• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Theoretical Study on the Photochromic Mechanism of 1-Phenyl-3-methyl-4-(6-hydro-4-amino-5-sulfo-2,3-pyrazine)-pyrazole-5-one①

    2014-05-11 02:37:28LIUAnJieJIADianZengWUDongLing
    結構化學 2014年6期

    LIU An-Jie JIA Dian-Zeng WU Dong-Ling

    LIU Lang GUO Ji-Xi

    (Institute of Applied Chemistry, Xinjiang University, Urumqi 830046, China)

    1 INTRODUCTION

    Photochromic compounds are of great interest for optical computer, information storage, light-driven information display device, as well as environmental probes in biomolecule, etc[1-3]. Therefore, the synthesis of novel photochromic systems and the study of the photochemical mechanism are of very important significance.

    It is well-known that many Schiff base compounds[4-6]show photochromism. For the past several years, our laboratory has synthesized a large number of pyrazolone photochromic compounds by molecular design and structure modification[7-13].Based on the crystal structures of photochromic compounds, it was concluded that photochromic phenomenon was due to the intramolecular (Intra-PT)or intermolecular proton transfer (Inter-PT)associated with a change in π electron configuration[14,15]through hydrogen bonds (H-bonds), and the non-coplanarity of structure is beneficial to photochromic property[16-18]. In addition, the photochromic processes of some of them are reversible and others are not. These phenomena are very interesting and we think that analyzing their photochromic mechanism is helpful for designing new photochromic materials. Because experimental methods are sometimes insufficient for further achievements on the mechanism of photochromism,theoretical studies are required[16-22].

    In this article, 1-phenyl-3-methyl-4-(6-hydro-4-amino-5-sulfo-2,3-pyrazine)-pyrazole-5-one (PMCPTSC)[23]has been studied. Previous experimental results indicate that the title compound exhibits photochromic properties when irradiated by 365 nm light at room temperature in solution, and this process is not reversible. In addition, the polarity increase of the solvent favors the photochromism.According to the analysis of the title compound’s crystal structure and hydrogen bond connection diagram (Fig. 1), it is proposed that the photochromic mechanism of PMCP-TSC is an Intra-PT from the enol form to the keto form (Fig. 2).Although previous theoretical studies[24]have done some work on analyzing the molecular structure, the nature of H-bond, the stability and the reactivity of the title compounds in different solvents, it is not sufficient to get insight into the photochromic mechanism. So, this paper will further discuss the photochromic property of the title compound through analyzing the molecular structure, absorption spectra, molecular orbital and stability in the gas and in different solvents.

    Fig. 1. Different HB patterns of the title compound

    Fig. 2. Proposed photochromic mechanism of the title compound

    2 CALCULATION METHODS

    All calculations were performed with the Gaussian 03W program[25].

    The ground state of enol form, transition state and keto form were calculated with B3LYP/6-311+G (2d, p)method[24]. Frequency calculation at the same level characterized the stationary points as local minima or a first-order saddle point on the potential energy surface. TDDFT method was chosen to obtain the absorption spectrum of keto and enol forms. The polarizable continuum model(PCM)[26]of the self-consistent reaction field theory was used to study the solvent effects on the conformers. Atom-in-molecule theory (AIM)[27-29]is applied to investigate the nature of hydrogen bonds and ring structures of the conformers in different solvents. The NBO analysis was performed by means of the NBO 3.1 program[30]within the Gaussian 03W package. Molecular orbitals were also analyzed to testify the rationality of the photochromic mechanism of the title compound.

    3 RESULTS AND DISCUSSION

    3. 1 Structure analysis

    The title compound’s crystal structure and hydrogen bond connection diagram are presented in Fig. 1.The bond length between O(2)and C(13)atoms is 1.262 ?, which is consistent with the C=O bond length[31-33]and indicates PMCP-TSC existing in the keto form. Geometrical difference of the monomers in the dimer has been found. The S atom is located at the upper and lower positions of the plane of the pyrazolone ring, respectively. However, the experimental and calculated results show that the geometry parameters, the energy and the atomic charges of the monomers are almost the same. The geometrical difference could arise from packing constraints. In Fig. 1, two molecules interact with each other via intermolecular hydrogen bonds(O(2)··H–N(3), 2.954 ?, N(4)··H–N(5), 3.006 ?)and two intramolecular hydrogen bonds (O(2)··H–N(5), 2.792 ?)are also observed. The hydrogen bond geometrical parameters are collected in Table 1. The data indicate that the probable order of the hydrogen bond strength is as follows: O(2)··H–N(5)> O(2)··H–N(3)> N(4)··H–N(5). The intramolecular O(2)··H–N(5)is most likely to participate in the proton transfer reaction. Thus, a hypothesis that photochromic mechanism of the title compound is due to the intramolecular proton transfer was proposed by us.

