池妍+譚治良
摘 要 光聲層析成像技術(shù)是一種新興的醫(yī)學(xué)成像技術(shù),具有高分辨率、高對(duì)比度、高穿透深度的優(yōu)點(diǎn)。文章簡(jiǎn)要介紹光聲層析成像技術(shù)的原理,并報(bào)道基于單聚焦換能器掃描的層析成像技術(shù)和基于多探元超聲探測(cè)方式的層析成像技術(shù),指出該技術(shù)在醫(yī)學(xué)檢測(cè)上具有重要的應(yīng)用前景。
關(guān)鍵詞 光聲層析成像技術(shù);高分辨率;高穿透深度
中圖分類號(hào):TP3 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1671-7597(2014)05-0002-02
光聲成像技術(shù)是基于光聲效應(yīng)的一種成像技術(shù)。當(dāng)物質(zhì)受到短脈沖激光或者周期性的強(qiáng)度調(diào)制的光照時(shí),物質(zhì)內(nèi)部將會(huì)產(chǎn)生周期的溫度變化,溫度變化使這部分物質(zhì)及其鄰近介質(zhì)產(chǎn)生周期性的漲縮,從而產(chǎn)生聲信號(hào),這種聲信號(hào)被稱為光聲信號(hào)。光聲成像技術(shù)具有高分辨率、高對(duì)比度、高穿透深度的優(yōu)點(diǎn),主要包括光聲內(nèi)窺鏡、光聲顯微成像、光聲層析成像等。本文闡述了光聲層析成像技術(shù)的原理,并報(bào)道基于單聚焦換能器掃描的層析成像技術(shù)和基于多探元超聲探測(cè)方式的層析成像技術(shù)。
1 光聲層析成像技術(shù)原理
光聲層析成像技術(shù)利用大照射面積的脈沖激光作為照射源,當(dāng)激光照射在樣品時(shí),由于樣品介質(zhì)的散射作用,使到樣品內(nèi)部目標(biāo)組織被均勻照射,所激發(fā)超聲信號(hào)傳播到組織表面的時(shí)候用帶掃描機(jī)制的超聲探測(cè)器或者超聲探測(cè)器陣列進(jìn)行探測(cè),直接或者通過(guò)特定的算法進(jìn)行圖像重構(gòu)。由于樣品內(nèi)部不同深度位置的聲信號(hào)到達(dá)樣品表面的超聲信號(hào)存在時(shí)間差異,因此,利用時(shí)間分辨技術(shù)可以獲得不同層析面的光聲信號(hào),從而獲得組織的三維光聲圖像。
2 光聲層析成像技術(shù)
2.1 基于單聚焦換能器掃描的層析成像技術(shù)
在光聲層析成像技術(shù)的應(yīng)用領(lǐng)域最簡(jiǎn)單的探測(cè)方式就是采用單探元的傳感方式來(lái)進(jìn)行探測(cè),利用單個(gè)聚焦換能器橫向掃描探測(cè)外部的光聲信號(hào)就可以獲得組織內(nèi)部某一層析層面的光聲圖像的一種方法。該想法最早由Kruger等于1994年提出,并于2004年被Kolkman等用一個(gè)PVDF材料制造的雙環(huán)換能器實(shí)現(xiàn)了聚焦探測(cè)光聲信號(hào)。
2.2 基于多探元超聲探測(cè)方式的層析成像技術(shù)
逐點(diǎn)掃描的成像方式存在一個(gè)嚴(yán)重的問(wèn)題,就是成像速度過(guò)慢,因此很多小組相繼采用了多元探測(cè)的方式,并結(jié)合一定算法實(shí)現(xiàn)了光聲層析成像。從探元分布情況上分,多探元的超聲探測(cè)系統(tǒng)可以分為球形、圓柱形以及平面形多探元分布機(jī)制。球形和圓柱形多元超聲探測(cè)系統(tǒng)需要接觸整個(gè)目標(biāo)樣品的各個(gè)方向,因此只能被限制在對(duì)乳房以及小動(dòng)物(如老鼠)等體積較小的樣品進(jìn)行光聲成像。而平面形掃描的多元超聲探測(cè)系統(tǒng)應(yīng)用范圍更廣,尤其在淺表層(譬如皮膚)的探測(cè)更有優(yōu)勢(shì)。面狀掃描的光聲成像方式有很多種,其中比較典型的有以下幾種。
