孫小艷等
摘要:通過農(nóng)桿菌介導(dǎo)轉(zhuǎn)入擬南芥(Arabidopsis thaliana)中進(jìn)行過量表達(dá)。PCR及Western-blot分析結(jié)果表明,ZmLTP3基因已轉(zhuǎn)入擬南芥中,并且在大多數(shù)轉(zhuǎn)化植株中穩(wěn)定表達(dá)。
關(guān)鍵詞:玉米(Zea mays);ZmLTP3基因;擬南芥(Arabidopsis thaliana);遺傳轉(zhuǎn)化
中圖分類號(hào):Q782 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):0439-8114(2014)04-0929-03
Construction and Transformation of Maize ZmLTP3 Gene Expression Vector
SUN Xiao-yan,ZHU Yong,ZOU Hua-wen
(College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China)
Abstract: LTP3 plays important roles in plant physiology. To study the function of a LTP3-like maize(Zea mays) ZmLTP3 gene, the cDNA of ZmLTP3 was constructed into the expression vector pGreen0029 and over-expressed in Arabidopsis thaliana. PCR and Western-blot analysis showed that ZmLTP3 gene was transformed into A. thaliana and expressed in majority transgenic plants.
Key words: maize(Zea mays); ZmLTP3 gene; Arabidopsis thaliana; transformation
植物轉(zhuǎn)脂蛋白(Lipid transfer proteins,LTPs)是一類小分子量、多基因家族編碼的的堿性蛋白質(zhì),具備轉(zhuǎn)移磷脂和脂肪酸的能力[1-3]。轉(zhuǎn)脂蛋白分為兩個(gè)亞家族,即LTP1和LTP2。LTP1亞家族成員含有90~95個(gè)氨基酸殘基,分子質(zhì)量為9 ku左右;LTP2亞家族成員通常含有70個(gè)氨基酸殘基,分子質(zhì)量為7 ku左右[4]。轉(zhuǎn)脂蛋白家族成員的結(jié)構(gòu)高度保守:分子內(nèi)部含有兩個(gè)保守的五肽基序(Thr/Ser-X1-X2-Asp-Arg/Lys、Pro-Tyr-X-Ile-Ser)。另外,蛋白質(zhì)分子中都含有8個(gè)保守的半胱氨酸,形成4對(duì)二硫鍵[5];轉(zhuǎn)脂蛋白分子還含有一個(gè)由4個(gè)α-螺旋形成的疏水洞穴,可以和所轉(zhuǎn)運(yùn)的磷脂或脂肪酸相互作用,從而行使其生物學(xué)功能[6]。
目前為止,已經(jīng)從多種植物中被克隆、鑒定了轉(zhuǎn)脂蛋白基因[7-12]。除了擁有最初認(rèn)為的脂轉(zhuǎn)移功能外,還發(fā)現(xiàn)具有其他多種生物學(xué)功能,如種子脂肪動(dòng)員、體細(xì)胞發(fā)育、蠟物質(zhì)形成、表皮形成、花粉管黏著、抗病等[4,13-19]。相對(duì)于在生物脅迫中的功能而言,轉(zhuǎn)脂蛋白在非生物脅迫中功能的直接證據(jù)還鮮有報(bào)道。
在此前的研究中,課題組相繼從玉米(Zea mays)中克隆了Pto/Pti1信號(hào)傳導(dǎo)途徑的兩個(gè)重要成員ZmPto和ZmPti1基因,過量表達(dá)ZmPto和ZmPti1基因的擬南芥(Arabidopsis thaliana)株系表現(xiàn)出較高的抗鹽性[20,21]。隨后,對(duì)轉(zhuǎn)基因擬南芥株系做基因芯片分析。結(jié)果表明,轉(zhuǎn)基因擬南芥中LTP3基因(At5g59320)的表達(dá)量相對(duì)于野生型提高了近18倍。這表明LTP3可能是Pto/Pti1信號(hào)系統(tǒng)的下游組分,并且在抗鹽過程中起到非常重要的作用。隨后,從玉米中克隆了擬南芥LTP3基因的同源基因ZmLTP3(GenBank Accession No. JX435819),RT-PCR分析發(fā)現(xiàn)ZmLTP3可由多種生物和非生物脅迫因子(尤其是高鹽)所誘導(dǎo)(待發(fā)表)。本研究構(gòu)建了植物表達(dá)載體,將ZmLTP3基因轉(zhuǎn)入擬南芥中過量表達(dá),為研究其生物學(xué)功能提供可能。
1 材料與方法
1.1 試驗(yàn)材料
