楊希等
摘要:選取了一株具有殺藻功能的蠟狀芽孢桿菌(Bacillus cereus)與銅綠微囊藻(Microcystis aeruginosa)在28 ℃條件下共同培養(yǎng),同時利用氣相色譜-質譜技術對甲硫醚(Dimethyl sulfide, DMS)、二甲基三硫醚(Dimethyl trisulfide, DMTS)、β-環(huán)檸檬醛(β-cyclocitral)等3種異味物質進行了測定。氣質聯用結果顯示,在藻類延滯期階段,藻菌共培養(yǎng)組中的B. cereus能夠增加DMS和DMTS的濃度,藻菌共培養(yǎng)組中β-環(huán)檸檬醛濃度低于銅綠微囊藻單獨培養(yǎng)組;在藻類對數期階段,β-環(huán)檸檬醛成為主要的異味化合物。雙因素方差分析表明藻菌之間的相互關系影響異味化合物的變化,DMS和DMTS同時受到微囊藻和細菌的影響,而β-環(huán)檸檬醛只和銅綠微囊藻的生物量呈正相關。
關鍵詞:藻菌共培養(yǎng);異味化合物;銅綠微囊藻(Microcystis aeruginosa);蠟狀芽孢桿菌(Bacillus cereus)
中圖分類號:Q93-331 文獻標識碼:A 文章編號:0439-8114(2014)02-0301-03
Effects of Bacillus cereus on Off-flavors in Algae/bacteria Co-culture System
YANG Xi1,2,3,XIE Ping1
(1.Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
2.Wuhan Fisheries Science Research Institute,Wuhan 430207,China;3.The University of Chinese Academy of Sciences,Beijing 100049,China)
Abstract: An experiment was conducted to study the effects of Bacillus cereus on off-flavors in an algae/bacteria co-culture system at 28 ℃. Gas chromatography-mass spectrometry(GC-MS) was used to analyse off-flavor compounds dimethyl sulfide (DMS), dimethyl trisulfide (DMTS) and β-cyclocitral. During the lag phase of the co-culture system with M. aeruginosa (first fifteen days), B. cereus significantly increased the production of DMS and DMTS. In the exponential phase of the co-culture system (after the fifteen days), β-cyclocitral was the highest off-flavor compound. These results indicated that B. cereus increased the productions of DMS and DMTS in co-culture system. Two-Way ANOVA was used to investigate the effects of M. aeruginosa and B. cereus on the production of off-flavors. The results showed that both M. aeruginosa and B. cereus could increase the production of DMS and DMTS. β-cyclocitral was positively correlated with the biomass of M. aeruginosa.
Key words: co-culture system; off-flavors; Microcystis aeruginosa; Bacillus cereus
近年來,藍藻水華引起的環(huán)境污染已經成為全世界關注的水環(huán)境問題。藍藻水華主要是由銅綠微囊藻(Microcystis aeruginosa)造成的,在中國眾多的富營養(yǎng)化湖泊中頻繁發(fā)生[1]。藍藻水華帶來的危害不僅包括藻毒素的釋放和水體景觀的破壞,其生長和腐敗產生的水體異味更造成了嚴重的環(huán)境污染。2005年湖北省襄樊市熊河水庫發(fā)生嚴重異味事件[2],2007年太湖藍藻水華暴發(fā)導致的強烈異味事件更是引起了全世界的關注,也將水體異味產生的惡劣環(huán)境影響提到了亟待解決的議事日程上[3,4]。嚴重水體異味事件不僅給水產養(yǎng)殖業(yè)、景觀和旅游業(yè)造成巨大的損失,也加重了水處理系統的負擔[5],所以對異味課題的探討對解決水環(huán)境問題意義重大。
