楊仙榮,王美琴,李少華
1. 內(nèi)蒙古醫(yī)科大學(xué)附屬醫(yī)院眼科,呼和浩特 010050;
2. 內(nèi)蒙古托克托縣人民醫(yī)院,呼和浩特 010200;
3. 內(nèi)蒙古醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院,呼和浩特 010110
人類Y染色體的演化
楊仙榮1,王美琴2,李少華3
1. 內(nèi)蒙古醫(yī)科大學(xué)附屬醫(yī)院眼科,呼和浩特 010050;
2. 內(nèi)蒙古托克托縣人民醫(yī)院,呼和浩特 010200;
3. 內(nèi)蒙古醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院,呼和浩特 010110
人類 Y染色體由于其性別決定的特殊功能和獨(dú)有的進(jìn)化史一直以來(lái)都備受關(guān)注。Y染色體起源于常染色體,經(jīng)歷了嚴(yán)重的退化過(guò)程。由于其缺乏重組,蛋白編碼基因少,重復(fù)序列多所以研究進(jìn)展緩慢。近年來(lái),隨著比較基因組及測(cè)序技術(shù)的快速發(fā)展,對(duì)人類Y染色體最終命運(yùn)的爭(zhēng)論不斷加劇,Y染色體的研究正逐步成為熱點(diǎn)。文章綜述了人類Y染色體的結(jié)構(gòu)、遺傳特點(diǎn)、起源及進(jìn)化過(guò)程,并根據(jù)目前的研究進(jìn)展對(duì)Y染色體的最終命運(yùn)進(jìn)行了討論,提出了作者的一些看法,以期為從事遺傳及性染色體進(jìn)化的研究者提供參考。
Y染色體退化;重組抑制;進(jìn)化層;轉(zhuǎn)錄組
性別決定是生物界一種形式多樣、原理復(fù)雜的自然現(xiàn)象。目前,研究者普遍認(rèn)為性別決定的原理主要有兩種,即環(huán)境決定和遺傳決定,某些情況下兩種機(jī)制也會(huì)共同發(fā)揮作用[1,2]。如在部分環(huán)境決定性別的蜥蜴和魚(yú)類中,性別決定對(duì)溫度敏感性常常表現(xiàn)出可遺傳的特征[2,3]。性染色體是遺傳決定中一種與特定性別連鎖的染色體[4],起源于常染色體,而且在不同家系中是多次、獨(dú)立進(jìn)化產(chǎn)生的[5~7]。染色體性別決定主要有3類:雄異配型(Male heterogamety),如哺乳動(dòng)物中的XY系統(tǒng);雌異配型(Female herterogamety),如鳥(niǎo)類、蛇類中的ZW系統(tǒng);單倍體世代性別決定(Haploid phase determination),如苔蘚中的UV系統(tǒng)[4]。人類的性別決定屬于雄異配型。
人類Y染色體基因含量少、功能多,具有男性特異性;存在大量異染色質(zhì);充滿重復(fù)及擴(kuò)增序列,序列測(cè)定因此難以進(jìn)行[8,9]。
在不同人種間,相較其他染色體來(lái)說(shuō),Y染色體存在著高度變異,Karafet等[10]根據(jù)這種序列上的差異性將人類Y染色體分成311個(gè)單倍體群。
Y染色體的長(zhǎng)度約為X染色體的1/3,這種Y染色體顯著小于X染色體的現(xiàn)象在自然界中并不是普遍存在,多數(shù)情況是同形的[11~13],對(duì)木瓜(Chaenomeles sinensis)的研究發(fā)現(xiàn),Y染色體個(gè)體反而大于X染色體[14]。
Y染色體一般只存在于男性,而與之相對(duì)應(yīng)的X染色體只有1/3時(shí)間存在于男性[4],這使得Y染色體經(jīng)歷了獨(dú)有的進(jìn)化過(guò)程。同時(shí),在一夫一妻、一夫多妻的婚姻制度下,很大程度上減少了Y染色體有效群體的大小[5],即一對(duì)可生育的男女組合中,每存在3條X染色體,與之相對(duì)應(yīng)的Y染色體僅存在1條。
人類Y染色體大約長(zhǎng)60 Mb,根據(jù)在減數(shù)分裂過(guò)程中是否發(fā)生重組劃分為兩類結(jié)構(gòu):擬常染色體區(qū)(Pseudoautosomal regions,PARs)和男性特異性區(qū)域(Male-specific region of the Y chromosome,MSY)。擬常染色體區(qū)位于Y染色體兩端,在減數(shù)分裂過(guò)程中可與X染色體發(fā)生重組[15~17],短臂PAR1含13個(gè)基因,長(zhǎng)臂PAR2含 4個(gè)基因[18];男性特異性區(qū)域約占總長(zhǎng)的95%,由異染色質(zhì)序列以及3類常染色質(zhì)序列拼接而成。異染色質(zhì)序列長(zhǎng)約 40 Mb,至今未被測(cè)序。MSY常染色質(zhì)序列長(zhǎng)約23 Mb,包括156個(gè)轉(zhuǎn)錄單位,78個(gè)蛋白編碼基因,但多是假基因和重復(fù)拷貝,僅編碼27種蛋白。3類常染色質(zhì)區(qū)分別為:X轉(zhuǎn)座區(qū)(X-transposed region)長(zhǎng)約3.4 Mb,僅含兩個(gè)基因;X退化區(qū)(X-degenerate region)含16個(gè)在X染色體上有同源基因的單拷貝基因,包括性別決定因子SRY(Sex-determining region of Y-chromosome);擴(kuò)增區(qū)(Ampliconic regions)為高度重復(fù)序列,長(zhǎng)約10.2 Mb,約含60個(gè)基因,分屬9個(gè)基因家族,均具有男性特異性功能且多數(shù)位于8個(gè)回文結(jié)構(gòu)中[19~21]。