1.1.1 材料 擬南芥(Columbia 生態(tài)型)、大腸桿菌(E. coli) DH5α、農(nóng)桿菌GV3101、pGEM-T載體、含ZmPti1-dHA序列的酵母表達(dá)載體p426GAL1、含35S-C4DDPK-CBF3-NOS片段的植物表達(dá)載體pGreen0029均由長(zhǎng)江大學(xué)農(nóng)學(xué)院保存。
1.1.2 試劑 DNA 凝膠回收試劑盒購自杭州V-gene生物技術(shù)公司; DNA限制性內(nèi)切酶、T4 DNA 連接酶、ExTaq酶、DNA Marker均購自寶生物工程(大連)有限公司;Anti-HA(3f10)及Peroxidase-conjugated goat anti-rat IgG(H+L)均購自Roche公司;PVDF膜購自Millipore公司;其他試劑均為國產(chǎn)分析純。PCR 引物及DNA測(cè)序工作由生工生物工程(上海)股份有限公司完成。
1.2 試驗(yàn)方法
1.2.1 ZmLTP3基因植物表達(dá)載體的構(gòu)建 設(shè)計(jì)PCR引物(含BamHⅠ和StuⅠ酶切位點(diǎn))擴(kuò)增pGEM-T載體中ZmLTP3基因序列,BamHⅠ/StuⅠ雙酶切PCR產(chǎn)物和含ZmPti1-dHA序列的酵母表達(dá)載體p426GAL1。T4 DNA連接酶連接酶切后的載體與PCR產(chǎn)物,形成重組載體p426GAL1。隨后用BamHⅠ/PstⅠ雙酶切重組載體p426GAL1和含有35S-C4DDPK-CBF3-NOS片段的植物表達(dá)載體pGreen0029,得到ZmLTP3-dHA片段和表達(dá)載體,T4 DNA連接酶連接過夜,形成含有35S-C4DDPK-ZmLTP3-dHA-NOS片段的重組載體pGreen0029,并送至生工生物工程(上海)股份有限公司測(cè)序驗(yàn)證。
1.2.2 ZmLTP3基因的轉(zhuǎn)化 將鑒定正確的質(zhì)粒用凍融法轉(zhuǎn)化農(nóng)桿菌GV3101,轉(zhuǎn)化后的農(nóng)桿菌用花浸蘸法侵染擬南芥。
1.2.3 轉(zhuǎn)基因擬南芥的PCR檢測(cè) 轉(zhuǎn)基因擬南芥T0代的種子經(jīng)消毒后播在含50 μg/mL卡那霉素的MS培養(yǎng)基上進(jìn)行篩選,挑選在抗性培養(yǎng)基上正常生長(zhǎng)的擬南芥植株提取基因組DNA,以DNA為模板,以ZmLTP3基因片斷內(nèi)部和載體片段的1對(duì)特異引物進(jìn)行PCR鑒定。
1.2.4 轉(zhuǎn)基因擬南芥的Western-blot檢測(cè) 取0.3 g經(jīng)PCR鑒定呈陽性的擬南芥幼嫩的葉片,加0.5 mL蛋白提取緩沖液(10 mmol/L Tris-HCl,0.02% NaN3,0.001% PMSF,pH 8.0),液氮研磨后4 ℃、5 000 r/min離心10 min,吸取上清液,即得到總蛋白提取液。取適當(dāng)總蛋白提取液電泳,轉(zhuǎn)膜后以小鼠單克隆抗體Anti-HA(3f10)為一抗,Peroxidase-conjugated goat anti-rat IgG (H+L) 為二抗,進(jìn)行Western-blot 檢測(cè)。
2 結(jié)果與分析
2.1 ZmLTP3基因植物表達(dá)載體的構(gòu)建
取BamHⅠ/PstⅠ酶切回收后的PCR片段和載體片段, 用T4 DNA連接酶連接,轉(zhuǎn)化大腸桿菌后,挑選陽性克隆提取質(zhì)粒進(jìn)行酶切驗(yàn)證,所得的酶切片段與預(yù)期大小一致, 初步證明已經(jīng)連接成功。將質(zhì)粒進(jìn)行測(cè)序, 做進(jìn)一步驗(yàn)證,結(jié)果確認(rèn)了重組質(zhì)粒構(gòu)建成功。ZmLTP3重組質(zhì)粒植物表達(dá)載體如圖1所示。
2.2 轉(zhuǎn)基因擬南芥的鑒定
經(jīng)過測(cè)序鑒定正確的載體轉(zhuǎn)化農(nóng)桿菌,攜帶表達(dá)載體的農(nóng)桿菌介導(dǎo)轉(zhuǎn)化擬南芥, 轉(zhuǎn)化后收取T0代種子, 播種在含有50 μg/L卡那霉素的MS培養(yǎng)基上。種子發(fā)芽后大多數(shù)幼苗子葉變黃,只有少部分幼苗仍然發(fā)綠,并且正常長(zhǎng)出真葉,保持正常的生長(zhǎng)狀態(tài),這部分很有可能就是轉(zhuǎn)化了的幼苗(圖2)。
為了排除抗生素篩選過程中的假陽性必須對(duì)初步篩選出的抗性植株做進(jìn)一步的分子檢測(cè)。將在抗性培養(yǎng)基上正常生長(zhǎng)的T1代幼苗轉(zhuǎn)移到土壤中,待植株充分長(zhǎng)大,有足夠葉子時(shí),取2~3片幼嫩的葉子提取基因組DNA,并以ZmLTP3基因與載體片段的特異引物進(jìn)行PCR擴(kuò)增,結(jié)果如圖3所示。野生型植株沒有擴(kuò)增出相應(yīng)條帶,同時(shí)也發(fā)現(xiàn),抗性篩選出的幼苗也有假陽性。
