• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A numerical study on dispersion of particles from the surface of a circular cylinder placed in a gas flow using discrete vortex method*

    2014-06-01 12:30:01HUANGYuandong黃遠(yuǎn)東
    關(guān)鍵詞:遠(yuǎn)東

    HUANG Yuan-dong (黃遠(yuǎn)東)

    School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China

    College of Engineering, Kyung Hee University, Yongin 449-701, Korea, E-mail: huangyd@usst.edu.cn

    HE Wen-rong (何文榮), WU Wen-quan (吳文權(quán))

    School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China

    KIM Chang-Nyung

    College of Engineering, Kyung Hee University, Yongin 449-701, Korea

    Industrial Liaison Research Institute, Kyung Hee University, Yongin 449-701, Korea

    A numerical study on dispersion of particles from the surface of a circular cylinder placed in a gas flow using discrete vortex method*

    HUANG Yuan-dong (黃遠(yuǎn)東)

    School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China

    College of Engineering, Kyung Hee University, Yongin 449-701, Korea, E-mail: huangyd@usst.edu.cn

    HE Wen-rong (何文榮), WU Wen-quan (吳文權(quán))

    School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China

    KIM Chang-Nyung

    College of Engineering, Kyung Hee University, Yongin 449-701, Korea

    Industrial Liaison Research Institute, Kyung Hee University, Yongin 449-701, Korea

    (Received January 28, 2013, Revised May 27, 2013)

    The dispersion of particles emitted from the surface of a circular cylinder placed in a gas flow at the Reynolds number of 200 000 is numerically investigated using the discrete vortex method coupled with a Lagrangian approach for solid particle tracking. The wake vortex patterns, the temporal-spatial distributions and trajectories as well as the dispersion functions for particles with various Stokes numbers (St) ranging from 0.001 to 1.0 are obtained. The numerical results reveal that: (1) Solid particles on the cylinder surface are picked up and then transported away from the cylinder by the wake vortex flow. (2) Solid particles emitted from the cylinder surface always follow the vortices in the cylinder wake, and the response of particles to wake vortices is directly related to their Stokes numbers (particles withSt=0.001, 0.0038, 0.01 can distribute both in the vortex core and around the vortex periphery, whereas those withSt=0.1, 1.0 can not enter the vortex core and congregate mainly around the vortex periphery). (3) The particles move in rolling state in the wake region, and the dispersion intensity of particles in the lateral direction decreases remarkably as the Stokes number of particles is increased from 0.001 to 1.0.

    particle dispersion, circular cylinder, gas flow, wake vortex, discrete vortex method (DVM)

    Introduction

    Particle dispersion in gas flows over a circular cylinder is very common in man-made and natural environments. Because gas flows past a circular cylinder (bluff body) at high Reynolds number are characteri-zed by the evolution of wake vortices, understanding the effect of wake vortices on particle dispersion in the wake of a circular cylinder is crucial for predicting spatial and temporal distributions of particles and for analyzing the erosion of cylinder surface. The numerical studies of particle dispersion in plane mixing layers[1-3], planar jets[4,5], and wake gas flows behind a flat plate[6]and over a backward-facing step[7]have been made extensively, and it was found that the large organized vortex structures have a dominate effect on the dispersion of particles over a range of Stokes numbers. Recently, a few numerical studies have been conducted to investigate particle-laden gas flows past single and multiple circular cylinders[8-12], and it was revealed that the particle dispersion pattern depends strongly on wake vortices and particle’s Stokes number.

    Particle emissions from bluff body surfaces occur widely in engineering practice and in natural environment. For example, particulate matters are released from a bluff body surface during its erosion process in a flow. Also, solid particles already deposited on a bluff body may be picked up again by flows past the bluff body. In the above-mentioned studies[8-12], however, the solid particles were all from the free-stream and the dispersion of particles from the surface of a circular cylinder was not simulated. On the other hand, the dispersion of very small sized particles was not considered in the above-mentioned investigations (i.e., the Brownian force and the Cunningham correction factor to Stokes’ drag law were not taken into account in previous studies).

    The objective of the present work is to investigate numerically the effect of wake vortices on dispersion of different sized particles from the surface of a circular cylinder placed in a gas flow at high Reynolds number. To this end, we study the two-dimensional gas flows past a circular cylinder at the Reynolds number of 200 000. In the numerical procedure, the discrete vortex method with a diffusion velocity model for diffusion of vorticity due to fluid viscosity, which can capture the essential features (such as the formation, development and decay of wake vortices) of the unsteady gas flows, is used to evaluate the unsteady gas flow fields, a Lagrangian approach based on one-way coupling is adopted to track individual solid particles released from the cylinder surface, and a dispersion function is applied to represent the lateral dispersion scale of particles. In the simulations, the changes in particle distribution patterns, particle trajectories and particle dispersion intensity with the Stokes number are all examined.

    1. Basic equations and numerical method

    1.1Unsteady gas flow field

    1.1.1 Governing equations for gas

    We use the discrete vortex method (DVM)[9,13-15]to evaluate the unsteady gas flow fields numerically.

    For a two-dimensional, viscous incompressible flow past a circular cylinder at high Reynolds number, the governing equations in the vorticity-stream function form are given as

    wheretis the time,νthe kinematic viscosity,ωthe vorticity, andψthe stream function.

    The fluid vorticityωis expressed by

    whereuandvare the velocity components in thex- andy-directions, respectively.

    The stream functionψis related to the velocity components through

    The discrete vortex method represents the continuous vorticity field as the sum of a large numberNof vortex blobs

    wherer=(x,y),Γiis the strength of theith vortex blob at positionri=(xi,yi), andKσ(ε) is the cutoff function given as

    whereσis the core radius of the vortex blob.