2.2.1 多元探測(cè)器相控聚焦光聲成像法
Da Xing等人提出利用320個(gè)換能器陣元組成一個(gè)換能器線陣,結(jié)合相控聚焦重構(gòu)算法,如圖1所示,用電子掃描代替機(jī)械掃描,然后對(duì)陣列探測(cè)器每個(gè)探頭測(cè)得的信號(hào)依據(jù)該探頭到探測(cè)點(diǎn)的距離作一個(gè)時(shí)間延時(shí),再根據(jù)信號(hào)傳輸距離及探測(cè)器作一幅值權(quán)重,然后求和便可得到被測(cè)點(diǎn)的光聲信號(hào)。由于無(wú)須旋轉(zhuǎn)探測(cè)器,從而極大地縮短了成像時(shí)間,使成像時(shí)間從幾十分鐘縮短到幾秒,但由于受多元探測(cè)器的像素和間距的限制(基于相控聚焦算法的圖像分辨率取決于多元探測(cè)器的像素和間距),其橫向分辨率可以達(dá)到幾百微米,但無(wú)法用于細(xì)胞水平的光聲成像。
圖1 相控聚焦原理圖
圖2 法布里-波羅薄膜探測(cè)法
2.2.2 以法布里-波羅(Fabry-Perot,簡(jiǎn)稱FP)高分子薄膜作為探測(cè)器探測(cè)光聲信號(hào)
如圖2所示,其原理利用FP薄膜前后表面鍍上高反射率的銀膜或鋁膜,超聲信號(hào)會(huì)引起高分子薄膜的厚度發(fā)生空間的變化,而兩個(gè)反射面反射的干涉光強(qiáng)變化也隨著薄膜厚度變化而變化,然后對(duì)探測(cè)光進(jìn)行解調(diào),就能獲取超聲的二維空間分布。Beard P.C.等用此方法獲得了手上皮膚下面4 mm厚度不同層面的微細(xì)血管的三維光聲圖像。
2.2.3 聲透鏡成像法
從傅里葉成像理論出發(fā),利用具有空間傅里葉變換性質(zhì)的聲透鏡,可對(duì)光聲信號(hào)進(jìn)行二維成像,這類似于光學(xué)透鏡的成像原理,通過(guò)探測(cè)聲透鏡像面上的聲壓分布情況便可重建聲源的分布情況,如圖3所示。M.Fenz等以及Zhilie Tang等都通過(guò)了聲透鏡對(duì)獲得了光聲圖像,前者通過(guò)一個(gè)光學(xué)暗場(chǎng)成像系統(tǒng)直接用CCD拍攝到像面的光聲壓分布,最后通過(guò)計(jì)算機(jī)還原物面聲源分布;而后者則通過(guò)掃描一維線陣獲取像面光聲圖像。
圖3 聲透鏡層析成像法
3 結(jié)束語(yǔ)
光聲成像技術(shù)的信息載體是聲信號(hào),它的傳輸與組織的散射特性沒(méi)有直接關(guān)系。因此光聲成像技術(shù)的成像深度遠(yuǎn)遠(yuǎn)超過(guò)激光掃描激光顯微鏡、雙光子熒光顯微鏡和OCT等三維光學(xué)成像技術(shù)。因此,光聲層析成像技術(shù)在探測(cè)組織病變等醫(yī)學(xué)領(lǐng)域中有巨大的應(yīng)用價(jià)值。
參考文獻(xiàn)
[1]殷慶瑞.光聲光熱技術(shù)及其應(yīng)用[M].北京:科學(xué)出版社,1991.
[2]Kruger R. A. , Liu P.Y.. Ultrasound: Pulse production and detection in 0.5% Liposyn [J] Med. Phys., 1994, 21:1179.