與其相對(duì)應(yīng)的X染色體含有150 Mb左右的常染色質(zhì)序列,大約800個(gè)蛋白編碼基因[8],那么XY染色體是否起源于一對(duì)常染色體?如果是同源染色體為什么會(huì)有如此顯著的差異?Y染色體會(huì)一直退化直至消失嗎?下文會(huì)有詳細(xì)論述。
關(guān)于性染色體起源于常染色體的論斷最早在蛇類性染色體形態(tài)比較中發(fā)現(xiàn)。Z染色體在蛇類各個(gè)屬中具有很高的保守性,而性別特異性的W染色體分化嚴(yán)重[22]。由此,Ohno等[23]在1967年提出蛇類的性染色體源于一對(duì)常染色體,而W染色體是Z的原始同源染色體逐步分化結(jié)果。該理論在隨后的研究中得到進(jìn)一步證實(shí),在鳥(niǎo)類的研究中發(fā)現(xiàn)鳥(niǎo)類與蛇類的性染色體雖不具同源性,但同樣起源于一對(duì)常染色體[24]。
如前文所述,人類X和Y染色體在形態(tài)和基因組成上都存在顯著差異,但同樣源于一對(duì)同源染色體[25,26]。根據(jù)如下:首先,Y 染色體上多數(shù)具有男性特異性功能的基因在X染色體上都能找到同源基因[26],甚至包括性別決定基因SRY[27];其次,它們具有共同的擬常染色體區(qū)[18]。由于Y染色體上基因少且充滿重復(fù)序列,導(dǎo)致研究具有一定困難,所以對(duì)人類Y染色體進(jìn)化的研究多借鑒其同源染色體X及其他物種中新近形成Y染色體的研究成果。
在與有袋類尤金袋鼠(Macropus eugenii)基因組成比對(duì)時(shí)發(fā)現(xiàn),人類X染色體是由與袋鼠X染色體同源的一段保守區(qū)(含SRY)和一段與袋鼠5號(hào)染色體短臂部分區(qū)段直系同源的添加區(qū)組成[25,28],這在Y染色體上也有相同發(fā)現(xiàn)[29]。這表明在147.4 Ma(Million years ago),從真獸亞綱(Eutheria)分化出有袋類(Marsupials)之后到100 Ma胎盤(pán)類(Placentals)開(kāi)始輻射進(jìn)化前[30],人類原始 X、Y染色體獲得了一段源于常染色體的添加區(qū)。Veyrunes等[31]發(fā)現(xiàn),人類X染色體保守區(qū)被檢測(cè)基因,包括與性別決定因子SRY同源的SOX3(SRY-box 3),在單孔類(Monotremes)鴨嘴獸(Ornithorhynchus anatinus)6號(hào)染色體上均存在直系同源基因。而且鴨嘴獸X染色體與鳥(niǎo)類Z染色體,包括鳥(niǎo)類的性別決定基因 DMRT1(Doublesex and mab-3 related transcription factor 1),以及人類5號(hào)、9號(hào)染色體的部分區(qū)段同源性顯著[31]。這表明在166.2 Ma,從哺乳動(dòng)物獸亞綱(Theria)分化出單孔類之后到147.4 Ma 有袋類分化產(chǎn)生之前,某對(duì)常染色體獲得了性別決定因子SRY形成了原始的X、Y染色體[31]。此外,人類與原雞(Gallus gallus)基因組成的比對(duì)發(fā)現(xiàn),人類X、Y染色體添加區(qū)與原雞1號(hào)染色體長(zhǎng)臂部分區(qū)段直系同源,X染色體保守區(qū)與4號(hào)染色體短臂(含SOX3)、12號(hào)染色體部分區(qū)段以及幾條不同的微染色體直系同源[32]。由此,根據(jù)染色體區(qū)段起源可將X染色體保守區(qū)進(jìn)一步分為2個(gè)進(jìn)化層[32](圖1)。Lahn和Page[33]根據(jù)X、Y染色體上同源基因序列相似性將X染色體劃分為4個(gè)進(jìn)化層,并且將含有SOX3的區(qū)段作為第一進(jìn)化層,因此加上擬常染色體區(qū),可將X染色體劃分為5個(gè)進(jìn)化層[13,32],但Lahn和Page認(rèn)為第一進(jìn)化層大約形成于310 Ma。作者認(rèn)為L(zhǎng)ahn和Page關(guān)于進(jìn)化層產(chǎn)生時(shí)間的推測(cè)不及Veyrunes等[31]的研究成果可信,這主要是由于其假定的基因退化速率還有待商榷。Lahn和Page[9,33]同時(shí)還發(fā)現(xiàn)Y染色體同樣存在進(jìn)化層的劃分,但是進(jìn)化層發(fā)生了染色體內(nèi)部重排,這在Ross等[26]的研究結(jié)果中得到了驗(yàn)證。
X、Y既是同源染色體,分化為什么會(huì)如此嚴(yán)重,又是什么驅(qū)動(dòng)了Y染色體的退化?
