• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Propagation behavior of acoustic wave in wood

    2014-04-19 10:10:40HuadongXuGuoqiXuLihaiWangLeiYu
    Journal of Forestry Research 2014年3期

    Huadong Xu ? Guoqi Xu ? Lihai Wang ? Lei Yu

    Introduction

    Acoustic technologies for testing wood products have been introduced to the field of forestry and the wood industry for a few decades.Compared with other testing techniques such as nuclear magnetic resonance (Hernández and Cáceres 2010), X-rays (Yu and Qi 2008), and vibration, acoustic wave tests have the advantages of low cost, portability, safety for testing personnel, and rapid return of results.These features increase the suitability of acoustic wave testing for in situ tests of wood engineering materials and field measurement of standing trees.Two dimensional acoustic wave tomography broadens the scope for application of acoustic wave testing.Acoustic wave testing has become one of the most popular and effective nondestructive wood testing methods, and it is widely used to assess the physical and mechanical qualities of wood (Sandoz 1989; Halabe et al.1997), detect internal defects in logs or standing trees (Bucur 2005; Ross et al.1994), evaluate the strength and residual life of the major components of timber structures (Yang et al.2012), determine the stability of roadside trees in cities (Mattheck and Bethge 1993; Wang 1999) and analyze the vibration properties of musical instruments manufactured of wood (Brémaud 2012).

    In tests using acoustic waves, one acoustic parameter, such as acoustic wave velocity (AWV), is generally employed.For example, to detect internal defects in standing trees, AWV is compared between healthy trees and defective trees and then used to evaluate the locations and sizes of defects such as knots, fungal decay, or cracks based on changes AWV magnitude (Divos and Szalai 2002).In assessments of the mechanical quality of standing trees or structural beams, the dynamic properties of wood such modulus of elasticity (MOE) are quantified using AWV, and then the static properties of wood are evaluated based on the linear relationship between the dynamic and static properties (Brashaw et al.2004).

    The basis of these applications is understanding of the fundamentals of acoustic wave propagation in wood, especially their propagation behavior in intact wood.Few studies have focused on the propagation path of acoustic waves in intact wood or the effects on propagation paths of defects such as knots and decay.The objective of this study was to examine the propagation path of acoustic waves in intact and defective wood (with cavity defects) to enhance understanding of wave propagation behavior.We analyzed the effects of wood anisotropy and cavity defects on acoustic wave propagation paths.

    Materials and methods

    Wood samples

    Wood samples were quarter-sawn Ussuri poplar (Populus us-suriensis) timbers measuring 76 cm long, 7 cm thick, and 34?35 cm wide (Fig.1).The moisture content of heartwood and sapwood of the timbers were 83.3% and 99.5%, respectively.

    Fig.1: Specimen and instruments for measuring the acoustic wave time

    Arranging measuring points

    To study the propagation process and behavior of acoustic wave in radial sections of lumber, a series of grids was drawn on the radial section to be used to measure the transmission time of acoustic waves point by point.Fig.2 depicts nine measuring points along the radial direction of specimen at 4 cm intervals, and nine measuring points along the longitudinal direction at 8 cm intervals.The distance between the last two columns points was 4 cm, for example the distance from Point 82 to Point 99.Additionally, six measuring points were drawn between Point 1 and Point 18.Thus, there were one hundred and six measuring points on the radial section of the sample lumber.The locations and areas of cavities are shown in Fig.1(b) and Table 1.

    Fig.2: Arrangement of measuring points

    Table 1: The location and area of the rectangular cavity artificially drilled in wood specimen

    Instruments and methods

    Rate of wave transmission in longitudinal and radial directions We used the Arbotom instrument, produced by RINNTECH Company with an exciting sensor and a series of nreceiving sensors, to measure acoustic wave transmission times (AWTs) (Fig.1).When measuring each point, we used a hammer to knock on the exciting sensor 5?10 times with the same intensity of force, and then calculated the average values of AWT.