為了進(jìn)一步驗(yàn)證轉(zhuǎn)基因株系,經(jīng)過PCR 初步鑒定的株系,提取總蛋白,通過Western-blot進(jìn)一步在蛋白水平檢測(cè)基因的表達(dá),結(jié)果如圖4所示。除了野生型植株沒有印跡條帶外, 其他PCR 陽性的株系在13 ku左右處均有特異條帶。結(jié)果表明, 這些株系為轉(zhuǎn)基因株系,轉(zhuǎn)化的目的基因在植物中得到了表達(dá),沒有出現(xiàn)基因沉默現(xiàn)象。
3 小結(jié)
參考文獻(xiàn):
[1] BERNHARD W R, THOMA S, BOTELLA J, et al. Isolation of a cDNA clone for spinach lipid transfer protein and evidence that the protein is synthesized by the secretory pathway[J]. Plant Physiol,1991,95(1):164-170.
[2] KADER J C. Lipid transfer proteins in plants[J]. Annu Rev Plant Physiol Mol Biol,1996,47(1):627-654.
[3] THOMA S, HECHT U, KIPPERS A,et al.Tissue specific expression of a gene encoding a cell wall localized lipid transfer protein from Arabidopsis[J]. Plant Physiol,1994,105(1):35-45.
[4] CARVALHO A O, GOMES V M.Role of plant lipid transfer proteins in plant cell physiology: A concise review[J]. Peptide,2007,28(5):1144-1153.
[5] DOULIEZ J P, MICHON T, ELMORJANI K, et al. Mini review: Structure, biological and technological functions of lipid transfer proteins and indolines, the major lipid binding proteins from cereal kernels[J]. Journal of Cereal Science,2000, 32(1):1-20.
[6] ZACHOWSKI A, GUERBETTE F, GROSBOIS M,et al. Characterisation of acyl binding by a plant lipid-transfer protein[J]. European Journal of Biochemistry,1998,257(2):443-448.
[7] KINLAW C S, GERTTULA S M, CARTER M C. Lipid transfer protein genes of loblolly pine are members of a complex gene family[J]. Plant Molecular Biology,1994,26(4):1213-1216.
[8] FENG J X, JI S J, SHI Y H, et al. Analysis of five differentially expressed gene families in fast elongating cotton fiber[J]. Acta Biochimica et Biophysica Sinica,2004,36(1):51-56.
[9] LIU K, JIANG H, MOORE S L, et al. Isolation and characterization of a lipid transfer protein expressed in ripening fruit of Capsicum chinense[J]. Planta,2006,223(4):672-683.
[10] BOUTROT F, MEYNARD D, GUIDERDONI E, et al. The Triticum aestivum non-specific lipid transfer protein (TaLtp) gene family: Comparative promoter activity of six TaLtp genes in transgenic rice[J]. Planta,2007,225(4):843-862.
[11] BOUTROT F, CHANTRET N, GAUTIER M F. Genome-wide analysis of the rice and Arabidopsis non-specific lipid transfer protein(nsLtp) gene families and identification of wheat nsLtp genes by EST data mining[J]. BMC Genomics,2008, 9(1):86-105.