作者認(rèn)為,首先是由于男性特異性區(qū)域的形成。Kazumi等[34,35]構(gòu)建的中華鱉(Pelodiscus sinensis)細(xì)胞遺傳學(xué)圖表明原雞與中華鱉之間的染色體高度保守,其1~6號(hào)較大的染色體幾乎相同。 由此,研究者推測(cè)310 Ma,哺乳類、鳥(niǎo)類和爬行類共同祖先的核型類似于現(xiàn)存的龜類,性別決定系統(tǒng)也是溫度依賴型[13]。在310~166.2 Ma,哺乳類的祖先與鳥(niǎo)類及爬行類分化之后,常染色體發(fā)生融合形成進(jìn)化層 1和2[31]。此后其中1條的進(jìn)化層 1獲得了性別決定基因SRY,形成了原始的同形X、Y染色體,同形性染色體在多種兩棲類、魚(yú)類、爬行類以及無(wú)脊椎動(dòng)物中都有發(fā)現(xiàn)[8]。此后在 SRY附近迅速積累性別對(duì)抗突變(Sexually antagonistic mutations)[36],它們提高男性的適應(yīng)性而不利于女性[37],從而抑制了性別決定基因周邊區(qū)域與X染色體同源區(qū)的重組,形成了原始的男性特異性區(qū)域,而且逐步擴(kuò)大。此外,對(duì)東非馬拉維湖麗魚(yú)的研究發(fā)現(xiàn),性別對(duì)抗性狀甚至?xí)蔀樾滦匀旧w產(chǎn)生的重要因素[38]。此后,多次的臂間倒位導(dǎo)致了大范圍的重組抑制[26,39,40],致使該區(qū)染色體片段經(jīng)歷了真正意義上的限性遺傳,選擇作用對(duì)象從單個(gè)位點(diǎn)轉(zhuǎn)變?yōu)榉侵亟M區(qū)整個(gè)連鎖群[5]。由此引發(fā)了希爾—羅伯森效應(yīng)(Hill-Robertson effect)[41],即降低了對(duì)任何單個(gè)位點(diǎn)的選擇效率[42]。同時(shí)在穆勒棘輪效應(yīng)(Muller’s ratchet)[43,44]、搭車效應(yīng) (Genetic hitchhiking)[45]、 背 景 選 擇 效 應(yīng)(Background selection)[46]等作用下,男性特異性區(qū)域出現(xiàn)了大量突變、失活現(xiàn)象,這與多數(shù)新發(fā)現(xiàn)的顯性遺傳病源于Y染色體的現(xiàn)象相一致[47]。另外,相對(duì)其他染色體及其攜帶基因,Y染色體及其基因有效群體明顯較小,顯著加劇了遺傳漂變[37]。而且精原細(xì)胞相比卵原細(xì)胞經(jīng)歷了更多的細(xì)胞分裂,同時(shí)精子所含的遺傳物質(zhì)處于易氧化的環(huán)境且缺乏修復(fù)酶。由于Y染色體、X染色體和常染色體通過(guò)精子傳遞到下一代的概率分別為1、1/2和1/3,所以 Y染色體在這種更易發(fā)生有害突變的環(huán)境中存在的時(shí)間至少是常染色體的2倍,是X染色體的3倍[48]。在上述因素的作用下,Y染色體迅速退化。
Y染色體會(huì)不斷退化直至消失嗎?該問(wèn)題引起了研究者的激烈討論。
在一些哺乳動(dòng)物中確實(shí)存在Y染色體完全消失的實(shí)例,如在鼴形田鼠(Ellobius lutescens)以及日本發(fā)現(xiàn)的兩種刺鼠 Tokudaia osimensis和 Tokudaia muenninki中,性別決定系統(tǒng)均為 XO[49,50]。到目前為止,在其各自基因組中均未發(fā)現(xiàn)胎盤(pán)類保守的性別決定因子 SRY,這表明其性別決定功能已經(jīng)被其他基因取代,其載體—Y 染色體已完全消失[51]。Graves等[13]認(rèn)為在SRY的功能被取代后,Y 染色體會(huì)完全消失。但是Hughes等[21]通過(guò)對(duì)人類及遠(yuǎn)親恒河猴(Rhesus macaque,親緣關(guān)系遠(yuǎn)于黑猩猩及大猩猩)MSY的基因比對(duì)發(fā)現(xiàn),在最近的0.25億年里,人類MSY的基因丟失僅限于最新形成的第5進(jìn)化層,其他4個(gè)進(jìn)化層盡管主要結(jié)構(gòu)差異顯著但在這期間沒(méi)有丟失一個(gè)基因,表明基因丟失已經(jīng)停滯了 0.25億年[21]。在與人類現(xiàn)存親緣關(guān)系最近的黑猩猩以及親緣關(guān)系較遠(yuǎn)的大猩猩的MSY比較中發(fā)現(xiàn),人類與大猩猩的MSY相對(duì)保守,而黑猩猩的MSY退化嚴(yán)重,這可能是由于黑猩猩特有的婚配制度所致[52,53]。那么這種非編碼序列結(jié)構(gòu)差異顯著,而基因丟失速度放緩甚至停滯該如何解釋?