    Table 1. Geometrical Parameters of the Existing Hydrogen Bonds

    Experimental results indicate that the title compound undergoes photochromism in solution. In order to further study the photochromic mechanism and the solvent effects on the geometries, the keto and constructed enol forms are both optimized and their structural difference in different solvents including water, methanol, tetrahydrofuran (THF)and carbon tetrachloride (CCl4)are investigated in detail.In this part, atom-in-molecule (AIM)theory and Natural Bond Orbital (NBO)theory have continued to be applied to study the geometries and photochromic mechanism of the title compound in different solvents. In the AIM theory, the nature of H-bond can be characterized by the value of electron density ρ(r), the Laplacian of electron density?2ρ(r)and the ellipticity ε at the H-bond critical point (HBCP); the nature of ring can be described by the value of electron density ρ(r)at the ring critical point (RCP). In the NBO theory, the secondorder perturbation energy E(2)can be used to characterize the strength of H-bond. Geometrical and topological parameters as well as stabilization energy of O–H··N/O··H–N H-bonds are collected in Table 2. It shows that O–H··N is stronger than O··H–N, which indicates that the proton transfer is more likely to occur in enol than in the keto form. It also means that the keto form of the title compound is more stable than the enol form in all solvents.Furthermore, because ellipticity ε of H··Y is in agreement with the trend of E(2), ellipticity ε of H··Y can be used to characterize the strength of H-bond.

    Table 2. Geometrical and Topological Parameters (a.u)as well as Stabilization Energy (kcal/mol)of O–H··N/O··H–N H-Bonds

    In order to discuss the coplanarity of the title compound, we analyze all ring structures which are of its components quantitatively. The perimeter of the rings and the electron density ρ(r)at the ring critical points for the keto and enol forms in different solvents are calculated and listed in Table 3. For the keto and enol forms of the title compound, six rings (ring I (benzene-ring), ring II (H(22)–C(21)–C(20)–N(6)–C(13)–O(2)), ring III (pyrazo-lonering), ring IV (O(2)–C(13)–C(14)–C(9)– N(5)–H(33)), ring V (C(16)–C(15)–C(14)–C(9)– C(10)–H(12))and ring VI (C(8)–N(4)–N(5)–C(9)– C(10)–S(1)))have been studied. The data show that stable ring structures generally have large ρ(r)values(greater than 0.02). In addition, the correlation (Fig.3)between the perimeter and the electron density ρ(r)for the same ring structure is reverse and good linear correlation (0.9432, 0.9869, 0.9994, 0.9997,0.9975 and 0.9789)indicates that perimeter can characterize the electron density and stability for the same ring structure. In other words, the coplanarity for the same ring structure grows with the decrease of perimeter.

    Fig. 3. Correlation between the perimeter and the electron density ρ(r)for different ring structures

    Table 3. Perimeter of the Rings and the Electron Density ρ(r)at the Ring Critical Points for the Keto and Enol Forms in Different Solvents

    3. 2 Keto-enol isomerization

    By TDDFT energy calculation and Swizard program[34], we got the absorption spectra (Fig. 4)of keto and enol forms in methanol. Fig. 4 shows the results are accurate enough compared with the experiment ones (Fig. 5). The calculation results of the maximum absorption wavelength for the enol and keto forms are 333 and 369 nm, respectively,and the experimental value for the keto form is 375 nm. The data indicate that the proposed mechanism from enol to the keto form is reasonable because the latter has longer maximum absorption wavelength than the former.

    Fig. 4. Calculation results of the maximum absorption wavelength for enol and keto forms in methanol

    Fig. 5. UV-vis spectra in methanol

    3. 3 Molecular orbital analysis

    A powerful practical model for describing chemical reactivity is the Frontier Molecular Orbital(FMO)theory. The important aspect of the frontier electron theory is the focus on the highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO). Generally, the frontier orbital theory predicts that a site where the highest occupied orbital is localized is a good nucleophile site. Similarly, where the lowest unoccupied orbital is also localized is a good electrophilic site. With the purpose of explaining the photochromic mechanism,orbital analyses of the keto and constructed enol form in methanol were performed (Fig. 6). For enol form, the calculation results indicate that the HOMO orbital contains N(6)and N(7); LUMO orbital contains the N(6), C(13), C(14)and O(2).They have the same symmetry: A. Because there are three interactions (O(2)··H–N(5), O(2)··H–N(3)and N(4)··H–N(5))after reaction, only O(2)is the possible site for reactivity. In addition, the charge quantity on O(2)decreases after reaction, which indicates O(2)is an electrophilic site and shows once again the photochromic process from enol to the keto form is reasonable. For keto form, the calculation results indicate that the HOMO orbital contains benzene ring; LUMO orbital also contains N(6), C(13), C(14)and O(2). Because O(2)is an electrophilic site, it will be impossible that the H(33)transfers to O(2), along with the breaking of N–H and C=O bonds as well as the formation of O–H and C=N bonds.

    Fig. 6. HOMO and LUMO orbitals for the enol and keto forms in methanol

    3. 4 Stability analysis

    Table 4 and Fig. 7 depict the electronic energies and dipole moments of enol, TS and keto forms in gas and different solvents. The results show that the title compound is more stable in all solvents than in gas, and the stabilities of enol, TS, and keto forms grow with the increase of the solvent polarity. In addition, the stability order of the title compound is keto form > enol form > TS form. The relative energy for enol to TS form is 0.02642 a.u in gas,0.02616 a.u in water, 0.02607 a.u in methanol,

    0.02590 a.u in THF and 0.02598 a.u in CCl4,indicating that the solvent will decrease the barrier height of pronton transfer and contribute to the reaction from enol to the keto form. It is worth noting that the relative energy for keto form to the TS form is 0.03676 a.u in gas, 0.04020 a.u in water,0.03994 a.u in methanol, 0.03915 a.u in THF and 0.03786 a.u in CCl4. This means that the solvent will be detrimental to the reversible reaction from keto to the enol form.