    When the vorticity field is discretized into a set ofNvortex blobs, the velocity field is constructed from the vortex blobs by the following equations derived from the Biot-Savart Law.

    whereu∞andv∞are the free-stream velocity components in thex- andy-directions, respectively

    Fig.1 Distribution of nascent vortex blobs along the circular cylinder surface[9]

    1.1.2 Generation and shedding of discrete vortex blobs from the cylinder surface

    A circular cylinder surface is represented byMcontrol points, which are placed at a very small distanceδfrom the surface. At each control point, a nascent vortex blob is created at each time step (as depicted in Fig.1) to satisfy the zero normal velocity condition.

    The separation points are calculated by using the boundary layer theories. Once the separation points are determined, the nascent vortex blobs at and downstream of the separation points are shed into the wake.

    1.1.3 Diffusion of vorticity due to viscosity

    The diffusion of vorticity due to fluid viscosity is modeled by a diffusion velocity method presented by Ogami and Akamatsu[9]. In this method, the transport equation for a scalar functionF(x,y,t) moving with a fluid velocityV(x,y,t)=[u(x,y,t),v(x,y,t)]in the (x,y)-plane is given by

    The vorticity transport Eq.(1) may be rewritten as

    Through comparing Eqs.(9) and (10), the vorticityωcan be considered as moving with a total velocity of (V+Vd), whereVis the usual convective velocity. Hence the effect of viscosity is to add a diffusion velocity componentVd=(ud,vd)to the motion of each vortex blob, whereudandvdare given by

    By substituting Eq.(5) into Eq.(11), the diffusion velocity (ud,vd) induced at position (x,y) and timetcan be expressed as

    Therefore, in the diffusion velocity method, each vortex blob is transported both by the convection velocity (u,v) obtained from Eqs.(7) and (8) and by the diffusion velocity (ud,vd) calculated from Eqs.(12) and (13), and its strength is kept invariant along its trajectory according to Eq.(10).

    After getting the convection and diffusion velocities of each vortex blob, its position can be determined by integrating the following equation

    whereri=(xi,yi) is the position of theith vortex blob.

    When the position and strength of each vortex blob are known att=t, the flow att=t+Δt(Δtis the size of the time step) can be obtained, because the gas velocity is calculated from Eqs.(7) and (8), and the position of vortex blob is obtained from Eq.(14).

    1.2Lagrangian equation of motion for a particle

    We adopt a Lagrangian approach based on oneway coupling between the continuous gas phase and dispersed particles to simulate the particle motion in unsteady gas flow fields. In this study, the free-stream is clean and the particles are only released from the cylinder surface, thus the impact of particles on airflow as well as the inter-particle collisions can be ignored due to extremely small particle concentrations in the flow field. In the present simulation, the forces acting on a particle are the drag, virtual mass, pressure gradient, Saffman’s lift, and Brownian motion forces (here the Magnus and Basset forces are omitted). And thus the Lagrangian equation of motion for a spherical particle we used is

    wherepρa(bǔ)ndρa(bǔ)re the particle and fluid density, respectively,dpis the particle diameter,μis the dynamic viscosity of the fluid,V=(u,v) andVp=(up,vp) are the instantaneous velocity of the fluid and the particle, respectively,fis the modification factor for the Stokes drag coefficient,φ(t) is a Brownian force per unit mass,iandjare the unit vectors inx- andy-directions, respectively,tis the time, d/ dtis the temporal derivative along the discrete particle trajectory and D/Dtis the temporal derivative along the fluid motion. d/dtand D/Dtcan be written as

    The terms on the right-hand side of Eq.(15) represent, respectively, the drag, virtual mass, pressure gradient, saffman’s lift, and Brownian motion forces. The particle Reynolds number is defined by

    fis related to the particle Reynolds number and is given below

    Cin Eq.(19) is the Cunningham correction factor to Stokes’ drag law, which can be calculated from

    whereλis the molecular mean free path of the gas and is given by

    For small particles the effect of Brownian motion becomes significant[16,17]. To take into account such effects in the simulation of particle motion the Brownian force is modeled as a Gaussian white noise random process, and the amplitudes of the Brownian force components at every time step are evaluated from

    Fig.2 Coordinate system for the numerical simulations

    Equation (15) can be further simplified to give

    Fig.3 Distributions of particles withSt=0.001 and discrete vortex blobs at different time instants (the solid circles represent particles and hollow circles vortex blobs)

    The Stokes number (St) is used widely by various researchers to study particle dispersion in flowing gases, which is defined as the ratio of the response time of the particle to the time scale of the fluid. Let the circular cylinder diameterDbe a characteristic lengthL, the upstream approach velocityV∞be a characteristic velocityU, andT=L/U=D/V∞be the characteristic time. If the time scale of the mean flow,L/U, is used, the Stokes number can be evaluated as

    According to the definition of velocity, we have

    whererp(t) is the location of the particle at timet.

    We first solve the Eq.(26) to get the particle velocity, and then integrate the Eq.(28) to determine the particle position in the unsteady flow field.

    1.3Numerical procedure

    In the numerical simulation, the unsteady gas flow field is first evaluated by using the discrete vortex method, based on the obtained unsteady gas velocity field, the Lagrangian equations of motion for particles are then solved to track the individual solid particles.