首先,部分研究者認(rèn)為Y染色體退化不是不可避免,在其他物種中也有古老的同形性染色體發(fā)現(xiàn)[5,54,55]。其次,研究者發(fā)現(xiàn)人類及靈長(zhǎng)類的染色體內(nèi)存在大量回文結(jié)構(gòu),這種結(jié)構(gòu)導(dǎo)致基因轉(zhuǎn)換,在染色體內(nèi)部發(fā)生重組,修復(fù)突變,這種結(jié)構(gòu)可能會(huì)阻滯 Y染色體退化[20,56]。但是也有研究者認(rèn)為這種基因轉(zhuǎn)換作用是雙向的,該過(guò)程不但可能使正?;蜣D(zhuǎn)換為突變基因,同時(shí)提高突變率[8,13],而且臨床上確有重復(fù)結(jié)構(gòu)內(nèi)部重組造成的男性不育[57]。Hughes等[52]研究表明,黑猩猩Y染色體的回文結(jié)構(gòu)數(shù)量是人類的兩倍,但黑猩猩卻丟失了大部分Y染色體連鎖基因,所以基因轉(zhuǎn)換的效用還有待商榷。再有,Y染色體上所?;蚨际艿綇?qiáng)烈的負(fù)向選擇的保護(hù)[13,58],近來(lái)關(guān)于轉(zhuǎn)錄組及基因譜的研究表明現(xiàn)存胎盤(pán)類及有袋類Y染色體上的基因并不是隨機(jī)保留下來(lái)的,其功能多與蛋白轉(zhuǎn)錄、翻譯及其穩(wěn)定性相關(guān),是重要的劑量敏感性調(diào)控因子,因此今后Y染色體的基因內(nèi)容不會(huì)輕易發(fā)生變化[59,60]。在對(duì)雞 W 染色體轉(zhuǎn)錄組的研究發(fā)現(xiàn),雌性特異性選擇對(duì)W染色體基因的表達(dá)模式有顯著影響,該作用會(huì)保護(hù) W染色體免于退化。由于 W與Y染色體共同的限性遺傳特點(diǎn),Y染色體會(huì)經(jīng)歷類似的進(jìn)化壓力,研究者由此推測(cè)人類Y染色體也不會(huì)消失[61]。此外,Y染色體可能會(huì)通過(guò)轉(zhuǎn)座或染色體融合獲得新基因以維持其基因數(shù)目及形態(tài)大小。研究發(fā)現(xiàn),許多種類的果蠅性染色體在進(jìn)化過(guò)程中都與常染色體發(fā)生了融合,前文關(guān)于人類Y染色體進(jìn)化層的論述中也有大量染色體融合的事實(shí)[8]。在與其他靈長(zhǎng)類Y染色體序列的比對(duì)中發(fā)現(xiàn),有3.4 Mb的序列是人類Y染色體所特有,研究者認(rèn)為其大概是在3~4 Ma 從X染色體轉(zhuǎn)座而來(lái)[8,19]。
圖1 哺乳動(dòng)物主要類群的性染色體系統(tǒng)進(jìn)化(參考文獻(xiàn)[31]并修改)同一紋理表示不同基因組之間的同源性;表示參與哺乳類性染色體形成的主要染色體;染色體間的叉狀符號(hào)表示可以發(fā)生自由重組;表示DMRT1、SOX3或SRY在染色體上的相對(duì)位置;X染色體旁的3種線型表示3個(gè)主要進(jìn)化層的覆蓋范圍。
作者認(rèn)為,目前為止有大量證據(jù)表明人類Y染色體退化停滯,但人類Y染色體命運(yùn)依舊難以預(yù)測(cè)。這一方面是由于外部因素多變,導(dǎo)致Y染色體所經(jīng)受進(jìn)化力方向的不可預(yù)知,這些改變包括人類生存環(huán)境的改變,人類文明發(fā)展帶來(lái)的性別選擇或是擇偶偏向性以及婚配制度的改變。另一方面是由于基因以及染色體突變的方向不可預(yù)知,會(huì)不會(huì)發(fā)生新的染色體融合,Y染色體序列結(jié)構(gòu)中回文序列在對(duì)抗退化過(guò)程中到底能發(fā)揮多大作用,這一切都使得Y染色體的命運(yùn)難以預(yù)測(cè)。那么,如果發(fā)生了Y染色體退化消失,會(huì)不會(huì)帶來(lái)人類滅絕?作者樂(lè)觀認(rèn)為不會(huì),在其他哺乳動(dòng)物中存在缺乏Y染色體物種存活的例子,而且隨著人類科技的進(jìn)步,這一問(wèn)題一定會(huì)得到進(jìn)一步解決,如 Yasuhiro等[62,63]對(duì)小鼠的研究發(fā)現(xiàn),在輔助生殖技術(shù)的幫助下,僅需兩個(gè)基因就可取代整條Y染色體產(chǎn)生可育后代。這一實(shí)例為未來(lái)人類輔助生殖技術(shù)提供了無(wú)限的想象空間。
[1] Angelopoulou R, Lavranos G, Manolakou P. Sex determination strategies in 2012: towards a common regulatory model. Reprod Biol Endocrin, 2012, 10: 13.