    To discuss the differences in acoustic wave propagation between heartwood and sapwood, AWV was tested in the longitudinal direction once at 2 cm interval along the short edge of specimen using an acoustic wave timer.The tests were conducted nine times on heartwood, seven times on sapwood, and twice on bark.In total, we recorded 18 data sets for longitudinal transmission times of acoustic waves.Transmission times were then tested for radial acoustic waves between points 1 and 9, points 46 and 54, and points 91 and 99.

    Measuring AWT by grid point method

    Measurement by grid points included two parts: (1) Point 5 served as Exciting Point 1 (EP1) and the receiving points were from Point 10 to Point 99 in sequence; (2) Point 9 served as Exciting Point 2 (EP2), and the receiving points were from Point 10 to Point 106 in sequence (Fig.2).After measuring AWT, the transmission time isolines were drawn on the radial section of lumber specimens with Matlab software.

    By measuring the distance between the exciting point and each receiving point, we computed the angle between the propagation direction of the acoustic wave and wood fiber direction.At the same time, AWV was calculated using function (1), which was used to analyze the relationship between wave propagation velocity and propagation direction.

    Where, V is acoustic wave velocity (m·s-1), L is propagation distance (m), T is acoustic wave transmission time (s).

    Results and discussion

    Comparison between longitudinal and radial AWV

    AWV moved more quickly in heartwood than in sapwood, and moved slowest in bark (Table 2).The propagation directions of acoustic waves both in heartwood and in sapwood were along the grain direction (parallel to the wood fiber direction), so the reason for this difference may be due to the varying moisture content of wood.The moisture content of sapwood was higher than that of heartwood in sample timbers.Moisture content can affect the propagation of acoustic waves and AWV typically declines as wood moisture content increases (Sandoz 1989).

    The comparison of propagation velocity between longitudinal and radial acoustic waves in lumber specimens is shown in Fig.3.AWV was greater in the longitudinal direction than that in radial direction (Fig.3); mean radial AWV was 508 m·s-1.The main reason for this might have been the anisotropy of wood.The propagation direction of the longitudinal acoustic wave was parallel to the direction of wood fibers and the propagation direction of radial acoustic waves was perpendicular to the direction of wood fibers.Wood grain direction had a significant effect on the propagation of acoustic waves.

    Table 2: Propagation velocity of longitudinal acoustic waves in lumber specimen

    Fig.3: Comparison of propagation velocity between longitudinal and radial acoustic waves

    Transmitting time isolines of acoustic wave in intact wood

    The transmission times for acoustic waves received at each receiving point in the radial section of lumber specimen when Exciting Point 1 and Exciting Point 2 are knocked on respectively, were processed using Matlab to simulate the transmission time isolines of acoustic waves (Fig.4).

    The acoustic wave is gradually transmitted from the wood pith to the far area in the radial section of lumber when EP 1 is knocked on (Fig.4a).AWV varied by direction, with longitudinal travel most rapid and radial travel most slow.In the transition area from longitudinal to radial, the transmission time changed gradually from long to short.In other words, there were more isolines per unit length in the radial than in the longitudinal direction.Acoustic wave transmits gradually from near to far in the radial section of lumber when EP2 was knocked on (Fig.4b).Acoustic waves travelled most rapidly and there were fewer isolines when waves travelled in the longitudinal direction.Waves travelled most slowly and there are more isolines in the radial direction.

    Fig.4: Transmitting time isolines of acoustic wave in radial section of log when EP1 and EP2 are knocked on

    Relationship between wood grain and AWV

    The definition of grain angle (θ) between acoustic wave propagation direction and wood fiber direction is shown in Fig.5.

    The relationship scatter diagram between θ and AWV in different directions is shown in Fig.6.AWV was highest at θ = 0° and lowest at θ = 90°.AWV decreased gradually as θ increased.AWV decreased quickly at θ <45° but decreased more slowly at θ ≥45°.