[12] CHOI Y E, LIM S, KIM H J, et al. Tobacco NtLTP1, a glandular-specific lipid transfer protein, is required for lipid secretion from glandular trichomes[J]. The Plant Journal,2012, 70(3):480-491.
[13] TSUBOI S, OSAFUNE T, TSUGEKI R, et al. Nonspecific lipid transfer protein in castor bean cotyledon cells: Subcellular localization and a possible role in lipid metabolism[J]. Journal of Biochemistry,1992,111(4):500-508.
[14] HOLLENBACH B, SCHREIBER L, HARTUNG W, et al. Cadmium leads to stimulated expression of the lipid transfer protein genes in barley: Implications for the involvement of lipid transfer proteins in wax assembly[J]. Planta,1997,203(1):9-19.
[15] PARK S Y, LORD E M. Expression studies of SCA in lily and confirmation of its role in pollen tube adhesion[J]. Plant Molecular Biology,2003,51(2):183-189.
[16] YEATS T H, ROSE J K C. The biochemistry and biology of extracellular plant lipid-transfer proteins(LTPs)[J]. Protein Science,2008,17(2):191-198.
[17] LEE S B, GO Y S, BAE H J,et al. Disruption of glycosylphosphatidylinositol-anchored lipid transfer protein gene altered cuticular lipid composition, increased plastoglobules, and enhanced susceptibility to infection by the fungal pathogen Alternaria brassicicola[J]. Plant Physiology,2009, 150(1):42-54.
[18] SAROWAR S, KIM Y J, KIM K D. Overexpression of lipid transfer protein (LTP) genes enhances resistance to plant pathogens and LTP functions in long-distance systemic signaling in tobacco[J]. Plant Cell Reports,2009,28(3):419-427.
[19] LOON V L C, STRIEN V E A. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins[J]. Physiological and Molecular Plant Pathology,1999,55(2):85-97.
[20] ZOU H W, WU Z Y, YANG Q. Gene expression analyses of ZmPti1, encoding a maize Pti-like kinase, suggest a role in stress signaling[J]. Plant Science,2006,171(1):99-105.
[21] ZOU H W, WU Z Y, ZHANG X H. Over-expression of ZmPti1, a homologue to Pti1, increases salt tolerance of Arabidopsis thaliana[J]. African Journal of Biotechnology,2010, 9(5):656-662.
[8] FENG J X, JI S J, SHI Y H, et al. Analysis of five differentially expressed gene families in fast elongating cotton fiber[J]. Acta Biochimica et Biophysica Sinica,2004,36(1):51-56.
[9] LIU K, JIANG H, MOORE S L, et al. Isolation and characterization of a lipid transfer protein expressed in ripening fruit of Capsicum chinense[J]. Planta,2006,223(4):672-683.
[10] BOUTROT F, MEYNARD D, GUIDERDONI E, et al. The Triticum aestivum non-specific lipid transfer protein (TaLtp) gene family: Comparative promoter activity of six TaLtp genes in transgenic rice[J]. Planta,2007,225(4):843-862.
[11] BOUTROT F, CHANTRET N, GAUTIER M F. Genome-wide analysis of the rice and Arabidopsis non-specific lipid transfer protein(nsLtp) gene families and identification of wheat nsLtp genes by EST data mining[J]. BMC Genomics,2008, 9(1):86-105.
[12] CHOI Y E, LIM S, KIM H J, et al. Tobacco NtLTP1, a glandular-specific lipid transfer protein, is required for lipid secretion from glandular trichomes[J]. The Plant Journal,2012, 70(3):480-491.
[13] TSUBOI S, OSAFUNE T, TSUGEKI R, et al. Nonspecific lipid transfer protein in castor bean cotyledon cells: Subcellular localization and a possible role in lipid metabolism[J]. Journal of Biochemistry,1992,111(4):500-508.
[14] HOLLENBACH B, SCHREIBER L, HARTUNG W, et al. Cadmium leads to stimulated expression of the lipid transfer protein genes in barley: Implications for the involvement of lipid transfer proteins in wax assembly[J]. Planta,1997,203(1):9-19.
[15] PARK S Y, LORD E M. Expression studies of SCA in lily and confirmation of its role in pollen tube adhesion[J]. Plant Molecular Biology,2003,51(2):183-189.
[16] YEATS T H, ROSE J K C. The biochemistry and biology of extracellular plant lipid-transfer proteins(LTPs)[J]. Protein Science,2008,17(2):191-198.