[2] Uller T, Helanter? H. From the origin of sex-determining factors to the evolution of sex-determining systems. Q Rev Biol, 2011, 86(3): 163-180.
[3] Rhen T, Schroeder A, Sakata JT, Huang V, Crews D. Segregating variation for temperature-dependent sex determination in a lizard. Heredity, 2010, 106(4): 649-660.
[4] Bachtrog D, Kirkpatrick M, Mank JE, Mcdaniel SF, Pires JC, Rice W, Valenzuela N. Are all sex chromosomes created equal? Trends Genet, 2011, 27(9): 350-357.
[5] Mank JE. Small but mighty: the evolutionary dynamics of W and Y sex chromosomes. Chromosome Res, 2012, 20(1): 21-33.
[6] Fraser JA, Heitman J. Evolution of fungal sex chromosomes. Mol Microbiol, 2004, 51(2): 299-306.
[7] Matsubara K, Tarui H, Toriba M, Yamada K, Nishida-Umehara C, Agata K, Matsuda Y. Evidence for different origin of sex chromosomes in snakes, birds, and mammals and step-wise differentiation of snake sex chromosomes. Proc Natl Acad Sci USA, 2006, 103(48): 18190- 18195.
[8] Bachtrog D. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat Rev Genet, 2013, 14(2): 113-124.
[9] Lahn BT, Page DC. Functional coherence of the human Y chromosome. Science, 1997, 278(5338): 675-680.
[10] Karafet TM, Mendez FL, Meilerman MB, Underhill PA, Zegura SL, Hammer MF. New binary polymorphisms reshape and increase resolution of the human Y chromosomal haplogroup tree. Genome Res, 2008, 18(5): 830-838.
[11] Schmid M, Steinlein C. Sex chromosomes, sex-linked genes, and sex determination in the vertebrate class amphibia. EXS, 2001(91): 143-176.
[12] Devlin RH, Nagahama Y. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture, 2002, 208(3-4): 191-364.
[13] Graves JAM. Sex chromosome specialization and degeneration in mammals. Cell, 2006, 124(5): 901-914.
[14] Liu ZY, Moore PH, Ma H, Ackerman CM, Ragiba M, Yu QY, Pearl HM, Kim MS, Charlton JW, Stiles JI, Zee FT, Paterson AH, Ming R. A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature, 2004, 427(6972): 348-352.
[15] Otto SP, Pannell JR, Peichel CL, Ashman TL, Charlesworth D, Chippindale AK, Delph LF, Guerrero RF, Scarpino SV, McAllister BF. About PAR: The distinct evolutionary dynamics of the pseudoautosomal region. Trends Genet, 2011, 27(9): 358-367.
[16] Vogt PH. Report of the third international workshop on human Y chromosome mapping 1997. Cytogenet Genome Res, 1997, 79(1-2): 1-20.
[17] Cooke HJ, Brown WRA, Rappold GA. Hypervariable telomeric sequences from the human sex chromosomes are pseudoautosomal. Nature, 1985, 317(6039): 687-692.
[18] Charchar FJ, Svartman M, El-Mogharbel N, Ventura M, Kirby P, Matarazzo MR, Ciccodicola A, Rocchi M, D'Esposito M, Graves JAM. Complex events in the evolution of the human pseudoautosomal region 2 (PAR2). Genome Res, 2003, 13(2): 281-286.
[19] Skaletsky H, Kuroda-Kawaguchi T, Minx PJ, Cordum HS, Hillier L, Brown LG, Repping S, Pyntikova T, Ali J, Bieri T, Chinwalla A, Delehaunty A, Delehaunty K, Du H, Fe-well G, Fulton L, Fulton R, Graves T, Hou SF, Latrielle P, Leonard S, Mardis E, Maupin R, McPherson J, Miner T, Nash W, Nguyen C, Ozersky P, Pepin K, Rock S, Rohlfing T, Scott K, Schultz B, Strong C, Tin-Wollam A, Yang SP, Waterston RH, Wilson RK, Rozen S, Page DC. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature, 2003, 423(6942): 825-837.
[20] Rozen S, Skaletsky H, Marszalek JD, Minx PJ, Cordum HS, Waterston RH, Wilson RK, Page DC. Abundant gene conversion between arms of palindromes in human and ape Y chromosomes. Nature, 2003, 423(6942): 873-876.
[21] Hughes JF, Skaletsky H, Brown LG, Pyntikova T, Graves T, Fulton RS, Dugan S, Ding Y, Buhay CJ, Kremitzki C, Wang Q, Shen H, Holder M, Villasana D, Nazareth LV, Cree A, Courtney L, Veizer J, Kotkiewicz H, Cho TJ, Koutseva N, Rozen S, Muzny DM, Warren WC, Gibbs RA, Wilson RK, Page DC. Strict evolutionary conservation followed rapid gene loss on human and rhesus Y chromosomes. Nature, 2012, 483(7387): 82-86.