    Table 4. Electronic Energies (E)(a.u), Dipole Moments (μ), and Relative Energies for Enol and Keto Forms to the TS Form (aΔE and bΔE)(a.u)

    Fig. 7. Calculated reaction energy profile

    The dipole moments of enol, TS and keto forms increase with growing the solvent polarity. The order of dipole moments of the title compound is as below: keto form > TS form > enol form, which further proves that the title compound exists in the keto form.

    4 CONCLUSION

    Atom-in-molecule (AIM)theory was used to study HBs and ring structures of the title compound.The computational results show that ellipticity ε of H··Y is in agreement with the trend of E(2), which indicates that ellipticity ε of H··Y can be used to characterize the strength of H-bond. In addition, the data show that good linear correlation between the perimeter and the electron density ρ(r)for the same ring structure has been established.

    The calculation results of the maximum absorption wavelength for enol and keto forms indicate that the proposed mechanism from enol to the keto form is reasonable.

    The analysis of molecular orbitals further accounts for the probable reactive sites and the photochromic mechanism.

    The keto form of the title compound is more stable than the enol form in all appointed solvents,and the stability of enol, TS and keto forms grows with the increase of solvent polarity. In addition, the solvent will contribute to the reaction from enol to the keto form.

    (1)Irie, M. Photochromic diarylethenes for photonic devices. Pure Appl. Chem. 1996, 68, 1367?1371.

    (2)Sytnik, A.; Khasa, M. Excited-state intramolecular proton transfer as a fluorescence probe for protein binding-site static polarity. Proc. Natl. Acad.Sci. USA 1994, 91, 8627?8630.

    (3)Zhao, J. Z.; Zhao, B.; Liu, J. Z.; Xu, W.; Wang, Z. M. Spectroscopy study on the photochromism of Schiff bases N,N?-bis(salicylidene)-1,2-diaminoehtane and N,N′-bis(salicylidene)-1,6-hexanediamine. Spectrochim. Acta A 2001, 57, 149?154.

    (4)Zio?ek, M.; Kubicki, J.; Maciejewski, A.; Naskrecki, R.; Grabowska, A. Excited state proton transfer and photochromism of an aromatic Schiff base.pico- and femtosecond kinetics of the N,N?-bis(salicylidene)-p-phenylenediamine (BSP). Chem. Phys. Lett. 2003, 369, 80?89.

    (5)Kunkely, H.; Vogler, A. Photochemistry of N,N?-bis(3,5-di-tert-butylsalicylidene)-1,2-diaminocyclohexane and its Co(II)complex in chloroform. J.Photochem. Photobio. A: Chem. 2001, 138, 51?54.

    (6)Grabowska, A.; Kownacki, K.; Karpiuk, J.; Dobrin, S.; Kaczmarek, L. Photochromism and proton transfer reaction cycle of new internally H-bonded Schiff bases. Chem. Phys. Lett. 1997, 267, 132?140.

    (7)Liu, G. F.; Liu, L.; Jia, D. Z.; Yu, K. B. Synthesis and properties of a novel photochromic compound. Chin. Chem. Lett. 2003, 14, 1230?1232.

    (8)Liu, L.; Jia, D. Z.; Ji, Y. L.; Yu, K. B. Crystal structure and photochromism of 1-phenyl-3-methyl-4-benzyl-5-one-pyrazole S-methylthiosemicarbazone. J. Mol. Struct. 2003, 655, 221?227.

    (9)Tang, X. C.; Jia, D. Z.; Liang, K.; Zhang, X. G.; Xia, X.; Zhou, Z. Y. Synthesis, structure and properties of a novel kind of photochromic compound containing a pyrazolone-ring. J. Photochem. Photobio. A: Chem. 2001, 134, 23?29.

    (10)Liu, L.; Jia, D. Z.; Ji, Y. L.; Yu, K. B. Synthesis, structure and photochromic properties of 4-acyl pyrazolone derivants. J. Photochem. Photobio. A:Chem. 2003, 154, 117?122.

    (11)Peng, B. H.; Liu, G. F.; Liu, L.; Jia, D. Z. Studies on solid-state proton transfer along hydrogen bond of pyrazolone-ring. Tetrahedron 2005, 61,5926?5932.

    (12)Zhang, T.; Liu, G. F.; Liu, L.; Jia, D. Z.; Zhang, L. Solid-state proton transfer studies on phototautomerization of 1-phenyl-3-methyl-4-furoyl-5-pyrazolone 4-methylthiosemicarbazone. Chem. Phys. Lett. 2006, 427, 443?448.

    (13)Guo, J. X.; Liu, L.; Liu, G. F.; Jia, D. Z.; Xie, X. L. Synthesis and solid-state photochromism of 1,3-diphenyl-4-(2-chlorobenzal)-5-hydroxypyrazole 4-methylthiosemicarbazone. Org. Lett. 2007, 20, 3989?3992.