[3]Kolkman G. M., Hondebrink E.,SteenbergenW.In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor[J]. IEEE J. Select. Top. Quan. Elect., 2003, 9: 343.
[4]Yang D. W., Xing D., Tan Y., Gu H. M., Yang S. H.. Integrative prototype B-scan , photoacoustic tomography system based on a novel hybridized scanning head [J], Appl. Phys. Lett., 2006, 88, 174101-3endprint
[5]Zeng Yaguang, Xing Da, Wang Yi et al. Photoacoustic and ultrasonic co-image with a linear transducer array [J]. Opt. Lett., 2004, 29: 1760-1762
[6]Yin B. Z., Xing D., Wang Y. et al.. Fast photoacoustic imaging system based on 320-element linear transducer array [J]. Phys. Med. Biol., 2004, 49: 1339-1346.
[7]Wang Y., Xing D., Zeng Y. G.. Photoacoustic imaging with deconvolution algorithm[J]. Phys. Med. Biol., 2004, 49: 3117-3124
[8]Zhang.E., Laufer. J., Beard.P.C. Backward-mode multiwavelength photoacoustic scanner using a planar Fabry·Perot polymer film ultrasound sensor for high-res-olution three-dimensional imaging of biological tissues [J]. Appl. Opt. , 2008, 47: 561-577.
[9]Zhang, E. Z., Laufer, J. G., Pedley, R. B., Beard, P. C. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatom [J]. Phys. Med. Biol. ,2009 54: 1035-1046.
[10]Beard. P. C., Perennes, F., Mills. T. N. Transduction mechanisms of the Fabry·Perot polymer film sensing concept for wideband ultrasound detection [J]. IEEE Trans. Ultrason. Ferroelect. Freq. Cont. ,1999, 46: 1575-1582.
[11]Niederhauser J. J., Jaeger M., and Frenz M.. Real-time three-dimensional optoacoustic imaging using an acoustic lens system [J]. Appl. Phys. Lett. , 2004, 85(5): 846-848.
[12]He Yongheng, Tang, Zhilie, Chen Zhanxu, Wan Wei and Li Jianghua. A novel photoacoustic tomography based on a time-resolved technique and an acoustic lens imaging system [J], Phys. Med. Bio.51, 2671-2680,
[13]Chen Z. X., Tang Z. L., Wan W.. Photoacoustic tomography imaging based on a 4f acoustic lens imaging system [J]. Opt. Express, 2007 15: 4966-4976.
[14]Wei Y. D., Tang Z. L., Zhang H. C., He Y. H., and Liu H. F.. Photoacoustic tomography imaging using a 4f acoustic lens and peak-hold technology [J]. Opt. Express,2008, 16: 5314-5319.
[15]Chen Xian, Tang Zhilie, He Yongheng, Liu Haifeng, Wei Yadong, and Wu Yongbo, Simultaneous photoacoustic imaging technique using an acoustic imaging lens [J] Journal of Biomedical Optics, 2009 Vol. 14(3): 030511-1-3.endprint
[5]Zeng Yaguang, Xing Da, Wang Yi et al. Photoacoustic and ultrasonic co-image with a linear transducer array [J]. Opt. Lett., 2004, 29: 1760-1762
[6]Yin B. Z., Xing D., Wang Y. et al.. Fast photoacoustic imaging system based on 320-element linear transducer array [J]. Phys. Med. Biol., 2004, 49: 1339-1346.
[7]Wang Y., Xing D., Zeng Y. G.. Photoacoustic imaging with deconvolution algorithm[J]. Phys. Med. Biol., 2004, 49: 3117-3124
[8]Zhang.E., Laufer. J., Beard.P.C. Backward-mode multiwavelength photoacoustic scanner using a planar Fabry·Perot polymer film ultrasound sensor for high-res-olution three-dimensional imaging of biological tissues [J]. Appl. Opt. , 2008, 47: 561-577.
[9]Zhang, E. Z., Laufer, J. G., Pedley, R. B., Beard, P. C. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatom [J]. Phys. Med. Biol. ,2009 54: 1035-1046.