[22] Graves JAM, Peichel CL. Are homologies in vertebrate sex determination due to shared ancestry or to limited options. Genome Biol, 2010, 11: 205.
[23] Ohno S. Sex chromosomes and sex-linked genes. New York: Springer, 1967.
[24] Ezaz T, Stiglec R, Veyrunes F, Marshall Graves JA. Relationships between vertebrate ZW and XY sex chromosome systems. Curr Biol, 2006, 16(17): R736-R743.
[25] Graves JAM. The origin and function of the mammalian Y chromosome and Y-borne genes—an evolving understanding. Bio Essays, 1995, 17(4): 311-320.
[26] Ross MT, Grafham DV, Coffey AJ, Scherer S, McLay K, Muzny D, Platzer M, Howell GR, Burrows C, Bird CP, Frankish A, Lovell FL, Howe KL, Ashurst JL, Fulton RS, Sudbrak R, Wen G, Jones MC, Hurles ME, Andrews TD, Scott CE, Searle S, Ramser J, Whittaker A, Deadman R, Carter NP, Hunt SE, Chen R, Cree A, Gunaratne P, Havlak P, Hodgson A, Metzker ML, Richards S, Scott G, Steffen D, Sodergren E, Wheeler DA, Worley KC, Ainscough R, Ambrose KD, Ansari-Lari MA, Aradhya S, Ashwell RI, Babbage AK, Bagguley CL, Ballabio A, Banerjee R, Barker GE, Barlow KF, Barrett IP, Bates KN, Beare DM, Beasley H, Beasley O, Beck A, Bethel G, Blechschmidt K, Brady N, Bray-Allen S, Bridgeman AM, Brown AJ, Brown MJ, Bonnin D, Bruford EA, Buhay C, Burch P, Burford D, Burgess J, Burrill W, Burton J, Bye JM, Carder C, Carrel L, Chako J, Chapman JC, Chavez D, Chen E, Chen G, Chen Y, Chen Z, Chinault C, Ciccodicola A, Clark SY, Clarke G, Clee CM, Clegg S, Clerc-Blankenburg K, Clifford K, Cobley V, Cole CG, Conquer JS, Corby N, Connor RE, David R, Davies J, Davis C, Davis J, Delgado O, Deshazo D, Dhami P, Ding Y, Dinh H, Dodsworth S, Draper H, Dugan-Rocha S, Dunham A, Dunn M, Durbin KJ, Dutta I, Eades T, Ellwood M, Emery-Cohen A, Errington H, Evans KL, Faulkner L, Francis F, Frankland J, Fraser AE, Galgoczy P, Gilbert J, Gill R, Gl?ckner G, Gregory SG, Gribble S, Griffiths C, Grocock R, Gu Y, Gwilliam R, Hamilton C, Hart EA, Hawes A, Heath PD, Heitmann K, Hennig S, Hernandez J, Hinzmann B, Ho S, Hoffs M, Howden PJ, Huckle EJ, Hume J, Hunt PJ, Hunt AR, Isherwood J, Jacob L, Johnson D, Jones S, de Jong PJ, Joseph SS, Keenan S, Kelly S, Kershaw JK, Khan Z, Kioschis P, Klages S, Knights AJ, Kosiura A, Kovar-Smith C, Laird GK, Langford C, Lawlor S, Leversha M, Lewis L, Liu W, Lloyd C, Lloyd DM, Loulseged H, Loveland JE, Lovell JD, Lozado R, Lu J, Lyne R, Ma J, Maheshwari M, Matthews LH, McDowall J, McLaren S, McMurray A, Meidl P, Meitinger T, Milne S, Miner G, Mistry SL, Morgan M, Morris S, Müller I, Mullikin JC, Nguyen N, Nordsiek G, Nyakatura G, O'Dell CN, Okwuonu G, Palmer S, Pandian R, Parker D, Parrish J, Pasternak S, Patel D, Pearce AV, Pearson DM, Pelan SE, Perez L, Porter KM, Ramsey Y, Reichwald K, Rhodes S, Ridler KA, Schlessinger D, Schueler MG, Sehra HK, Shaw-Smith C, Shen H, Sheridan EM, Shownkeen R, Skuce CD, Smith ML, Sotheran EC, Steingruber HE, Steward CA, Storey R, Swann RM, Swarbreck D, Tabor PE, Taudien S, Taylor T, Teague B, Thomas K, Thorpe A, Timms K, Tracey A, Trevanion S, Tromans AC, d'Urso M, Verduzco D, Villasana D, Waldron L, Wall M, Wang Q, Warren J, Warry GL, Wei X, West A, Whitehead SL, Whiteley MN, Wilkinson JE, Willey DL, Williams G, Williams L, Williamson A, Williamson H, Wilming L, Woodmansey RL, Wray PW, Yen J, Zhang J, Zhou J, Zoghbi H, Zorilla S, Buck D, Reinhardt R, Poustka A, Rosenthal A, Lehrach H, Meindl A, Minx PJ, Hillier LW, Willard HF, Wilson RK, Waterston RH, Rice CM, Vaudin M, Coulson A, Nelson DL, Weinstock G, Sulston JE, Durbin R, Hubbard T, Gibbs RA, Beck S, Rogers J, Bentley DR. The DNA sequence of the human X chromosome. Nature, 2005, 434(7031): 325-337.