    (14)Barbara, P. F.; Rentzepis, P. M.; Brus, L. Photochemical kinetics of salicylidenaniline. J. Am. Chem. Soc. 1980, 102, 2786?2791.

    (15)Hadjoudis, E.; Vitterakis, M.; Moustakali-Mavridis, I. Photochromism and thermochromism of Schiff bases in the solid state and in rigid glasses.Tetrahedron 1987, 43, 1345?1360.

    (16)Cohen, M. D.; Hirshberg, Y.; Schmidt, G. M. J.; Flavian, S. Topochemistry. VII. The photactivity of anils of salicylaldehydes in rigid solutions. J.Chem. Soc. 1964, 2051?2059.

    (17)Cohen, M. D.; Flavian, S. Topochemistry. Part XXVII. The luminescence of crystalline N-salicylideneanilines and related anils. J. Chem. Soc. 1967,334?340.

    (18)Cohen, M. D.; Schmidt, G. M. J. Photochromy and thermochromy of anils. J. Phys. Chem. 1962, 66, 2442?2445.

    (19)Gholami, M. R.; Izadyar, M. A joint experimental and computational study on the kinetic and mechanism of diallyl disulfide pyrolysis in the gas phase. Chem. Phys. 2004, 301, 45?51.

    (20)Casany, M. P. P.; Gil, I. N.; Marin, J. S. Ab initio study on the mechanism of the reactions of the nitrate radical with haloalkenes: 1,2-dichloroethene,1,1-dichloroethene, trichloroethene, and tetrachloroethene. J. Phys. Chem. A 2000, 104, 11340?11346.

    (21)Karafiloglou, P. Common features of various mechanisms of electron transfer across a 4,4?-bipyridine bridge: a theoretical evaluation of resonance structures of the transition state. Chem. Phys. 1997, 214, 171?182.

    (22)Nakatsuji, H.; Hasegawa, J.; Ohkawa, K. Excited states and electron transfer mechanism in the photosynthetic reaction center of rhodopseudomonas viridis: SAC–CI study. Chem. Phys. Lett. 1998, 296, 499?504.

    (23)Liu, L.; Jia, D. Z.; Qiao, Y. M.; Yu, K. B. Synthesis, crystal structure and photochromism properties of 1-phenyl-3-methyl-4-(6-hydro-4-amino-5-sulfo-2,3-pyrazine)-pyrazole-5-one. Acta Chim. Sin. 2002, 60, 493?498.

    (24)Liu, A. J.; Wu, D. L.; Liu, L.; Jia, D. Z. Theoretical studies on geometry, solvent effect and photochromic mechanism of two bis-heterocyclic compounds containing pyrazolone-ring. Inter. J. Quantum Chem. 2010, 110, 1360?1367.

    (25)Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr. J. A.; Vreven, T.; Kudin, K. N.;Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.;Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A.D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.;Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.;Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. GAUSSIAN 03, Revision B.04,Gaussian, Inc., Pittsburgh PA 2003.

    (26)Amovilli, C.; Barone, V.; Cammi, R.; Cances, E.; Cossi, M.; Mennucci, B.; Pomelli, C. S.; Tomasi, J. Recent advances in the description of solvent effects with the polarizable continuum model. Adv. Quantum Chem. 1998, 32, 227?262.

    (27)Bader, R. F. W. Atoms in molecules. A quantum theory. Clarendon Press, Oxford 1990.

    (28)Bader, R. F. W.; Gillespie, R. J.; MacDougall, P. J. Physical basis for the VSEPR model of molecular geometry.J. Am. Chem. Soc. 1988, 110, 7329?7336.

    (29)Bader, R. F. W. A quantum theory of molecular structure and its application. Chem. Rev. 1991, 91, 893?928.

    (30)Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. NBO Version 3.1. Theoretical Chemistry Institute, University of Wisconsin, Madison 1995.

    (31)Kabak, M. Crystal structure and conformation of N,N?-bis(3,5-dichlorosalicylidene)-2-hydroxy 1,3-diamino-2-propan.J. Mol. Struct. 2003, 655, 135?139.

    (32)Kabak, M.; Elmali, A.; Elerman, Y. Keto-enol tautomerism, conformations and structure of N-(2-hydroxy-5-methylphenyl),2-hydroxybenzaldehydeimine. J. Mol. Struct. 1999, 477, 151?158.

    (33)Kabak, M.; Elmali, A.; Elerman, Y. Tautomeric properties, conformations and structure of N-(2-hydroxyphenyl)-4-amino-3-penten-2-on. J. Mol.Struct. 1998, 470, 295?300.

    (34)Wu, Y.; Xue, Y.; Xie, D. Q.; Yan, G. S. A computational study on the mechanism for the chemical fixation of nitric oxide leading to 1,2,3-oxadiazole 3-oxide. J. Org. Chem. 2005, 70, 5045?5054.