    2. Numerical results and its analysis

    2.1Calculating conditions

    We use the above numerical method to simulate

    Fig.4 Distributions of particles withSt=1.0 and discrete vortex blobs at five different time instants (the small solid circles represent particles and small hollow circles vortex blobs)

    Fig.5 Distributions of particles and discrete vortex blobs at timet=20 (the small solid circles represent particles and small hollow circles vortex blobs)

    the particle dispersion in the wake of gas flows over a circular cylinder at high Reynolds number. Figure 2 shows the coordinate system of the numerical simulations. The origin is taken at the center of the fixed cylinder with a non-dimensional diameter of 1.0. Thex- axis is parallel to the undisturbed stream and the flow plane is perpendicular to the gravity. The flow is from left to right, at timet=0 the flow is started with constant non-dimensional velocity of magnitude 1.0 in thex-direction. Thus the gas velocity at position (-∞,0) is (1,0). The kinematic viscosity of the fluid is 1.5×10–5m2/s and the absolute temperature of the fluid is 293 K. The Reynolds number based on the cylinder diameter and the gas velocity upstream of the cylinderV∞is 200 000.pρa(bǔ)ndρa(bǔ)re 2 650 kg/m3and 1.2 kg/m3, respectively. Six different particles for the Stokes numbers,St, of 0.001, 0.0038, 0.01, 0.061, 0.1 and 1.0 are calculated (since PM10 and PM2.5 levels are widely used in assessment of atmospheric quality in environmental science, we also evaluate in this study the dispersion of particles withdp=10μ m (St=0.061) and 2.5μ m(St=0.0038)).

    The circular cylinder surface is represented by the 103 control points with fixed locations, and 103 nascent vortex blobs are created at each time step on the cylinder surface. The maximum number of vortex blobs is 20 000 (i.e., nearly two hundred times the number of the nascent vortex blobs) in the simulation (in a previous study[9], the maximum number of vortex blobs is twenty times that of the nascent vortex blobs). The time step size Δtof the simulation of fluid flow is set to be 0.02, and the total number of time steps is 1 000 (i.e., the simulation runs to timet=20).

    At each time step, as the simulation for the gasphase has been completed, 50 spherical particles of monosize distribution are released randomly from the cylinder surface into the gas flow field (the initial position of each particle is determined by using random numbers and the initial velocity of each particle is set to be zero).

    In order to obtain the particle trajectories, we track 50 spherical particles for each of the four different particles for the Stokes numbers 0.001, 0.01, 0.1 and 1.0. These particles tracked are evenly distributed along the cylinder surface and released at timet=0 into the gas flow field.

    In order to quantitatively study the dispersionscales of particles with different Stokes numbers, the dispersion function in theydirection is used here. The dispersion function is defined as[9,14]

    whereNpis the total number of particles in the cal-

    culating region at timet,Yi(t) is the displacement of theith particle in they- direction from timet-Δttot,Ym(t) is the mean value of particle displacement in theydirection from timet-Δttot.

    2.2Numerical results

    Figure 3 shows the five instantaneous images of the discrete vortex blob pattern and of the distribution of particles with very small Stokes number 0.001. The vortex blob patterns depicted in Fig.3 illustrate that the vortex blobs shed from the cylinder form clusters in the wake region. Due to the flow separation, vortices occur downstream of the separation points on the cylinder surface. Figure 3 reveals clearly that the particles on the cylinder surface are picked up and then transported away from the cylinder by the wake vortex flow. Figure 3 also reveals that in the wake region the particles from the cylinder surface always follow the wake vortices (or the clusters of discrete vortex blobs) and are distributed both in the vortex core and around the vortex periphery.

    Figure 4 shows the five instantaneous images of the discrete vortex blob pattern and of the distribution of particles with intermediate stokes number 1.0. From this figure, it can be observed that in the wake region the particles withSt=1.0 also follow the wake vortices. But unlike the particles with very small Stokes number 0.001, the particles withSt=1.0 can not enter the vortex core and they distribute only around the vortex periphery.

    In order to examine the effects of wake vortices on distribution of particles with various Stokes numbers, at timet=20 the discrete vortex blob pattern and the particle distributions, respectively, for Stokes numbers 0.001, 0.0038, 0.01, 0.061, 0.1 and 1.0 are shown in Fig.5. This figure indicates clearly that the dispersion of particles in the circular cylinder wake is governed by the Stokes number and the structure of wake vortices.

    Due to the very small inertia effects, the particles with very small Stokes numbers 0.001, 0.0038 and 0.01 can distribute both in the vortex core and around the vortex periphery as shown in Figs.5(a) through 5(c).

    Fig.6 Time series of dispersion function of particles with different Stokes numbers

    Fig.7 Trajectories of particles with various Stokes numbers (the particles are released into the gas flow field at timet=0)

    Due to the strong centrifugal force acting on the particle by the vortices, the particles with intermediateStokes numbers (St=0.1, 1.0) cannot enter the vortex core and congregate mainly around the vortex periphery or near the outer boundaries for the clusters of vortex blobs as depicted in Figs.5(e) and 5(f).

    For particles with the Stokes numbers ranging from 0.01 to 1.0, Figs.5(c) through 5(f) shows clearly that the zones around the vortex cores, where few particles exist, are expanded as the Stokes number is increased. This is because the centrifugal force acting on a particle by the wake vortices increases with the Stokes number.

    Figure 6 shows the time series of dispersion function for particles with different Stokes numbers (St=0.001, 0.0038, 0.01, 0.061, 0.1, 1.0). It is evident from this figure that the particle’s dispersion intensity in the lateral direction decreases significantly asStis increased from 0.001 to 1.0 (the dispersion intensity of particles withSt=0.001 is nearly twice that of particles withSt=1.0).

    The trajectories of particles with four different stokes numbers (St=0.001, 0.01, 0.1, 1.0) are shown in Fig.7, which illustrates clearly that the particles rollingly move in the wake region, and that the particle fluctuations in the lateral direction increase remarkably with the decrease of particle’s Stokes number.