    Fig.5: The illustration diagram of the grain angel

    Fig.6: Effect of grain angel on the propagation velocity of acoustic wave

    Prediction models of AWV

    Kabir et al.(2001) used the second order parabolic function (Equ.2) to study the relationship between AWV and grain angle, and concluded that the resulting model could be used to predict AWV in veneer.We also used the model to discuss the relationship between θ and AWV.

    Where, Vθis AWV at θ, and A, B, and C are regression coefficients.

    The regression equation for the relationship between θ and AWV traveling in a radial section of lumber is:

    For studying the relationship between wave velocity and wood mechanical properties, the most classical empirical formula is the Hankinson formula designed by the U.S.Army in 1921.Eq.4 is one of its forms, which can be used to predict AWV (Armstrong et al.1991).

    Where, Vθis AWV at θ; Vθis AWV parallel to the wood fiber direction; V90is AWV perpendicular to the wood fiber direction; n is an empirical constant ranging from 1.5?2.5.

    Predicted AWVs using Hankinson formula and the parabolic function are shown in Fig.7.In the Hankinson formula, V0and V90were 4095 m·s-1and 680 m·s-1, respectively, and n was 1.7.Both of these models described the relationship between propagation directions and AWV, but the predicted data using the Hankinson formula yielded greater agreement with the experimental data.

    Effect of cavity defects on AWT isolines

    AWT isolines were drawn on the radial sections of defective wood when EP1 was excited (Fig.8a).Compared with Fig.4a, Fig.8a shows that AWT isolines on the radial section of defective wood differed significantly from those on intact wood.When wood specimens contained cavities, acoustic wave time isolines behind the rectangular cavities formed two “circular regions”.AWT from EP1 to these two regions was greater than to other region of wood in radial sections.AWT in defective wood was twice that from EP1 to these two regions in intact wood.AWTs from EP1 to other regions behind the rectangular cavity except those two regions were greater than in intact specimens.Similarly, compared with Fig.4b, Fig.8b shows that AWTs from EP2 to the area behind the cavity in defective wood were larger than in intact wood.AWT isolines from EP2 in defective wood also formed “circular regions” near the farthest corner of the rectangular cavity.

    Fig.7: Experimental and predicted acoustic wave velocity using different equations

    Conclusion

    When an acoustic wave transmits across a radial section of lumber, the propagation velocity in the longitudinal direction (parallel to the wood fiber) was higher than in the radial direction (perpendicular to the wood fiber).

    Acoustic waves were gradually transmitted from excitation points to other areas in the radial section of lumber.There were more transmitting time isolines per unit length in radial directions than in longitudinal directions.

    Acoustic wave velocity declined gradually with increasing θ.It decreased quickly at θ <45°, and decreased slowly at θ >45°.The predicted velocities using the second order parabolic model and Hankinson’s formula were in close agreement with the measured values.Compared with the parabolic model, Hankinson’s formula predicted more accurately at n >1.7.

    Acoustic wave time isolines on radial sections of defective wood differed from those on intact wood.Acoustic wave transmission time from the exciting point to the region behind the cavity was larger in defective wood than in intact wood.

    Fig.8: Effect of cavity defect on acoustic wave time isolines on the radial section of green wood.(a) and (b) are the acoustic wave time isolines on the wood with Cavity 1 when EP1 and EP2 are excited, respectively.

    Armstrong JP, Patterson DW, Sneckenberger JE.1991.Comparison of three equations for predicting stress wave velocity as a function of grain angle.Wood and Fiber Science, 23(1): 32?43.

    Brémaud I.2012.Acoustical properties of wood in string instruments soundboards and tuned idiophones: Biological and cultural diversity.Journal of the Acoustical Society of America, 131(1): 807?818.