    国产一区二区三区av在线| 欧美极品一区二区三区四区| 成人鲁丝片一二三区免费| 国产视频内射| 九九爱精品视频在线观看| 国产一级毛片在线| 亚洲最大成人手机在线| 亚洲四区av| 国产精品国产三级国产专区5o| 天堂俺去俺来也www色官网 | 日韩精品青青久久久久久| 国产精品综合久久久久久久免费| 黄片wwwwww| 丰满人妻一区二区三区视频av| 男女边吃奶边做爰视频| 少妇的逼好多水| 国产精品女同一区二区软件| 大香蕉97超碰在线| 亚洲国产成人一精品久久久| 亚洲精华国产精华液的使用体验| 免费av不卡在线播放| 永久免费av网站大全| av在线蜜桃| 免费观看a级毛片全部| 国产成人免费观看mmmm| 美女xxoo啪啪120秒动态图| videossex国产| 久久久久精品性色| 中文字幕亚洲精品专区| 亚洲人成网站在线观看播放| 亚洲成人av在线免费| 麻豆久久精品国产亚洲av| 精品人妻视频免费看| 久久久久久久久大av| 亚洲av.av天堂| 久久久久久国产a免费观看| 久久久精品94久久精品| 久久精品久久精品一区二区三区| 亚洲精品国产av蜜桃| 秋霞伦理黄片| 欧美三级亚洲精品| 亚洲精品乱久久久久久| 亚洲四区av| 99热这里只有是精品50| 身体一侧抽搐| 一边亲一边摸免费视频| 能在线免费观看的黄片| 看黄色毛片网站| 久久热精品热| 久久久精品94久久精品| 亚洲精品456在线播放app| 91狼人影院| 蜜臀久久99精品久久宅男| or卡值多少钱| 91精品国产九色| 不卡视频在线观看欧美| 26uuu在线亚洲综合色| 91在线精品国自产拍蜜月| 亚洲成人一二三区av| 日韩成人伦理影院| 97人妻精品一区二区三区麻豆| 欧美一区二区亚洲| 日本黄色片子视频| 一个人看的www免费观看视频| av国产免费在线观看| 国产黄色小视频在线观看| 美女高潮的动态| 天堂av国产一区二区熟女人妻| 国产探花极品一区二区| 成年版毛片免费区| 三级经典国产精品| 99视频精品全部免费 在线| 99久久精品热视频| 欧美成人一区二区免费高清观看| 国产一区有黄有色的免费视频 | 男女国产视频网站| 女人被狂操c到高潮| 亚洲,欧美,日韩| 国产真实伦视频高清在线观看| 免费大片18禁| 高清毛片免费看| 成人亚洲精品一区在线观看 | 成人亚洲欧美一区二区av| 男女下面进入的视频免费午夜| 91久久精品国产一区二区成人| 中文字幕制服av| 国产精品一区二区三区四区免费观看| 99热网站在线观看| 久久久久精品性色| 亚洲无线观看免费| 国产不卡一卡二| 亚洲婷婷狠狠爱综合网| 日韩视频在线欧美| 国产高潮美女av| 一级a做视频免费观看| 亚洲欧美一区二区三区国产| 久久精品国产亚洲av涩爱| 哪个播放器可以免费观看大片| 日本免费a在线| 91精品国产九色| 精品酒店卫生间| 五月伊人婷婷丁香| 91精品伊人久久大香线蕉| av线在线观看网站| 日本免费在线观看一区| 一级片'在线观看视频| 在线 av 中文字幕| 欧美97在线视频| 日韩av不卡免费在线播放| 国产精品精品国产色婷婷| 成人鲁丝片一二三区免费| 岛国毛片在线播放| 精品一区二区免费观看| 午夜爱爱视频在线播放| 日日摸夜夜添夜夜添av毛片| 国产精品av视频在线免费观看| 成人漫画全彩无遮挡| 乱系列少妇在线播放| 尾随美女入室| 日韩不卡一区二区三区视频在线| 国产精品熟女久久久久浪| 国产淫语在线视频| 久久国产乱子免费精品| 一级毛片我不卡| 国产成人a区在线观看| 日本-黄色视频高清免费观看| 天堂√8在线中文| 日韩一区二区三区影片| 夫妻性生交免费视频一级片| 亚州av有码| 国产精品美女特级片免费视频播放器| 国产伦一二天堂av在线观看| 高清日韩中文字幕在线| 日韩 亚洲 欧美在线| 尾随美女入室| 亚洲美女视频黄频| 国产麻豆成人av免费视频| 亚洲,欧美,日韩| 日韩制服骚丝袜av| 少妇人妻精品综合一区二区| 国产成人freesex在线| 国产成人91sexporn| 成年人午夜在线观看视频 | 免费电影在线观看免费观看| 三级毛片av免费| 久久久久久久久久成人| 亚洲欧洲国产日韩| 国产人妻一区二区三区在| 免费看不卡的av| 少妇丰满av| 亚洲综合精品二区| 国产成人一区二区在线| 99久久精品热视频| 日韩一区二区三区影片| 你懂的网址亚洲精品在线观看| 国产av不卡久久| 建设人人有责人人尽责人人享有的 | 久久久国产一区二区| 