    3. Conclusions

    The dispersion of particles from the surface of a circular cylinder placed in a gas flow at Reynolds number of 200 000 has been numerically studied using the discrete vortex method coupled with a diffusion velocity model and Lagrangian solid particle tracking. The vortex patterns, the distributions and time series of dispersion function for particles with the Stokes numbers 0.001, 0.0038, 0.01, 0.061, 0.1 and 1.0, and the trajectories of particles with Stokes numbers 0.001, 0.01, 0.1 and 1.0 are obtained. The numerical results show that the dispersion of particles released from a cylinder surface is governed by the particle’s Stokes number and the structure of wake vortices: (1) Particles on the cylinder surface are picked up and then transported away from the cylinder by the wake vortex flow. (2) Particles from the cylinder surface always follow the wake vortices in the wake region, and the particles with very small Stokes numbers (such asSt=0.001, 0.0038, 0.01) can distribute both in the vortex core and around the vortex periphery, whereas those with intermediate Stokes numbers (such asSt= 0.1, 1.0) can not enter the vortex core and congregate mainly around the vortex periphery. (3) The zones around the vortex cores, where few particles exist, are expanded as the Stokes number is increased from 0.01 to 1.0. (4) The particles move in rolling state in the wake region, and the particle’s dispersion intensity in the lateral direction decreases remarkably asStis increased from 0.001 to 1.0 (the dispersion intensity of particles withSt=0.001 is nearly twice that of particles withSt=1.0).

    This work is helpful for environmental researchers to analyze and predict the spatial and temporal distributions of particulate matters released from the surface of a bluff body.

    It should be noted that this study is restricted to discussion in two-dimensional flows and further investigations are still needed to simulate particle dispersion in three-dimensional airflows past a circular cylinder.

    [1] YANG X., RIELLY C. and LI L. et al. Modelling of heavy and buoyant particle dispersion in a two-dimensional turbulent mixing layer[J].Powder Technology,2007, 178(3): 151-165.

    [2] NARAYANAN C., LAKAHEL D. and YADIGAROGLU G. Linear stability analysis of particle-laden mixing layers using lagrangian particle tracking[J].Powder Technology,2002, 125(2-3): 122-130.

    [3] JONES W. P., LYRA S. and MARQUIS A. J. Large eddy simulation of a droplet laden turbulent mixing layer[J].International Journal of Heat and Mass Transfer,2010, 31(1): 93-100.

    [4] FAN Q. L., WANG X. L. and ZHANG H. Q. et al. Large eddy simulation of a horizontal particle-laden turbulent planar jet[J].Computational Mechanics,2001, 27(2): 128-137.

    [5] ALMEIDA T. G., JABERI F. A. Direct numerical simulations of a planar jet laden with evaporating droplets[J].International Journal of Heat and Mass Transfer,2006, 49(13-14): 2113-2123.

    [6] UCHIYAMA T., YAGAMI H. Numerical analysis of gas-particle two-phase wake flow by vortex method[J].Powder Technology,2005, 149(2-3): 112-120.

    [7] YU K. F., LAU K. S. and CHAN C. K. Large eddy simulation of particle-laden turbulent flow over a backward-facing step[J].Communications in Nonlinear Science and Numerical Simulation,2004, 9: 251-262.

    [8] CHEN B., WANG C. and WANG Z. et al. Investigation of gas-solid two-phase flow across circular cylinders with discrete vortex method[J].Applied Thermal Engineering,2009, 29(8-9): 1457-1466.

    [9] HUANG Y., WU W. and ZHANG H. Numerical study of particle dispersion in the wake of gas-particle flows past a circular cylinder using discrete vortex method[J].Powder Technology,2006, 162(1): 73-81.

    [10] ZHOU H., MO G. and CEN K. Numerical investigation of dispersed gas-solid two-phase flow around a circular cylinder using lattice Boltzmann method[J].Computers and Fluids,2010, 52: 130-138.

    [11] HUANG Yuan-dong, ZHANG Hong-wu and WU Wenquan. Numerical study of particle distribution in the wake of gas-particle two-phase flows past a circular cylinder at high Reynolds number[J].Journal of Hydrodynamics, Ser. B,2005, 17(3): 283-288.

    [12] LIU L., JI F. and FAN J. et al. Direct numerical simulation of particle dispersion in the flow around a circular cylinder[J].Journal of Thermal Science,2004,13(4): 344-349.

    [13] RICHMOND-BRYANT J., FLYNN M. R. Applying the discrete vortex method in environmental fluid mechanics: A study of the time-averaged near wake behind a circular cylinder[J].Environmental Fluid Mechanics,2004, 4(4): 455-463.

    [14] HUANG Y. Numerical study of particle dispersion in the wake of two tandem square cylinders using discrete vortex method[J].Particulate Science and Technology,2011, 29(6): 526-540.

    [15] UCHIYAMA T., NARUSE M. H. A Numerical method for gas-solid two-phase free turbulent flow using a vortex method[J].Powder Technology,2001, 119(2-3): 206-214.

    [16] JAFARI S., SALMANZADEH M. and RAHNAMA M. et al. Investigation of particle dispersion and deposition in a channel with a square cylinder obstruction using the lattice Boltzmann method[J].Journal of Aerosol Science,2010 41(2): 198-206.

    [17] AFROUZI H. H., FARHADI M. and MEHRIZI A. A. Numerical simulation of microparticles transport in a concentric annulus by lattice Boltzmann method[J].Advanced Powder Technology,2013, 24(3): 575-584.

    10.1016/S1001-6058(14)60043-3

    * Project supported by the Innovation Program of Shanghai Municipal Education Commission (Grant No. 10ZZ95), the Leading Academic Discipline Project of Shanghai Municipal Education Commission (Grant No. J50502).