[10]Beard. P. C., Perennes, F., Mills. T. N. Transduction mechanisms of the Fabry·Perot polymer film sensing concept for wideband ultrasound detection [J]. IEEE Trans. Ultrason. Ferroelect. Freq. Cont. ,1999, 46: 1575-1582.
[11]Niederhauser J. J., Jaeger M., and Frenz M.. Real-time three-dimensional optoacoustic imaging using an acoustic lens system [J]. Appl. Phys. Lett. , 2004, 85(5): 846-848.
[12]He Yongheng, Tang, Zhilie, Chen Zhanxu, Wan Wei and Li Jianghua. A novel photoacoustic tomography based on a time-resolved technique and an acoustic lens imaging system [J], Phys. Med. Bio.51, 2671-2680,
[13]Chen Z. X., Tang Z. L., Wan W.. Photoacoustic tomography imaging based on a 4f acoustic lens imaging system [J]. Opt. Express, 2007 15: 4966-4976.
[14]Wei Y. D., Tang Z. L., Zhang H. C., He Y. H., and Liu H. F.. Photoacoustic tomography imaging using a 4f acoustic lens and peak-hold technology [J]. Opt. Express,2008, 16: 5314-5319.
[15]Chen Xian, Tang Zhilie, He Yongheng, Liu Haifeng, Wei Yadong, and Wu Yongbo, Simultaneous photoacoustic imaging technique using an acoustic imaging lens [J] Journal of Biomedical Optics, 2009 Vol. 14(3): 030511-1-3.endprint
[5]Zeng Yaguang, Xing Da, Wang Yi et al. Photoacoustic and ultrasonic co-image with a linear transducer array [J]. Opt. Lett., 2004, 29: 1760-1762
[6]Yin B. Z., Xing D., Wang Y. et al.. Fast photoacoustic imaging system based on 320-element linear transducer array [J]. Phys. Med. Biol., 2004, 49: 1339-1346.
[7]Wang Y., Xing D., Zeng Y. G.. Photoacoustic imaging with deconvolution algorithm[J]. Phys. Med. Biol., 2004, 49: 3117-3124
[8]Zhang.E., Laufer. J., Beard.P.C. Backward-mode multiwavelength photoacoustic scanner using a planar Fabry·Perot polymer film ultrasound sensor for high-res-olution three-dimensional imaging of biological tissues [J]. Appl. Opt. , 2008, 47: 561-577.
[9]Zhang, E. Z., Laufer, J. G., Pedley, R. B., Beard, P. C. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatom [J]. Phys. Med. Biol. ,2009 54: 1035-1046.
[10]Beard. P. C., Perennes, F., Mills. T. N. Transduction mechanisms of the Fabry·Perot polymer film sensing concept for wideband ultrasound detection [J]. IEEE Trans. Ultrason. Ferroelect. Freq. Cont. ,1999, 46: 1575-1582.
[11]Niederhauser J. J., Jaeger M., and Frenz M.. Real-time three-dimensional optoacoustic imaging using an acoustic lens system [J]. Appl. Phys. Lett. , 2004, 85(5): 846-848.
[12]He Yongheng, Tang, Zhilie, Chen Zhanxu, Wan Wei and Li Jianghua. A novel photoacoustic tomography based on a time-resolved technique and an acoustic lens imaging system [J], Phys. Med. Bio.51, 2671-2680,
[13]Chen Z. X., Tang Z. L., Wan W.. Photoacoustic tomography imaging based on a 4f acoustic lens imaging system [J]. Opt. Express, 2007 15: 4966-4976.
[14]Wei Y. D., Tang Z. L., Zhang H. C., He Y. H., and Liu H. F.. Photoacoustic tomography imaging using a 4f acoustic lens and peak-hold technology [J]. Opt. Express,2008, 16: 5314-5319.
[15]Chen Xian, Tang Zhilie, He Yongheng, Liu Haifeng, Wei Yadong, and Wu Yongbo, Simultaneous photoacoustic imaging technique using an acoustic imaging lens [J] Journal of Biomedical Optics, 2009 Vol. 14(3): 030511-1-3.endprint