日韩 亚洲 欧美在线| 国产探花极品一区二区| 国产成人精品婷婷| 18禁动态无遮挡网站| 插逼视频在线观看| 免费看美女性在线毛片视频| 日本一本二区三区精品| 免费高清在线观看视频在线观看| 禁无遮挡网站| 亚洲性久久影院| 国产精品av视频在线免费观看| 男人爽女人下面视频在线观看| 97超碰精品成人国产| 亚洲欧美成人综合另类久久久| 99久国产av精品国产电影| 国产亚洲精品av在线| 搡女人真爽免费视频火全软件| 亚洲四区av| 亚洲无线观看免费| 色综合亚洲欧美另类图片| 国产成人aa在线观看| 黄色配什么色好看| 日韩欧美三级三区| 成人二区视频| 高清午夜精品一区二区三区| 国产黄色小视频在线观看| 丝瓜视频免费看黄片| av网站免费在线观看视频 | 老师上课跳d突然被开到最大视频| 22中文网久久字幕| 精品久久久精品久久久| 人妻制服诱惑在线中文字幕| 国产精品日韩av在线免费观看| 女人被狂操c到高潮| 精品国产露脸久久av麻豆 | 乱码一卡2卡4卡精品| 日韩一本色道免费dvd| 日日摸夜夜添夜夜爱| 国产一区有黄有色的免费视频 | 毛片一级片免费看久久久久| 亚洲精华国产精华液的使用体验| 五月玫瑰六月丁香| 别揉我奶头 嗯啊视频| 男的添女的下面高潮视频| 国精品久久久久久国模美| 亚洲av成人精品一区久久| 91aial.com中文字幕在线观看| 婷婷色综合www| 免费av观看视频| 亚洲欧美精品专区久久| 亚洲精品国产成人久久av| 91精品伊人久久大香线蕉| 秋霞在线观看毛片| 赤兔流量卡办理| 日韩一本色道免费dvd| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 精品一区二区三区人妻视频| 免费观看a级毛片全部| 噜噜噜噜噜久久久久久91| 国产在视频线精品| 精品久久久久久成人av| 特级一级黄色大片| 精品人妻偷拍中文字幕| 美女黄网站色视频| 亚洲婷婷狠狠爱综合网| 国产伦理片在线播放av一区| 精品久久久久久久久av| 国产高清三级在线| 亚洲怡红院男人天堂| 最近2019中文字幕mv第一页| 日本免费在线观看一区| 噜噜噜噜噜久久久久久91| 老师上课跳d突然被开到最大视频| 国产三级在线视频| 最近2019中文字幕mv第一页| 欧美xxⅹ黑人| 丰满少妇做爰视频| 白带黄色成豆腐渣| 最近中文字幕高清免费大全6| 天堂网av新在线| 日本午夜av视频| 春色校园在线视频观看| 国产成人freesex在线| 国产黄a三级三级三级人| 亚洲久久久久久中文字幕| 日韩av不卡免费在线播放| 丰满少妇做爰视频| h日本视频在线播放| 最近视频中文字幕2019在线8| 极品少妇高潮喷水抽搐| 男女下面进入的视频免费午夜| 免费黄色在线免费观看| 国内精品美女久久久久久| 日日干狠狠操夜夜爽| 国产在线男女| 日韩大片免费观看网站| 色尼玛亚洲综合影院| 汤姆久久久久久久影院中文字幕 | 99久久九九国产精品国产免费| 国产一区二区亚洲精品在线观看| 乱码一卡2卡4卡精品| 91av网一区二区| 日韩 亚洲 欧美在线| 美女脱内裤让男人舔精品视频| 国产成年人精品一区二区| 亚洲欧美中文字幕日韩二区| 亚洲欧美一区二区三区黑人 | 91午夜精品亚洲一区二区三区| 欧美成人a在线观看| 尾随美女入室| 日韩强制内射视频| 可以在线观看毛片的网站| 国产精品av视频在线免费观看| 韩国高清视频一区二区三区| 男女啪啪激烈高潮av片| 久久久久网色| 欧美三级亚洲精品| 一区二区三区乱码不卡18| 人妻制服诱惑在线中文字幕| 日本免费a在线| 天堂av国产一区二区熟女人妻| 亚洲av男天堂| 高清在线视频一区二区三区| 国产乱人偷精品视频| 国内少妇人妻偷人精品xxx网站| 丰满少妇做爰视频| 波野结衣二区三区在线| 亚洲欧美日韩卡通动漫| 欧美+日韩+精品| 久久久久久久午夜电影| 最近最新中文字幕大全电影3| 精品人妻视频免费看| 久久久久精品性色| 国产一级毛片七仙女欲春2| 亚洲精品影视一区二区三区av| 国产成人一区二区在线| 青春草亚洲视频在线观看| 国产成人精品一,二区| 精品久久久久久电影网| 日本三级黄在线观看| 欧美日韩在线观看h| 午夜激情欧美在线| 麻豆久久精品国产亚洲av| 日韩欧美精品免费久久| 免费无遮挡裸体视频| 欧美一区二区亚洲| 中文资源天堂在线| 亚洲av电影在线观看一区二区三区 | 小蜜桃在线观看免费完整版高清| 亚洲熟妇中文字幕五十中出| 