    Biography: HUANG Yuan-dong (1965-), Male, Ph. D.,

    Professor

    Corresponging author: KIM Chang-Nyung,

    E-mail: cnkim@khu.ac.kr

    猜你喜歡
    遠(yuǎn)東
    遠(yuǎn)東正大檢驗(yàn)集團(tuán)有限公司
    王遠(yuǎn)東:扎根技術(shù)一線 用行動踐行入黨誓詞
    關(guān)于遠(yuǎn)東宏信廣場電梯系統(tǒng)安裝的探討
    2020遠(yuǎn)東無損檢測新技術(shù)論壇順利召開
    無損檢測(2020年12期)2020-12-26 06:33:50
    論20世紀(jì)前后遠(yuǎn)東俄僑文化及其對哈爾濱的影響
    2Analysis of the Usage of Domestictio and Foreignization inChinese Poetry Translation
    歐洲、遠(yuǎn)東藥用植物著作簡介IV
    遠(yuǎn)東戰(zhàn)役中的和平天使
    二戰(zhàn)期間美國對蘇聯(lián)出兵遠(yuǎn)東態(tài)度的變化
    軍事歷史(2002年3期)2002-08-21 02:07:42
    三十年代香港在英國遠(yuǎn)東戰(zhàn)略中的地位與作用
    軍事歷史(1998年4期)1998-08-21 08:02:34
    欧美另类亚洲清纯唯美| 一区二区三区精品91| 十八禁网站免费在线| 久久婷婷人人爽人人干人人爱| 丁香欧美五月| 亚洲全国av大片| 亚洲 欧美 日韩 在线 免费| 99久久99久久久精品蜜桃| 亚洲av中文字字幕乱码综合 | 国产亚洲精品综合一区在线观看 | 成人三级做爰电影| 成人手机av| 俺也久久电影网| 搡老妇女老女人老熟妇| 国产成人精品无人区| xxxwww97欧美| 麻豆一二三区av精品| 精品国产超薄肉色丝袜足j| 97人妻精品一区二区三区麻豆 | 久久人妻av系列| 午夜激情av网站| 悠悠久久av| 婷婷精品国产亚洲av在线| 亚洲精品美女久久久久99蜜臀| 叶爱在线成人免费视频播放| 免费在线观看成人毛片| 色播在线永久视频| 久久久久亚洲av毛片大全| 在线天堂中文资源库| 亚洲黑人精品在线| svipshipincom国产片| 91在线观看av| 男女午夜视频在线观看| √禁漫天堂资源中文www| 好看av亚洲va欧美ⅴa在| 久久久久久人人人人人| 淫秽高清视频在线观看| av福利片在线| 欧美大码av| 一二三四在线观看免费中文在| 18禁黄网站禁片免费观看直播| 听说在线观看完整版免费高清| 麻豆国产av国片精品| xxx96com| 麻豆久久精品国产亚洲av| 亚洲国产看品久久| 男女视频在线观看网站免费 | 熟妇人妻久久中文字幕3abv| 男女午夜视频在线观看| 男女之事视频高清在线观看| 狂野欧美激情性xxxx| 香蕉久久夜色| 搡老岳熟女国产| 国产高清有码在线观看视频 | 久久久久国产一级毛片高清牌| 亚洲国产欧美网| 大型黄色视频在线免费观看| 国产午夜精品久久久久久| 后天国语完整版免费观看| 免费观看精品视频网站| 亚洲全国av大片| 90打野战视频偷拍视频| 免费在线观看亚洲国产| 黑人操中国人逼视频| 老汉色∧v一级毛片| 岛国视频午夜一区免费看| 亚洲精华国产精华精| 国产片内射在线| 午夜激情av网站| 久久精品夜夜夜夜夜久久蜜豆 | 嫁个100分男人电影在线观看| 国产精品永久免费网站| 亚洲一区中文字幕在线| 国产蜜桃级精品一区二区三区| 国产精品久久久久久人妻精品电影| 国产激情久久老熟女| 曰老女人黄片| 91麻豆精品激情在线观看国产| 中国美女看黄片| 最新美女视频免费是黄的| 欧美成人午夜精品| 天堂√8在线中文| 欧美成人一区二区免费高清观看 | 特大巨黑吊av在线直播 | 午夜精品在线福利| 国产激情欧美一区二区| av天堂在线播放| 99国产综合亚洲精品| 可以免费在线观看a视频的电影网站| 黑人欧美特级aaaaaa片| 亚洲专区中文字幕在线| 淫秽高清视频在线观看| 欧美日韩亚洲国产一区二区在线观看| 天天一区二区日本电影三级| 国产精品久久久人人做人人爽| 最近最新中文字幕大全免费视频| 成年女人毛片免费观看观看9| 麻豆一二三区av精品| 亚洲真实伦在线观看| 制服丝袜大香蕉在线| 少妇的丰满在线观看| 老司机深夜福利视频在线观看| 亚洲国产精品999在线| 中文字幕另类日韩欧美亚洲嫩草| www.