通常情況下富營養(yǎng)化水體異味是由一些可揮發(fā)性有機物質(Volatile organic compounds,VOCs)引起的,包括甲硫醚(Dimethyl sulfide,DMS)[6]、二甲基二硫醚(Dimethyl disulfide,DMDS)、二甲基三硫醚(Dimethyl trisulfide,DMTS)[7]、硫醇[8]、2-異丙基-3-甲氧基吡嗪(IPMP)[9]、β-紫羅蘭酮(β-ionone)[10]、二甲基異莰醇(2-methylisoborneol, MIB)[11]、土味素(Geosmin,GEO)[12]和β-環(huán)檸檬醛(β-cyclocitral)[13]等。在整個富營養(yǎng)化水體中,水華藍藻產生的萜類化合物、硫醇和色素衍生物是大多數揮發(fā)性有機化合物的前體[14],此外一些光合非硫細菌也可以產生甲基化硫化物如甲硫醚和二甲基二硫醚等[15],這些物質通常都是異味化合物的來源。藍藻和微生物之間的關系影響著整個水生生態(tài)系統的能量和營養(yǎng)的流動循環(huán)[16],所以異味物質與藍藻以及異養(yǎng)細菌的生理生化變化有著密不可分的關系。目前一些已有的研究通常從水體異味物質的來源、光照和溫度對其產生的影響和動力學方面加以探討[17],鮮有報道涉及水華藍藻與異養(yǎng)微生物相互關系對異味物質的影響。本研究利用微囊藻與細菌的共培養(yǎng)系統模擬富營養(yǎng)化水體,以期通過闡述藻菌相互關系對異味的影響為異味物質的控制與去除提供新的理論依據。
1 材料與方法
1.1 材料
在整個試驗過程中, B. cereus生物量都呈下降趨勢,而且在第15天下降趨勢最為明顯。皮爾森相關分析(Pearson correlation analysis)證明微囊藻和細菌的生長關系為相互拮抗(Pearson Correlation=-0.221,P=0.01)。也就是說,高濃度的微囊藻抑制了細菌的生長,而反過來高濃度的細菌則抑制了微囊藻的生長。據此推測,在本試驗中,混合培養(yǎng)的藻類延滯期延長是由于B. cereus所具有的殺藻作用造成的,而當微囊藻達到對數生長期時,細菌的生長被抑制可能是由于微囊藻的分泌物(如藻毒素)造成的,但這個推測還需要進一步的試驗證明。
2.2 異味化合物的動態(tài)變化
在藻類延滯期階段,M. aeruginosa和B. cereus對照組的DMS和DMTS均小于處理組(P<0.05)(圖2)。在水體異味物質中,屬于揮發(fā)性硫化物(Volatile organic sulfur compounds,VOSCs)類的DMS、DMDS和DMTS基本上均來自于藻類降解,有報道證明在這個過程異養(yǎng)細菌起著很重要的作用[7]。Bacillus被認為是一種具有殺藻作用的細菌屬[16],在本試驗中,M. aeruginosa和B. cereus均能分泌DMS和DMTS,而對照組濃度低于處理組的結果說明,處理組中的B. cereus加快了M. aeruginosa的分解,提高了DMS和DMTS的產生。這一結果與之前所報道的一些研究結論相似[7]。在藻類對數生長期,處理組中的B. cereus生物量降低,M. aeruginosa加速生長,DMS和DMTS濃度也相應減小,這些現象證明M. aeruginosa的死亡和分解往往伴隨著高濃度揮發(fā)性硫化物的產生。
在本試驗中藻類處在延滯期時,M. aeruginosa對照組的β-環(huán)檸檬醛濃度均高于處理組以及B. cereus對照組;15 d后,處理組和M. aeruginosa對照組的M. aeruginosa均進入對數生長期,而β-環(huán)檸檬醛濃度組間無差別。這一現象有理論依據,即β-環(huán)檸檬醛一般被認為是由微囊藻種屬產生的揮發(fā)性化合物[7],而且它的產生只和微囊藻有緊密聯系[21]。結合本試驗結果可知,β-環(huán)檸檬醛的產生與M. aeruginosa生長密切相關,B. cereus并非β-環(huán)檸檬醛的主要來源。
2.3 銅綠微囊藻、蠟狀芽孢桿菌和異味化合物之間的相互關系
雙因素方差分析的結果(表1)顯示,M. aeruginosa、B. cereus以及它們之間的交互作用均對DMS和DMTS濃度有顯著影響,M. aeruginosa與β-環(huán)檸檬醛之間為正相關。MIB和GEO在本試驗中不受到任何因素的影響。
3 小結
本研究證明,藻類延滯期階段B. cereus增加了DMS和DMTS的合成,且DMS和DMTS受到M. aeruginosa和B. cereus交互作用的影響;β-環(huán)檸檬醛只和M. aeruginosa有相關性。這些結果表明異味物質的來源和影響因素較為復雜,具體情況有待進一步研究。
參考文獻:
[1] 宋立榮,李 林 陳 偉,等.水體異味及其藻源次生代謝產物研究進展[J].水生生物學報,2004,28(4):435-439.
[2] ZHANG T, LI L, ZUO Y X, et al. Biological origins and annual variations of earthy-musty off-flavours in the Xionghe Reservoir in China[J]. Journal of Water Supply Research and Technology-Aqua,2010,59(4):243-254.
[3] YANG M, YU J, LI Z, et al. Taihu Lake not to blame for Wuxis woes[J]. Science, 2008,319(5860):158.
[4] CHEN J, XIE P, MA Z M, et al. A systematic study on spatial and seasonal patterns of eight taste and odor compounds with relation to various biotic and abiotic parameters in Gonghu Bay of Lake Taihu,China[J]. Sci Total Environ, 2010, 409(2):314-325.
