(9): 210-215.
[6] Du JF, Zeng YQ, Chen W, et al. Cloning, expression and functional analysis of CuZnSOD gene in swine. Hereditas, 2010, 32(10): 1037-1042 (in Chinese).杜金芳, 曾勇慶, 陳偉, 等. 豬CuZnSOD基因的克隆、表達(dá)及功能分析. 遺傳, 2010, 32(10): 1037-1042.
[7] Fridovich I. Superoxide dismutases. Ann Rev Biochem, 1975, 44: 147-159.
[8] Kim HT, Kim YH, Nam JW, et al. Study of 5′-flanking region of human Cu/Zn superoxide dismutase. Biochem Biophys Res Commun, 1994, 201(3): 1526-1533.
[9] Minc E, de Coppet P, Masson P, et al. The human copper-zinc superoxide dismutase gene (SOD1) proximal promoter is regulated by Sp1, Egr-1, and WT1 via non-canonical binding sites. J Biol Chem, 1999, 274(1): 503-509.
[10] Zelko IN, Mariani TJ, Folz RJ. Superoxide dismutase multigene Family: a comparison of the CuZnSOD (SOD1), MnSOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radical Biol Med, 2002, 33(3): 337-349.
[11] Chang MS, Yoo HY, Rho HM. Transcriptional regulation and environmental induction of gene encoding copper- and zinc-containing superoxide dismutase. Method Enzymol, 2002, 349: 293-305.
[12] Yoo HY, Chang MS, Rho HM. The activation of the rat copper/zinc superoxide dismutase gene by hydrogen peroxide through the hydrogen peroxide-responsive element and by paraquat and heat shock through the same heat shock element. J Biol Chem, 1999, 274(34): 23887-23892.
[13] Park EY, Rho HM. The transcriptional activation of the human copper/zinc superoxide dismutase gene by 2,3,7,8-tetrachlorodibenzo-p-dioxin through two different regulator sites, the antioxidant responsive element and xenobiotic responsive element. Mol Cell Biochem, 2002, 24(1/2): 47-55.
[14] Mulcahy RT, Wartman MA, Bailey HH, et al. Constitutive and beta-naphthoflavone-induced expression of the human gamma-glutamylcysteine synthetase heavy subunit gene is regulated by a distal antioxidant response element/TRE sequence. J Biol Chem, 1997, 272(11): 7445-7454.
[15] Pedersen AG, Baldi P, Chauvin Y, et al. The biology of eukaryotic promoter prediction. Compute Chem, 1999, 23(6): 91-209.
[16] Han FT, Lin XK, Liu D, et al. Identification of the regulation sequences of bovine sry promoter. SciAgric Sin, 2010, 43(14): 2996-3004 (in Chinese)韓鳳桐, 林秀坤, 劉娣, 等. 牛Sry啟動(dòng)子調(diào)控序列的鑒定. 中國(guó)農(nóng)業(yè)科學(xué), 2010, 43(14 2996-3004.
[17] Zhang DJ, Wang L, Liu D, et al. Cloning an activity analysis of promoter of pi melanocortortin-4 receptor gene (MC4R). J Agr Biotech, 2011, 19(4): 734-739 (in Chinese).張東杰, 汪亮, 劉娣, 等. 豬黑素皮質(zhì)激素受體-4基因 (MC4R) 啟動(dòng)子克隆及其分析. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào), 2011, 19(4): 734-739.
[18] Ruan N, Zhang MJ, Ju HM, et al. Cloning an functional analysis of the porcine growth hormon gene promoter. Agr Sci Technol, 2012, 13(4 893-896.
[19] Ling F, Li JQ, Chen YS, et al. Cloning an characterization of the 5′-flanking region of the pig adiponectin gene. Biochem Biophys Res Commun, 2009, 381(2): 236-240.
[20] Kim YH, Yoo HY, Jung G, et al. Isolation and analysis of the rat genomic sequence encoding Cu/Zn superoxide dismutase. Gene, 1993, 133(2): 267-271.
[21] Gralla EB, Thiele DJ, Silar P, et al. ACE1, a copper-dependent transcription factor, activates expression of the yeast copper, zinc superoxide dismutase gene. Proc Nati Acad Sci USA, 1991, 88(19): 8558-8562.
[22] Seo SJ, Kim HT, Cho G, et al. Spl and C/EBP-related factor regulate the transcription of human Cu/Zn SOD gene. Gene, 1996, 178(1/2): 177-185.
(本文責(zé)編 陳宏宇)
Cloning and analysis of promoter of pig copper zinc superoxide dismutase gene (CuZnSOD)
Yuan Shi*, Wei Chen*, Yongqing Zeng, Honglei Zhu, Zhenggang Xu, Zhe Zhang, Yun Yang, and Tianyang Zhang
Laboratory of Animal Breeding and Genetics, College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, Shandong, China
Pig copper zinc superoxide dismutase (CuZnSOD) is an important antioxidant enzyme. Some studies focused on the function of CuZnSOD gene, but the transcriptional regulation of the CuZnSOD gene is not yet fully elucidated. Therefore, the aims of the study were to determine the core promoter region and to explore its mechanism of transcriptional regulation. The 853 bp DNA sequence of 5′-flanking promoter was amplified by performing PCR. A series of CuZnSOD promoter fragments with gradually truncated 5′-end were produced by nested PCR and inserted into pGL3-Basic vector. The activities of the promoters were measured by the dual-luciferase assay system after transient transfection into the NIH/3T3 cells. The results demonstrated that there were 2 potential transcription start sites in the regions from initiation codon to -87 bp and -266 bp, respectively. The region from -383 bp to +67 bp in CuZnSOD gene promoter showed higher activity than other regions, and further deletion analysis demonstrated that the region from -75 bp to -32 bp contained an essential promoter sequence for pig CuZnSOD gene transcription. In addition, several potential transcription factor binding sites were predicted with bioinformatics method. These results suggest that these transcription factor binding sites may be involved in the transcriptional regulation of CuZnSOD gene.
pig, CuZnSOD gene, promoter, dual-luciferase reporter gene
May 21, 2013; Accepted: August 1, 2013
Yongqing Zeng. E-mail: yqzeng@sdau.edu.cn
石元, 陳偉, 曾勇慶, 等. 豬CuZnSOD基因啟動(dòng)子的克隆鑒定及分析. 生物工程學(xué)報(bào), 2014, 30(2): 213-222.
Shi Y, Chen W, Zeng YQ, et al. Cloning and analysis of promoter of pig copper zinc superoxide dismutase gene (CuZnSOD). Chin J Biotech, 2014, 30(2): 213-222.
Supported by: National Transgenic Major Program (Nos. 2011ZX08006-002, 2013ZX08006-002), National High Technology Research and Development Program of China (863 Program) (No. 2008AA101008), Shandong Province Modern Pig Industry Technique System Project (No. SDAIT-06-011-02), Shandong Province Agricultural Animal Breeding Project of China (No. 2011LZ013-03).
*These authors contributed equally to this study.
國(guó)家轉(zhuǎn)基因重大專項(xiàng) (Nos. 2011ZX08006-002,2013ZX08006-002),國(guó)家高技術(shù)研究發(fā)展計(jì)劃 (863計(jì)劃) (No. 2008AA101008),山東省現(xiàn)代農(nóng)業(yè) (生豬) 產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng) (No. SDAIT-06-011-02),山東省農(nóng)業(yè)良種工程重大項(xiàng)目 (No. 2011LZ013-03) 資助。
時(shí)間:2013-08-16 網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/11.1998.Q.20130816.1714.004.html