[17] LEE S B, GO Y S, BAE H J,et al. Disruption of glycosylphosphatidylinositol-anchored lipid transfer protein gene altered cuticular lipid composition, increased plastoglobules, and enhanced susceptibility to infection by the fungal pathogen Alternaria brassicicola[J]. Plant Physiology,2009, 150(1):42-54.
[18] SAROWAR S, KIM Y J, KIM K D. Overexpression of lipid transfer protein (LTP) genes enhances resistance to plant pathogens and LTP functions in long-distance systemic signaling in tobacco[J]. Plant Cell Reports,2009,28(3):419-427.
[19] LOON V L C, STRIEN V E A. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins[J]. Physiological and Molecular Plant Pathology,1999,55(2):85-97.
[20] ZOU H W, WU Z Y, YANG Q. Gene expression analyses of ZmPti1, encoding a maize Pti-like kinase, suggest a role in stress signaling[J]. Plant Science,2006,171(1):99-105.
[21] ZOU H W, WU Z Y, ZHANG X H. Over-expression of ZmPti1, a homologue to Pti1, increases salt tolerance of Arabidopsis thaliana[J]. African Journal of Biotechnology,2010, 9(5):656-662.
[8] FENG J X, JI S J, SHI Y H, et al. Analysis of five differentially expressed gene families in fast elongating cotton fiber[J]. Acta Biochimica et Biophysica Sinica,2004,36(1):51-56.
[9] LIU K, JIANG H, MOORE S L, et al. Isolation and characterization of a lipid transfer protein expressed in ripening fruit of Capsicum chinense[J]. Planta,2006,223(4):672-683.
[10] BOUTROT F, MEYNARD D, GUIDERDONI E, et al. The Triticum aestivum non-specific lipid transfer protein (TaLtp) gene family: Comparative promoter activity of six TaLtp genes in transgenic rice[J]. Planta,2007,225(4):843-862.
[11] BOUTROT F, CHANTRET N, GAUTIER M F. Genome-wide analysis of the rice and Arabidopsis non-specific lipid transfer protein(nsLtp) gene families and identification of wheat nsLtp genes by EST data mining[J]. BMC Genomics,2008, 9(1):86-105.
[12] CHOI Y E, LIM S, KIM H J, et al. Tobacco NtLTP1, a glandular-specific lipid transfer protein, is required for lipid secretion from glandular trichomes[J]. The Plant Journal,2012, 70(3):480-491.
[13] TSUBOI S, OSAFUNE T, TSUGEKI R, et al. Nonspecific lipid transfer protein in castor bean cotyledon cells: Subcellular localization and a possible role in lipid metabolism[J]. Journal of Biochemistry,1992,111(4):500-508.
[14] HOLLENBACH B, SCHREIBER L, HARTUNG W, et al. Cadmium leads to stimulated expression of the lipid transfer protein genes in barley: Implications for the involvement of lipid transfer proteins in wax assembly[J]. Planta,1997,203(1):9-19.
[15] PARK S Y, LORD E M. Expression studies of SCA in lily and confirmation of its role in pollen tube adhesion[J]. Plant Molecular Biology,2003,51(2):183-189.
[16] YEATS T H, ROSE J K C. The biochemistry and biology of extracellular plant lipid-transfer proteins(LTPs)[J]. Protein Science,2008,17(2):191-198.
[17] LEE S B, GO Y S, BAE H J,et al. Disruption of glycosylphosphatidylinositol-anchored lipid transfer protein gene altered cuticular lipid composition, increased plastoglobules, and enhanced susceptibility to infection by the fungal pathogen Alternaria brassicicola[J]. Plant Physiology,2009, 150(1):42-54.
[18] SAROWAR S, KIM Y J, KIM K D. Overexpression of lipid transfer protein (LTP) genes enhances resistance to plant pathogens and LTP functions in long-distance systemic signaling in tobacco[J]. Plant Cell Reports,2009,28(3):419-427.
[19] LOON V L C, STRIEN V E A. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins[J]. Physiological and Molecular Plant Pathology,1999,55(2):85-97.
[20] ZOU H W, WU Z Y, YANG Q. Gene expression analyses of ZmPti1, encoding a maize Pti-like kinase, suggest a role in stress signaling[J]. Plant Science,2006,171(1):99-105.
[21] ZOU H W, WU Z Y, ZHANG X H. Over-expression of ZmPti1, a homologue to Pti1, increases salt tolerance of Arabidopsis thaliana[J]. African Journal of Biotechnology,2010, 9(5):656-662.