精华液| 一级a爱视频在线免费观看| 欧美午夜高清在线| 亚洲成av人片免费观看| 亚洲av中文字字幕乱码综合 | 高清在线国产一区| 久久婷婷成人综合色麻豆| 视频区欧美日本亚洲| 老司机午夜十八禁免费视频| 777久久人妻少妇嫩草av网站| 男女下面进入的视频免费午夜 | 国产免费男女视频| 日韩欧美一区二区三区在线观看| 成人手机av| 久久国产亚洲av麻豆专区| 韩国精品一区二区三区| 免费搜索国产男女视频| 淫妇啪啪啪对白视频| 日韩欧美 国产精品| 成人亚洲精品一区在线观看| 亚洲精品国产一区二区精华液| 国产亚洲av高清不卡| 亚洲精品美女久久av网站| 女警被强在线播放| 欧美国产精品va在线观看不卡| 国产又色又爽无遮挡免费看| 国产亚洲av嫩草精品影院| 脱女人内裤的视频| 久久久久亚洲av毛片大全| 狠狠狠狠99中文字幕| 特大巨黑吊av在线直播 | 非洲黑人性xxxx精品又粗又长| 国产亚洲精品一区二区www| 亚洲第一av免费看| 禁无遮挡网站| 一本大道久久a久久精品| 日韩 欧美 亚洲 中文字幕| 一边摸一边抽搐一进一小说| 人人妻人人看人人澡| 亚洲成人精品中文字幕电影| 啪啪无遮挡十八禁网站| 看免费av毛片| 精品国产一区二区三区四区第35| 十八禁人妻一区二区| 人妻丰满熟妇av一区二区三区| www.自偷自拍.com| 亚洲一码二码三码区别大吗| 淫妇啪啪啪对白视频| 99国产极品粉嫩在线观看| 日本a在线网址| 欧洲精品卡2卡3卡4卡5卡区| 日韩欧美 国产精品| 香蕉丝袜av| 午夜成年电影在线免费观看| 久久久久久九九精品二区国产 | 国产成人欧美在线观看| 一区二区三区激情视频| av在线天堂中文字幕| 亚洲av电影不卡..在线观看| 黄色 视频免费看| 嫩草影院精品99| 成熟少妇高潮喷水视频| 久久婷婷成人综合色麻豆| 国产精品av久久久久免费| 午夜成年电影在线免费观看| 国产精品久久久久久亚洲av鲁大| 日本 欧美在线| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品在线观看二区| 一边摸一边抽搐一进一小说| 国产亚洲精品一区二区www| 国产蜜桃级精品一区二区三区| 别揉我奶头~嗯~啊~动态视频| 国产亚洲精品av在线| 男人舔女人下体高潮全视频| 久99久视频精品免费| 一本大道久久a久久精品| 91麻豆精品激情在线观看国产| 无人区码免费观看不卡| 一二三四在线观看免费中文在| 亚洲av成人av| 国产亚洲欧美精品永久| ponron亚洲| 99国产精品一区二区蜜桃av| 国产精品野战在线观看| 婷婷六月久久综合丁香| x7x7x7水蜜桃| 中文亚洲av片在线观看爽| 色综合站精品国产| 久久久久国产一级毛片高清牌| 亚洲欧美精品综合一区二区三区| 久久久国产精品麻豆| 欧美成人免费av一区二区三区| 亚洲一区二区三区色噜噜| 免费观看人在逋| 天堂影院成人在线观看| 久久久久久人人人人人| a级毛片在线看网站| 人妻丰满熟妇av一区二区三区| 亚洲 国产 在线| 久久中文字幕一级| 99热这里只有精品一区 | 欧美久久黑人一区二区| 国产精品久久久av美女十八| 麻豆成人午夜福利视频| 国产精品乱码一区二三区的特点| 视频区欧美日本亚洲| 国产成人av教育| 国产精品野战在线观看| 国产精品久久久人人做人人爽| 欧美zozozo另类| 法律面前人人平等表现在哪些方面| 一进一出抽搐gif免费好疼| 久久久久久久精品吃奶| 亚洲av片天天在线观看| 99热只有精品国产| 老司机福利观看| 久久久久久九九精品二区国产 | 国产av一区在线观看免费| 久久欧美精品欧美久久欧美| 午夜福利视频1000在线观看| 欧美日韩瑟瑟在线播放| 国产精品精品国产色婷婷| 久久久久精品国产欧美久久久| 亚洲精品在线观看二区| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品1区2区在线观看.| 久久久久久久午夜电影| 亚洲欧洲精品一区二区精品久久久| 97碰自拍视频| 香蕉国产在线看| www日本在线高清视频| 亚洲精品粉嫩美女一区| 成人18禁在线播放| www日本黄色视频网| 久9热在线精品视频| 色婷婷久久久亚洲欧美| 国产精品九九99| 国内久久婷婷六月综合欲色啪| 日本五十路高清| 国产亚洲av嫩草精品影院| 天天一区二区日本电影三级| 国产精品精品国产色婷婷| 黄片播放在线免费| 欧美午夜高清在线| www.精华液| 国产av在哪里看| 十八禁人妻一区二区| 中文字幕精品免费在线观看视频| 露出奶头的视频| 中文字幕最新亚洲高清| 日韩 欧美 亚洲 中文字幕| 99久久国产精品久久久| 黄色 视频免费看| a级毛片在线看网站| 搡老熟女国产l中国老女人| 黄片小视频在线播放| 女人被狂操c到高潮| 免费在线观看影片大全网站| 最近最新免费中文字幕在线| 国产伦一二天堂av在线观看| 国产精品免费一区二区三区在线| 亚洲男人的天堂狠狠| 一进一出抽搐gif免费好疼| 18美女黄网站色大片免费观看| 黑人操中国人逼视频| 波多野结衣高清作品| 国产亚洲欧美精品永久| 欧美av亚洲av综合av国产av| 久久久精品国产亚洲av高清涩受| 麻豆久久精品国产亚洲av| 亚洲国产欧美一区二区综合| 亚洲va日本ⅴa欧美va伊人久久| АⅤ资源中文在线天堂| 