[27] Foster JW, Graves JA. An SRY-related sequence on the marsupial X chromosome: implications for the evolution of the mammalian testis-determining gene. Proc Natl Acad Sci USA, 1994, 91(5): 1927-1931.
[28] Glas R, Marshall Graves JA, Toder R, Ferguson-Smith M, O'Brien PC. Cross-species chromosome painting betweenhuman and marsupial directly demonstrates the ancient region of the mammalian X. Mamm Genome, 1999, 10(11): 1115-1116.
[29] Waters PD, Duffy B, Frost CJ, Delbridge ML, Graves JA. The human Y chromosome derives largely from a single autosomal region added to the sex chromosomes 80-130 million years ago. Cytogenet Cell Genet, 2001, 92(1-2): 74-79.
[30] Bininda-Emonds ORP, Cardillo M, Jones KE, Macphee RDE, Beck RMD, Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A. The delayed rise of present-day mammals. Nature, 2007, 446(7135): 507-512.
[31] Veyrunes F, Waters PD, Miethke P, Rens W, McMillan D, Alsop AE, Grützner F, Deakin JE, Whittington CM, Schatzkamer K, Kremitzki CL, Graves T, Ferguson-Smith MA, Warren W, Marshall Graves JA. Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes. Genome Res, 2008, 18(6): 965-973.
[32] Kohn M, Kehrer-Sawatzki H, Vogel W, Graves JAM, Hameister H. Wide genome comparisons reveal the origins of the human X chromosome. Trends Genet, 2004, 20(12): 598-603.
[33] Lahn BT, Page DC. Four evolutionary strata on the human X chromosome. Science, 1999, 286(5441): 964-967.
[34] Matsuda Y, Nishida-Umehara C, Tarui H, Kuroiwa A, Yamada K, Isobe T, Ando J, Fujiwara A, Hirao Y, Nishimura O, Ishijima J, Hayashi A, Saito T, Murakami T, Murakami Y, Kuratani A, Agata K. Highly conserved linkage homology between birds and turtles: bird and turtle chromosomes are precise counterparts of each other. Chromosome Res, 2005, 13(6): 601-615.
[35] Kuraku S, Ishijima J, Nishida-Umehara C, Agata K, Kuratani S, Matsuda Y. cDNA-based gene mapping and GC3profiling in the soft-shelled turtle suggest a chromosomal size-dependent GC bias shared by sauropsids. Chromosome Res, 2006, 14(2): 187-202.
[36] Innocenti P, Morrow EH. The sexually antagonistic genes of Drosophila melanogaster. PLoS Biol, 2010, 8(3): e1000335.
[37] Rice WR, Gavrilets S, Friberg U. Sexually antagonistic“zygotic drive” of the sex chromosomes. PLoS Genet, 2008, 4(12): e1000313.
[38] Roberts RB, Ser JR, Kocher TD. Sexual conflict resolved by invasion of a novel sex determiner in Lake Malawi cichlid fishes. Science, 2009, 326(5955): 998-1001.
[39] Kirkpatrick M. How and why chromosome inversions evolve. PLoS Biol, 2010, 8(9): e1000501.
[40] Lemaitre C, Braga MDV, Gautier C, Sagot MF, Tannier E, Marais GAB. Footprints of inversions at present and past pseudoautosomal boundaries in human sex chromosomes. Genome Biol Evol, 2009, 1: 56-66.
[41] Hill WG, Robertson A. The effect of linkage on limits to artificial selection. Genet Res, 1966, 8(3): 269-294.
[42] Berlin S, Tomaras D, Charlesworth B. Low mitochondrial variability in birds may indicate Hill-Robertson effects on the W chromosome. Heredity, 2007, 99(4): 389-396.
[43] Charlesworth B. Model for evolution of Y chromosomes and dosage compensation. Proc Natl Acad Sci USA, 1978, 75(11): 5618-5622.
[44] Charlesworth B, Charlesworth D. Rapid fixation of deleterious alleles can be caused by Muller's ratchet. Genet Res, 1997, 70(1): 63-73.
[45] Rice WR. Genetic hitchhiking and the evolution of reduced genetic activity of the Y sex chromosome. Genetics, 1987, 116(1): 161-167.
[46] Orr HA, Kim Y. An adaptive hypothesis for the evolution of the Y chromosome. Genetics, 1998, 150(4): 1693-1698.
[47] Makova KD, Li WH. Strong male-driven evolution of DNA sequences in humans and apes. Nature, 2002, 416(6881): 624-626.
[48] Aitken RJ, Graves JAM. Human spermatozoa: the future of sex. Nature, 2002, 415(6875): 963.
[49] Nakamura T, Kuroiwa A, Nishida-Umehara C, Matsubara K, Yamada F, Matsuda Y. Comparative chromosome painting map between two Ryukyu spiny rat species, Tokudaia osimensis and Tokudaia tokunoshimensis (Muridae, Rodentia). Chromosome Res, 2007, 15(6): 799-806.
[50] Vogel W, Jainta S, Rau W, Geerkens C, Baumstark A, Correa-Cerro L, Ebenhoch C, Just W. Sex determination in Ellobius lutescens: the story of an enigma. Cytogenet Genome Res, 1998, 80(1-4): 214-221.