    Brashaw BK, Wang XP, Ross RJ, Pellerin RF.2004.Relationship between stress wave velocities of green and dry veneer.Forest Products Journal, 54(6): 85?89.

    Bucur V.2005.Ultrasonic techniques for nondestructive testing of standing

    trees.Ultrasonics, 43(4): 237?239.

    Divos F, Szalai L.2002.Tree evaluation by acoustic tomography.In: Proceedings of the 13th International Symposium on Nondestructive Testing of Wood, pp.251?256.

    Halabe UB, Bidigalu GM, GangaRao HV, Ross RJ.1997.Nondestructive Evaluation of Green Wood Using Stress Wave and Transverse Vibration Techniques.Materials Evaluation, 55(9): 1013?1018.

    Hernández RE, Cáceres CB.2010.Magnetic resonance microimaging of liquid water distribution in sugar maple wood below fiber saturation point.Wood and Fiber Science, 42(3): 259?272.

    Kabir MF.2001.Prediction of ultrasonic properties from grain angle.Journal of the Institute of Wood Science, 15(5): 235?246.

    Mattheck CG, Bethge KA.1993.Detection of decay in trees with the Metriguard Stress Wave Timer.Journal of Abroriculture, 19(6): 374?378.

    Ross RJ, Ward JC, TenWolde A.1994.Stress wave nondestructive evaluation of wetwood.Forest Products Journal, 44(7/8): 79?83.

    Sandoz JL.1989.Grading of construction timber by ultrasound.Wood Sci-ence and Technology, 23: 95?108.

    Wang LH, Xu HD, Zhou CL, Li L, Yang XC.2007.Effect of sensor quantity on measurement accuracy of log inner defects by using stress wave.Journal of Forestry Research, 18(3): 221?225.

    Wang XP.1999.Stress wave-based nondestructive evaluation (NDE) methods for wood quality of standing trees.Doctoral Dissertation.Houghton: Michigan Technological University.

    Yang HS, Kang J, Choi MS.2012.Acoustic effects of green roof systems on a low-profiled structure at street level.Building and Environment, 50: 44?55.

    Yu L, Qi DW.2008.Analysis and processing of decayed log CT image based on multifractal theory.Computers and Electronics in Agriculture, 63(2): 147?154.

    Zhao Y, Zhao N, Fa L, Zhao MS.2013.Seismic signal and data analysis of rock media with vertical anisotropy.Journal of Modern Physics, 4(1): 11?18.