国产成人av激情在线播放| 国产不卡一卡二| 99久久精品国产亚洲精品| 动漫黄色视频在线观看| 国产精品久久视频播放| 777久久人妻少妇嫩草av网站| 久久中文字幕一级| 波多野结衣巨乳人妻| 久久久久久久久久黄片| 午夜久久久久精精品| 亚洲国产精品sss在线观看| 别揉我奶头~嗯~啊~动态视频| 国产精品亚洲一级av第二区| 夜夜爽天天搞| 老司机在亚洲福利影院| 18禁美女被吸乳视频| 国产1区2区3区精品| 午夜免费观看网址| 法律面前人人平等表现在哪些方面| 国产野战对白在线观看| 精品无人区乱码1区二区| 国产成人欧美| 亚洲成av人片免费观看| 在线观看www视频免费| 国产成人精品无人区| 美国免费a级毛片| 天堂√8在线中文| www日本在线高清视频| 免费高清在线观看日韩| 一级毛片女人18水好多| 美女高潮喷水抽搐中文字幕| 日本一本二区三区精品| 国产私拍福利视频在线观看| 亚洲avbb在线观看| www日本黄色视频网| 夜夜夜夜夜久久久久| 午夜视频精品福利| tocl精华| 亚洲电影在线观看av| 日韩av在线大香蕉| 香蕉久久夜色| 日韩欧美免费精品| 好看av亚洲va欧美ⅴa在| 色综合站精品国产| 色综合婷婷激情| 女生性感内裤真人,穿戴方法视频| 中文在线观看免费www的网站 | 老鸭窝网址在线观看| 国产亚洲精品综合一区在线观看 | 久久久精品国产亚洲av高清涩受| www.自偷自拍.com| 国内精品久久久久久久电影| 午夜免费成人在线视频| 99热6这里只有精品| 久久久久久九九精品二区国产 | 日日爽夜夜爽网站| 亚洲国产看品久久| 国产成人啪精品午夜网站| 巨乳人妻的诱惑在线观看| 日本撒尿小便嘘嘘汇集6| 91字幕亚洲| 99精品久久久久人妻精品| 日韩中文字幕欧美一区二区| a在线观看视频网站| 少妇 在线观看| 性色av乱码一区二区三区2| 精品国产国语对白av| 久久久久久久午夜电影| 精品久久久久久久人妻蜜臀av| 亚洲av成人av| 中文字幕av电影在线播放| 天堂√8在线中文| 人妻丰满熟妇av一区二区三区| 亚洲男人天堂网一区| 国产高清videossex| 一区福利在线观看| 亚洲国产中文字幕在线视频| 亚洲片人在线观看| 日韩欧美在线二视频| 日韩精品免费视频一区二区三区| 欧美另类亚洲清纯唯美| 日韩精品免费视频一区二区三区| 成人18禁在线播放| 黄片小视频在线播放| 观看免费一级毛片| 一二三四社区在线视频社区8| 我的亚洲天堂| 99在线人妻在线中文字幕| 黄片播放在线免费| 19禁男女啪啪无遮挡网站| 亚洲精品av麻豆狂野| 亚洲精品粉嫩美女一区| 亚洲av成人一区二区三| 国产精品精品国产色婷婷| 中文资源天堂在线| 国内毛片毛片毛片毛片毛片| 熟妇人妻久久中文字幕3abv| 亚洲aⅴ乱码一区二区在线播放 | 丰满的人妻完整版| 欧美日韩亚洲国产一区二区在线观看| 午夜福利一区二区在线看| 国产av一区在线观看免费| 在线永久观看黄色视频| 制服人妻中文乱码| 在线免费观看的www视频| 中文在线观看免费www的网站 | tocl精华| 成人国产一区最新在线观看| 十分钟在线观看高清视频www| 久久久久亚洲av毛片大全| xxxwww97欧美| www日本黄色视频网| 亚洲精品国产一区二区精华液| 国产精品香港三级国产av潘金莲| √禁漫天堂资源中文www| 在线永久观看黄色视频| 国产成人av激情在线播放| 亚洲精品美女久久av网站| 久久 成人 亚洲| 国产三级黄色录像| 一本综合久久免费| 国产精品久久久久久人妻精品电影| 欧美精品亚洲一区二区| 丝袜人妻中文字幕| 999久久久精品免费观看国产| 亚洲成av人片免费观看| 大型黄色视频在线免费观看| 欧美丝袜亚洲另类 | 一进一出抽搐gif免费好疼| 操出白浆在线播放| 精品人妻1区二区| 国产成人欧美在线观看| av在线播放免费不卡| 国产精品久久电影中文字幕| 国产精品免费一区二区三区在线| 啦啦啦韩国在线观看视频| 色综合站精品国产| 欧美 亚洲 国产 日韩一| 亚洲欧美一区二区三区黑人| 一级黄色大片毛片| 久久九九热精品免费| 亚洲一区二区三区色噜噜| 在线观看免费午夜福利视频| 亚洲美女黄片视频| 国产久久久一区二区三区| 少妇被粗大的猛进出69影院| 人妻丰满熟妇av一区二区三区| 国产一区二区激情短视频| 99久久99久久久精品蜜桃| 听说在线观看完整版免费高清| 超碰成人久久| 国产精品 国内视频| 国产精品乱码一区二三区的特点| 免费搜索国产男女视频| 国产午夜福利久久久久久| 麻豆国产av国片精品| 日韩精品青青久久久久久| 在线av久久热| 国产一区在线观看成人免费| 精品久久久久久久久久久久久 | 高清在线国产一区| 男女床上黄色一级片免费看| 成人一区二区视频在线观看| 极品教师在线免费播放| 亚洲一区中文字幕在线| 青草久久国产| 99国产极品粉嫩在线观看| 精品一区二区三区视频在线观看免费| 少妇裸体淫交视频免费看高清 | 