男女那种视频在线观看| 免费av毛片视频| 美女高潮的动态| 免费av不卡在线播放| 亚洲天堂国产精品一区在线| 全区人妻精品视频| 在线观看美女被高潮喷水网站| 色尼玛亚洲综合影院| 久久久久久九九精品二区国产| 一区二区三区四区激情视频| 午夜精品一区二区三区免费看| av播播在线观看一区| 一级毛片我不卡| 欧美激情国产日韩精品一区| 色吧在线观看| 一级av片app| 全区人妻精品视频| 亚洲最大成人av| 日日啪夜夜爽| 自拍偷自拍亚洲精品老妇| 成人漫画全彩无遮挡| 精品久久久久久久久久久久久| 我的老师免费观看完整版| 亚洲av福利一区| 狂野欧美白嫩少妇大欣赏| 国产精品99久久久久久久久| 日韩欧美三级三区| 国产老妇伦熟女老妇高清| 国产亚洲精品av在线| 成人国产麻豆网| 国产精品熟女久久久久浪| 午夜视频国产福利| 亚洲精品日韩在线中文字幕| 色哟哟·www| 国产v大片淫在线免费观看| 只有这里有精品99| 成人二区视频| 看非洲黑人一级黄片| 又爽又黄无遮挡网站| 久久久午夜欧美精品| 久久精品夜色国产| 亚洲真实伦在线观看| 国产精品美女特级片免费视频播放器| 亚洲av中文av极速乱| 简卡轻食公司| 亚洲精品日韩在线中文字幕| 韩国高清视频一区二区三区| 久久国产乱子免费精品| 欧美极品一区二区三区四区| 99久久精品热视频| 免费黄频网站在线观看国产| 国产一区亚洲一区在线观看| 精品一区二区三卡| 久久久国产一区二区| 欧美成人精品欧美一级黄| 中文资源天堂在线| 午夜视频国产福利| 3wmmmm亚洲av在线观看| 亚洲精品亚洲一区二区| 丰满乱子伦码专区| 亚洲精品国产av蜜桃| 日韩av不卡免费在线播放| 乱系列少妇在线播放| 国产精品综合久久久久久久免费| 国产中年淑女户外野战色| 国产乱人视频| 99热这里只有是精品在线观看| 人人妻人人澡欧美一区二区| 亚洲一区高清亚洲精品| eeuss影院久久| 中文字幕免费在线视频6| 男女下面进入的视频免费午夜| 熟妇人妻不卡中文字幕| 高清日韩中文字幕在线| 国产一区有黄有色的免费视频 | 午夜福利视频精品| 人体艺术视频欧美日本| 国产精品嫩草影院av在线观看| 国产午夜福利久久久久久| 在现免费观看毛片| 男女啪啪激烈高潮av片| 麻豆av噜噜一区二区三区| 免费看a级黄色片| 成人鲁丝片一二三区免费| 日本色播在线视频| 亚洲图色成人| 国产一区亚洲一区在线观看| 国产伦精品一区二区三区四那| a级毛片免费高清观看在线播放| 免费av观看视频| 偷拍熟女少妇极品色| 搞女人的毛片| 男女视频在线观看网站免费| 肉色欧美久久久久久久蜜桃 | 免费观看精品视频网站| 色哟哟·www| 久久久欧美国产精品| 我要看日韩黄色一级片| 伦精品一区二区三区| 国产高清有码在线观看视频| 亚洲成色77777| 亚洲综合精品二区| 中文天堂在线官网| 99热全是精品| 黄片wwwwww| 久久久久久久久久久丰满| 亚洲一级一片aⅴ在线观看| 亚洲av成人精品一区久久| 2018国产大陆天天弄谢| 国产精品人妻久久久久久| 国产综合精华液| 国产伦理片在线播放av一区| 午夜福利视频精品| 亚洲欧美一区二区三区黑人 | 亚洲综合色惰| 青春草视频在线免费观看| 床上黄色一级片| kizo精华| 国产免费视频播放在线视频 | 亚洲欧美一区二区三区国产| 亚洲av福利一区| 久久久久久久国产电影| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品人妻久久久久久| 国产综合精华液| 色综合色国产| 18禁裸乳无遮挡免费网站照片| 天堂中文最新版在线下载 | 欧美成人精品欧美一级黄| 亚洲欧洲国产日韩| 天堂网av新在线| a级毛片免费高清观看在线播放| 国产成人一区二区在线| 一个人观看的视频www高清免费观看| 久久久久久久久久人人人人人人| 亚洲欧美中文字幕日韩二区| 日韩欧美精品v在线| 欧美成人午夜免费资源| 亚洲精品色激情综合| 免费人成在线观看视频色| 我要看日韩黄色一级片| 亚洲av二区三区四区| 好男人视频免费观看在线| 三级男女做爰猛烈吃奶摸视频| 亚洲四区av| 亚洲av国产av综合av卡| 久久久久久久大尺度免费视频| 日日撸夜夜添| 精品国内亚洲2022精品成人| 国产精品精品国产色婷婷| 大香蕉久久网| 99久久精品国产国产毛片| 91午夜精品亚洲一区二区三区| 亚洲成人久久爱视频| 日日啪夜夜撸| 久久精品国产亚洲av天美| 