[5] LI L, WAN N, GAN N, et al. Annual dynamics and origins of the odorous compounds in the pilot experimental area of Lake Dianchi, China[J]. Water Sci Technol,2007,55(5):43-50.
[6] GIGER W, SCHAFFNER C. Groundwater pollution by volatile organic chemicals[J]. Studies in Environmental Science,1981, 17:517-522.
[7] ZHANG X J, CHEN C, DING J Q, et al., The 2007 water crisis in Wuxi, China: Analysis of the origin[J]. Journal of Hazardous Materials,2010,182(1-3):130-135.
[8] SLATER G P, BLOK V C. Volatile compounds of the Cyanophyceae. A review[J]. Water Science & Technology,1983, 15(6):181-190.
[9] BUYYER R, LING L. Earthy aroma of potatoes[J]. Journal of Agricultural and Food Chemistry,1973,21(4):745-746.
[10] HOCKELMANN C, JUTTNER F. Off-flavours in water: Hydroxyketones and beta-ionone derivatives as new odour compounds of freshwater cyanobacteria[J]. Flavour and Fragrance Journal,2005,20(4):387-394.
[11] ROSEN A A, SAFFERMAN R S,MASHNI C I, et al. Identity of odorous substance produced by Streptomyces griseoluteus[J]. Applied and Environmental Microbiology,1968,16(1):178-179.
[12] GUTTMAN L, RIJN J V. 2-Methylisoborneol and geosmin uptake by organic sludge derived from a recirculating aquaculture system[J]. Water Research,2009,43(2):474-480.
[13] OZAKI K, AKEMI O, CHIEKO I, et al. Lysis of cyanobacteria with volatile organic compounds[J]. Chemosphere,2008, 71(8):1531-1538.
[14] WASTON S B, JEFF R, BOYER G L. Boyer, taste and odour and cyanobacterial toxins: impairment, prediction, and management in the Great Lakes[J]. Canadian Journal of Fisheries and Aquatic Sciences,2008,65(8):1779-1796.
[15] MCCARTHY S, TOM C, MICHELE M, et al. Phototrophic bacteria produce volatile, methylated sulfur and selenium compounds[J]. Fems Microbiology Letters,1993,112(1):93-97.
[16] FRAZIER A D, ROWEL J M, RENTZ C A,et al. Bacterial lysis of aureococcus anophageggerens CCMP 1784 (pelagophyceae)[J]. Journal of Phycology,2007,43(3):461-465.
[17] ZHANG T, LI L, SONG L R, et al. Effects of temperature and light on the growth and geosmin production of Lyngbya kuetzingii(Cyanophyta)[J]. Journal of Applied Phycology, 2009,21(3):279-285.
[18] NAKAMURA N, NAKANO K, SUGIURA N et al. A novel cyanobacteriolytic bacterium, Bacillus cereus, isolated from a Eutrophic Lake[J]. Journal of Bioscience and Bioengineering, 2003,95(2):179-184.
[19] STANIER R Y, KUNISAWA R, MANDELl M, et al., Purification and properties of unicellular blue-green algae (order Chroococcales)[J]. Microbiology and Molecular Biology Reviews,1971,35(2):171-205.
[20] PORTER K, FEIG Y S. The use of DAPI for identifying and counting aquatic microflora[J]. Limnology and Oceanography,1980,25(5):943-948.
[21] HARADA K, OZAKI K, TSUZULI S, et al. Blue color formation of cyanobacteria with β-Cyclocitral[J]. Journal of Chemical Ecology,2009,35(11):1295-1301.
[8] SLATER G P, BLOK V C. Volatile compounds of the Cyanophyceae. A review[J]. Water Science & Technology,1983, 15(6):181-190.
[9] BUYYER R, LING L. Earthy aroma of potatoes[J]. Journal of Agricultural and Food Chemistry,1973,21(4):745-746.
[10] HOCKELMANN C, JUTTNER F. Off-flavours in water: Hydroxyketones and beta-ionone derivatives as new odour compounds of freshwater cyanobacteria[J]. Flavour and Fragrance Journal,2005,20(4):387-394.
[11] ROSEN A A, SAFFERMAN R S,MASHNI C I, et al. Identity of odorous substance produced by Streptomyces griseoluteus[J]. Applied and Environmental Microbiology,1968,16(1):178-179.
[12] GUTTMAN L, RIJN J V. 2-Methylisoborneol and geosmin uptake by organic sludge derived from a recirculating aquaculture system[J]. Water Research,2009,43(2):474-480.
[13] OZAKI K, AKEMI O, CHIEKO I, et al. Lysis of cyanobacteria with volatile organic compounds[J]. Chemosphere,2008, 71(8):1531-1538.