女人爽到高潮嗷嗷叫在线视频| 国产精品一区二区三区四区久久 | 久久国产乱子伦精品免费另类| 国产亚洲欧美精品永久| 88av欧美| 久久久久久久久中文| 一夜夜www| 亚洲av五月六月丁香网| 男人的好看免费观看在线视频 | 亚洲精品国产精品久久久不卡| 看黄色毛片网站| 狠狠狠狠99中文字幕| 女同久久另类99精品国产91| av福利片在线| 亚洲第一av免费看| 最近最新中文字幕大全电影3 | 男女那种视频在线观看| 亚洲av电影在线进入| 一本大道久久a久久精品| a级毛片在线看网站| 亚洲精品国产区一区二| 99热6这里只有精品| 国产真人三级小视频在线观看| 亚洲第一电影网av| 久久精品影院6| 香蕉久久夜色| 日韩高清综合在线| 日本免费一区二区三区高清不卡| 十分钟在线观看高清视频www| 婷婷六月久久综合丁香| 可以在线观看毛片的网站| 国产真实乱freesex| 国产精品久久久久久亚洲av鲁大| 美女扒开内裤让男人捅视频| 亚洲av成人av| 免费在线观看视频国产中文字幕亚洲| 久久久久九九精品影院| 久久精品人妻少妇| 国产v大片淫在线免费观看| 久久中文看片网| 国产成人精品久久二区二区免费| 色播亚洲综合网| 色哟哟哟哟哟哟| aaaaa片日本免费| 美女午夜性视频免费| 最新美女视频免费是黄的| 欧美性猛交黑人性爽| 亚洲一区中文字幕在线| 1024手机看黄色片| 亚洲美女黄片视频| 制服人妻中文乱码| 亚洲性夜色夜夜综合| 亚洲av五月六月丁香网| 99精品久久久久人妻精品| 国产在线观看jvid| 久久人妻av系列| 久久久精品欧美日韩精品| 中文字幕精品免费在线观看视频| 午夜免费激情av| 久久精品人妻少妇| 国产成人啪精品午夜网站| 99在线人妻在线中文字幕| 两性午夜刺激爽爽歪歪视频在线观看 | 一进一出好大好爽视频| 久久久久久久久中文| 一个人观看的视频www高清免费观看 | 国产视频内射| 国产免费av片在线观看野外av| 国产99久久九九免费精品| 亚洲欧美一区二区三区黑人| 亚洲精品国产区一区二| 中出人妻视频一区二区| 一进一出好大好爽视频| 亚洲国产欧美网| 精品久久久久久久末码| 天天躁夜夜躁狠狠躁躁| 亚洲国产精品久久男人天堂| 色综合站精品国产| 亚洲欧美精品综合一区二区三区| 热99re8久久精品国产| 精品国产一区二区三区四区第35| 欧美最黄视频在线播放免费| 极品教师在线免费播放| 亚洲最大成人中文| 亚洲五月天丁香| 麻豆成人av在线观看| 97碰自拍视频| 最近在线观看免费完整版| 国产高清视频在线播放一区| 国产麻豆成人av免费视频| 精品国产亚洲在线| 在线观看日韩欧美| 国产亚洲精品一区二区www| 欧美成人性av电影在线观看| 国产精品亚洲美女久久久| 最近最新中文字幕大全免费视频| 亚洲av五月六月丁香网| 一区二区三区精品91| 国产一区二区三区视频了| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲av成人不卡在线观看播放网| 少妇的丰满在线观看| 1024香蕉在线观看| 免费在线观看日本一区| 久久久国产精品麻豆| 国产人伦9x9x在线观看| 一二三四社区在线视频社区8| 波多野结衣巨乳人妻| 国产黄色小视频在线观看| 精品福利观看| 色精品久久人妻99蜜桃| www日本在线高清视频| 色精品久久人妻99蜜桃| 日本黄色视频三级网站网址| 亚洲国产欧美一区二区综合| 国产99白浆流出| 欧美成狂野欧美在线观看| 久久欧美精品欧美久久欧美| 99久久综合精品五月天人人| 久久婷婷人人爽人人干人人爱| 久久青草综合色| 免费观看人在逋| 欧美不卡视频在线免费观看 | 麻豆av在线久日| 国产精品亚洲一级av第二区| 久久久国产成人免费| av天堂在线播放| 亚洲精品国产一区二区精华液| 欧美黑人精品巨大| 亚洲在线自拍视频| 免费高清在线观看日韩| 欧美日韩精品网址| 久9热在线精品视频| 此物有八面人人有两片| 国产成人欧美在线观看| 国产又色又爽无遮挡免费看| www.熟女人妻精品国产| 1024香蕉在线观看| 国产激情偷乱视频一区二区| 少妇裸体淫交视频免费看高清 | 欧美国产精品va在线观看不卡| 日韩大码丰满熟妇| 亚洲 国产 在线| 老司机午夜福利在线观看视频| 国产精品香港三级国产av潘金莲| 一卡2卡三卡四卡精品乱码亚洲| 国产又色又爽无遮挡免费看| 色av中文字幕| 国产主播在线观看一区二区| 伦理电影免费视频| 中文字幕人妻丝袜一区二区| 日日摸夜夜添夜夜添小说| 欧美日韩亚洲综合一区二区三区_| 中文资源天堂在线| 搡老妇女老女人老熟妇| 老熟妇乱子伦视频在线观看| 一级片免费观看大全| 久久国产精品影院| 麻豆国产av国片精品| 午夜福利18| 国产高清videossex| 亚洲久久久国产精品| 欧美一级a爱片免费观看看 | 中文字幕另类日韩欧美亚洲嫩草| 老熟妇乱子伦视频在线观看| 国产真实乱freesex| 久久狼人影院| 99精品在免费线老司机午夜|