国产乱人偷精品视频| av免费在线看不卡| 日韩一区二区视频免费看| 欧美一区二区亚洲| 色网站视频免费| 在现免费观看毛片| 街头女战士在线观看网站| 久久久久久久国产电影| 中文精品一卡2卡3卡4更新| 久久亚洲国产成人精品v| 少妇猛男粗大的猛烈进出视频 | 777米奇影视久久| 国产精品不卡视频一区二区| 美女内射精品一级片tv| 国产女主播在线喷水免费视频网站 | 国产伦在线观看视频一区| 偷拍熟女少妇极品色| 日韩一区二区视频免费看| 色综合亚洲欧美另类图片| 老司机影院成人| 在现免费观看毛片| av福利片在线观看| 国产精品女同一区二区软件| 99久国产av精品| av在线蜜桃| 午夜福利视频精品| 欧美最新免费一区二区三区| 欧美激情在线99| 中文资源天堂在线| 色哟哟·www| 联通29元200g的流量卡| 777米奇影视久久| av黄色大香蕉| 深夜a级毛片| 国产单亲对白刺激| 久久99蜜桃精品久久| 日本黄色片子视频| 亚洲成人精品中文字幕电影| 欧美丝袜亚洲另类| 日韩av在线免费看完整版不卡| 亚洲欧美中文字幕日韩二区| 欧美精品一区二区大全| 午夜福利视频1000在线观看| 日本免费在线观看一区| 亚洲欧美清纯卡通| 国产午夜福利久久久久久| 亚洲av免费高清在线观看| 日本与韩国留学比较| 亚洲精品成人av观看孕妇| 日日啪夜夜撸| 国产亚洲一区二区精品| 国产精品福利在线免费观看| 嘟嘟电影网在线观看| 亚洲国产精品sss在线观看| 国产麻豆成人av免费视频| 2022亚洲国产成人精品| a级毛色黄片| 国产 一区精品| 久久精品夜色国产| 天天躁夜夜躁狠狠久久av| 国产精品国产三级国产专区5o| 久久久成人免费电影| 99久久精品一区二区三区| 国精品久久久久久国模美| 国产av码专区亚洲av| 日韩亚洲欧美综合| 天天躁夜夜躁狠狠久久av| 天堂俺去俺来也www色官网 | 国产片特级美女逼逼视频| 亚洲精华国产精华液的使用体验| 淫秽高清视频在线观看| 小蜜桃在线观看免费完整版高清| 欧美性猛交╳xxx乱大交人| 久久久久久久久久成人| 国产在视频线精品| 亚洲成人精品中文字幕电影| 免费少妇av软件| 中国国产av一级| 国产有黄有色有爽视频| 干丝袜人妻中文字幕| 免费电影在线观看免费观看| kizo精华| 禁无遮挡网站| 97人妻精品一区二区三区麻豆| 国产日韩欧美在线精品| 啦啦啦中文免费视频观看日本| 成人毛片60女人毛片免费| 欧美极品一区二区三区四区| 国产精品日韩av在线免费观看| 国产精品1区2区在线观看.| 99热6这里只有精品| 亚洲av.av天堂| 国产成人一区二区在线| 国产精品嫩草影院av在线观看| 美女主播在线视频| a级一级毛片免费在线观看| 六月丁香七月| 日韩精品青青久久久久久| 日韩欧美国产在线观看| 少妇裸体淫交视频免费看高清| 亚洲电影在线观看av| 嘟嘟电影网在线观看| 天堂√8在线中文| 久久久久久久久久成人| 男人爽女人下面视频在线观看| 免费播放大片免费观看视频在线观看| 小蜜桃在线观看免费完整版高清| 一级毛片我不卡| 深夜a级毛片| 亚洲丝袜综合中文字幕| 性插视频无遮挡在线免费观看| 男的添女的下面高潮视频| 亚洲av在线观看美女高潮| 欧美性感艳星| 成人毛片60女人毛片免费| 欧美成人午夜免费资源| 欧美性猛交╳xxx乱大交人| 亚洲欧美一区二区三区黑人 | 九色成人免费人妻av| 亚洲成色77777| 色视频www国产| 国产成年人精品一区二区| 岛国毛片在线播放| 一级黄片播放器| 免费电影在线观看免费观看| 日韩,欧美,国产一区二区三区| 亚洲欧美一区二区三区国产| 我的女老师完整版在线观看| 欧美激情国产日韩精品一区| 能在线免费观看的黄片| 国产精品一及| www.av在线官网国产| 在线免费观看不下载黄p国产| 97超视频在线观看视频| 黄色一级大片看看| 狂野欧美白嫩少妇大欣赏| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成年版毛片免费区| 国产乱来视频区| 日韩三级伦理在线观看| 国产白丝娇喘喷水9色精品| 建设人人有责人人尽责人人享有的 | 国产成人午夜福利电影在线观看| 国产亚洲av嫩草精品影院| av国产免费在线观看| 人人妻人人看人人澡| 国内精品宾馆在线| 国产精品av视频在线免费观看| 欧美人与善性xxx| 国产黄色视频一区二区在线观看| 99久久中文字幕三级久久日本|