[14] WASTON S B, JEFF R, BOYER G L. Boyer, taste and odour and cyanobacterial toxins: impairment, prediction, and management in the Great Lakes[J]. Canadian Journal of Fisheries and Aquatic Sciences,2008,65(8):1779-1796.
[15] MCCARTHY S, TOM C, MICHELE M, et al. Phototrophic bacteria produce volatile, methylated sulfur and selenium compounds[J]. Fems Microbiology Letters,1993,112(1):93-97.
[16] FRAZIER A D, ROWEL J M, RENTZ C A,et al. Bacterial lysis of aureococcus anophageggerens CCMP 1784 (pelagophyceae)[J]. Journal of Phycology,2007,43(3):461-465.
[17] ZHANG T, LI L, SONG L R, et al. Effects of temperature and light on the growth and geosmin production of Lyngbya kuetzingii(Cyanophyta)[J]. Journal of Applied Phycology, 2009,21(3):279-285.
[18] NAKAMURA N, NAKANO K, SUGIURA N et al. A novel cyanobacteriolytic bacterium, Bacillus cereus, isolated from a Eutrophic Lake[J]. Journal of Bioscience and Bioengineering, 2003,95(2):179-184.
[19] STANIER R Y, KUNISAWA R, MANDELl M, et al., Purification and properties of unicellular blue-green algae (order Chroococcales)[J]. Microbiology and Molecular Biology Reviews,1971,35(2):171-205.
[20] PORTER K, FEIG Y S. The use of DAPI for identifying and counting aquatic microflora[J]. Limnology and Oceanography,1980,25(5):943-948.
[21] HARADA K, OZAKI K, TSUZULI S, et al. Blue color formation of cyanobacteria with β-Cyclocitral[J]. Journal of Chemical Ecology,2009,35(11):1295-1301.
[8] SLATER G P, BLOK V C. Volatile compounds of the Cyanophyceae. A review[J]. Water Science & Technology,1983, 15(6):181-190.
[9] BUYYER R, LING L. Earthy aroma of potatoes[J]. Journal of Agricultural and Food Chemistry,1973,21(4):745-746.
[10] HOCKELMANN C, JUTTNER F. Off-flavours in water: Hydroxyketones and beta-ionone derivatives as new odour compounds of freshwater cyanobacteria[J]. Flavour and Fragrance Journal,2005,20(4):387-394.
[11] ROSEN A A, SAFFERMAN R S,MASHNI C I, et al. Identity of odorous substance produced by Streptomyces griseoluteus[J]. Applied and Environmental Microbiology,1968,16(1):178-179.
[12] GUTTMAN L, RIJN J V. 2-Methylisoborneol and geosmin uptake by organic sludge derived from a recirculating aquaculture system[J]. Water Research,2009,43(2):474-480.
[13] OZAKI K, AKEMI O, CHIEKO I, et al. Lysis of cyanobacteria with volatile organic compounds[J]. Chemosphere,2008, 71(8):1531-1538.
[14] WASTON S B, JEFF R, BOYER G L. Boyer, taste and odour and cyanobacterial toxins: impairment, prediction, and management in the Great Lakes[J]. Canadian Journal of Fisheries and Aquatic Sciences,2008,65(8):1779-1796.
[15] MCCARTHY S, TOM C, MICHELE M, et al. Phototrophic bacteria produce volatile, methylated sulfur and selenium compounds[J]. Fems Microbiology Letters,1993,112(1):93-97.
[16] FRAZIER A D, ROWEL J M, RENTZ C A,et al. Bacterial lysis of aureococcus anophageggerens CCMP 1784 (pelagophyceae)[J]. Journal of Phycology,2007,43(3):461-465.
[17] ZHANG T, LI L, SONG L R, et al. Effects of temperature and light on the growth and geosmin production of Lyngbya kuetzingii(Cyanophyta)[J]. Journal of Applied Phycology, 2009,21(3):279-285.
[18] NAKAMURA N, NAKANO K, SUGIURA N et al. A novel cyanobacteriolytic bacterium, Bacillus cereus, isolated from a Eutrophic Lake[J]. Journal of Bioscience and Bioengineering, 2003,95(2):179-184.
[19] STANIER R Y, KUNISAWA R, MANDELl M, et al., Purification and properties of unicellular blue-green algae (order Chroococcales)[J]. Microbiology and Molecular Biology Reviews,1971,35(2):171-205.
[20] PORTER K, FEIG Y S. The use of DAPI for identifying and counting aquatic microflora[J]. Limnology and Oceanography,1980,25(5):943-948.
[21] HARADA K, OZAKI K, TSUZULI S, et al. Blue color formation of cyanobacteria with β-Cyclocitral[J]. Journal of Chemical Ecology,2009,35(11):1295-1301.