[51] Arakawa Y, Nishida-Umehara C, Matsuda Y, Sutou S, Suzuki H. X-chromosomal localization of mammalian Y-linked genes in two XO species of the Ryukyu spiny rat. Cytogenet Genome Res, 2003, 99(1-4): 303-309.
[52] Hughes JF, Skaletsky H, Pyntikova T, Graves TA, van Daalen SKM, Minx PJ, Fulton RS, Mcgrath SD, Locke DP, Friedman C, Trask BJ, Mardis ER, Warren WC, Repping S, Rozen S, Wilson RK, Page DC. Chimpanzee and human Y chromosomes are remarkably divergent in structure and gene content. Nature, 2010, 463(7280): 536-539.
[53] Goto H, Peng L, Makova KD. Evolution of X-degenerate Y chromosome genes in greater apes: conservation of gene content in human and gorilla, but not chimpanzee. J Mol Evol, 2009, 68(2): 134-144.
[54] Ogawa A, Murata K, Mizuno S. The location of Z-and W-linked marker genes and sequence on the homomorphic sex chromosomes of the ostrich and the emu. Proc NatlAcad Sci USA, 1998, 95(8): 4415-4418.
[55] Tsuda Y, Nishida-Umehara C, Ishijima J, Yamada K, Matsuda Y. Comparison of the Z and W sex chromosomal architectures in elegant crested tinamou (Eudromia elegans) and ostrich (Struthio camelus) and the process of sex chromosome differentiation in palaeognathous birds. Chromosoma, 2007, 116(2): 159-173.
[56] Connallon T, Clark AG. Gene duplication, gene conversion and the evolution of the Y chromosome. Genetics, 2010, 186(1): 277-286.
[57] Hughes JF, Rozen S. Genomics and genetics of human and primate Y chromosomes. Annu Rev Genomics Hum Genet, 2012, 13: 83-108.
[58] Bachtrog D. Evidence that positive selection drives Y-chromosome degeneration in Drosophila miranda. Nat Genet, 2004, 36(5): 518-522.
[59] Cortez D, Marin R, Toledo-Flores D, Froidevaux L, Liechti A, Waters PD, Grützner F, Kaessmann H. Origins and functional evolution of Y chromosomes across mammals. Nature, 2014, 508(7497): 488-493.
[60] Bellott DW, Hughes JF, Skaletsky H, Brown LG, Pyntikova T, Cho TJ, Koutseva N, Zaghlul S, Graves T, Rock S, Kremitzki C, Fulton RS, Dugan S, Ding Y, Morton D, Khan Z, Lewis L, Buhay C, Wang Q, Watt J, Holder M, Lee S, Nazareth L, Rozen S, Muzny DM, Warren WC, Gibbs RA, Wilson RK, Page DC. Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature, 2014, 508(7497): 494-499.
[61] Moghadam HK, Pointer MA, Wright AE, Berlin S, Mank JE. W chromosome expression responds to female-specific selection. Proc Natl Acad Sci USA, 2012, 109(21): 8207-8211.
[62] Yamauchi Y, Riel JM, Stoytcheva Z, Ward MA. Two Y genes can replace the entire Y chromosome for assisted reproduction in the mouse. Science, 2014, 343(6166): 69-72.
[63] Yamauchi Y, Riel JM, Wong SJ, Ojarikre OA, Burgoyne PS, Ward MA. Live offspring from mice lacking the Y chromosome long arm gene complement. Biol Reprod, 2009, 81(2): 353-361.
(責(zé)任編委: 盧大儒)
The evolution of human Y chromosome
Xianrong Yang1, Meiqin Wang2, Shaohua Li3
1. Ophthalmology Department, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China;
2. Tuketuo County People's Hospital, Hohhot 010200, China;
3. College of Basic Medicine, Inner Mongolia Medical University, Hohhot 010110, China
The human Y chromosome is always intriguing for researchers, because of its role in gender determination and its unusual evolutionary history. The Y chromosome evolves from an autosome, and its evolution has been characterized by massive gene decay. The lack of recombination and protein-coding genes and high content of repetitive sequences have hindered the progress in our understanding of the Y chromosome biology. Recently, with the advances in comparative genomics and sequencing technology, the research on Y chromosome has become a hotspot, with an intensified debate about Y-chromosome final destination resulting from degeneration. This review focuses on the structure, inheritance characteristics, gene content, and the origin and evolution of Y chromosome. We also discuss the long-term destiny of Y chromosome.
Y-chromosome degeneration; recombination suppression; evolutionary strata; transcriptome
2014-04-03;
2014-07-21
秦惠莙 與李政道中國(guó)大學(xué)生見(jiàn)習(xí)進(jìn)修基金和國(guó)家基金委人才培養(yǎng)基金和國(guó)家拔尖人才培養(yǎng)計(jì)劃資助
楊仙榮,副主任護(hù)師。E-mail:15049165177@163.com
李少華,助教,研究方向:遺傳學(xué)。E-mail:bisimai2008@163.com
10.3724/SP.J.1005.2014.0849
時(shí)間: 2014-7-30 11:26:14
URL: http://www.cnki.net/kcms/detail/11.1913.R.20140730.1126.002.html