    熟女人妻精品中文字幕| 熟女人妻精品中文字幕| 男女那种视频在线观看| 亚洲av电影不卡..在线观看| 亚洲精品久久国产高清桃花| 亚洲人成电影免费在线| 亚洲国产中文字幕在线视频| 久久久久久久久免费视频了| 高潮久久久久久久久久久不卡| 国产亚洲精品综合一区在线观看| 在线十欧美十亚洲十日本专区| 老熟妇乱子伦视频在线观看| 欧美乱妇无乱码| 国内精品久久久久久久电影| 日本一本二区三区精品| 国产伦在线观看视频一区| 小说图片视频综合网站| 又紧又爽又黄一区二区| 国产精品1区2区在线观看.| 两性午夜刺激爽爽歪歪视频在线观看| 久久国产精品影院| 黄色 视频免费看| 亚洲中文字幕日韩| 日本黄色视频三级网站网址| 亚洲电影在线观看av| 99久久久亚洲精品蜜臀av| 午夜福利在线观看免费完整高清在 | 丁香六月欧美| 亚洲专区字幕在线| 国产精品乱码一区二三区的特点| 黄色成人免费大全| 999久久久精品免费观看国产| 国产高清视频在线播放一区| 免费看日本二区| 人妻丰满熟妇av一区二区三区| 久久香蕉精品热| 九九久久精品国产亚洲av麻豆 | 天堂av国产一区二区熟女人妻| 国产99白浆流出| 国产精品久久久人人做人人爽| 亚洲国产精品成人综合色| 亚洲精品456在线播放app | 欧美黑人巨大hd| 成人三级做爰电影| 国产精品99久久99久久久不卡| 亚洲自拍偷在线| 日韩欧美三级三区| 黄色女人牲交| 亚洲自偷自拍图片 自拍| 欧美不卡视频在线免费观看| 国语自产精品视频在线第100页| 久久精品91蜜桃| 日本与韩国留学比较| 亚洲天堂国产精品一区在线| 一本精品99久久精品77| 日韩大尺度精品在线看网址| svipshipincom国产片| 国产又黄又爽又无遮挡在线| 亚洲在线观看片| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品一卡2卡三卡4卡5卡| 变态另类成人亚洲欧美熟女| 全区人妻精品视频| 老汉色∧v一级毛片| 伊人久久大香线蕉亚洲五| 亚洲美女视频黄频| 亚洲国产欧美人成| 亚洲精品国产精品久久久不卡| 变态另类成人亚洲欧美熟女| 国产一区二区在线观看日韩 | 1024手机看黄色片| 欧美国产日韩亚洲一区| 9191精品国产免费久久| 久久精品91蜜桃| 色噜噜av男人的天堂激情| 久久99热这里只有精品18| 亚洲激情在线av| 亚洲无线在线观看| 欧美在线一区亚洲| 毛片女人毛片| 美女 人体艺术 gogo| 亚洲avbb在线观看| 亚洲天堂国产精品一区在线| 亚洲无线观看免费| 亚洲中文字幕日韩| 无遮挡黄片免费观看| 九色成人免费人妻av| 国产精华一区二区三区| 丁香六月欧美| 精华霜和精华液先用哪个| 亚洲欧美日韩卡通动漫| 久久热在线av| 91字幕亚洲| 亚洲狠狠婷婷综合久久图片| 国产成人啪精品午夜网站| h日本视频在线播放| 国产私拍福利视频在线观看| 99在线视频只有这里精品首页| 99热精品在线国产| 亚洲乱码一区二区免费版| 观看美女的网站| 色av中文字幕| 亚洲国产高清在线一区二区三| 国产高清视频在线观看网站| 色视频www国产| 天天一区二区日本电影三级| 国产蜜桃级精品一区二区三区| 国产精华一区二区三区| 亚洲av成人一区二区三| 国产一区二区在线观看日韩 | 少妇裸体淫交视频免费看高清| 久久精品影院6| 国产男靠女视频免费网站| 国产精品久久久久久精品电影| 久久中文字幕人妻熟女| 欧美日韩福利视频一区二区| 国产高清videossex| 午夜精品一区二区三区免费看| 一个人看视频在线观看www免费 | 婷婷精品国产亚洲av| 99国产极品粉嫩在线观看| 美女高潮喷水抽搐中文字幕| а√天堂www在线а√下载| 在线观看免费午夜福利视频| 级片在线观看| 在线十欧美十亚洲十日本专区| av天堂在线播放| 长腿黑丝高跟| 久久久久国内视频| 国产单亲对白刺激| 午夜日韩欧美国产| 精品一区二区三区视频在线观看免费| 热99在线观看视频| 日韩高清综合在线| 色综合婷婷激情| 国产精品久久久av美女十八| 国内毛片毛片毛片毛片毛片| 亚洲欧美日韩卡通动漫| 久久久久亚洲av毛片大全| 精华霜和精华液先用哪个| 成年女人永久免费观看视频| 黄频高清免费视频| 毛片女人毛片| 日本三级黄在线观看| 成人一区二区视频在线观看| 国产精品爽爽va在线观看网站| 国产精华一区二区三区| 欧美成人免费av一区二区三区| 亚洲国产欧美网| 一级黄色大片毛片| 日韩人妻高清精品专区| 热99在线观看视频| 母亲3免费完整高清在线观看| 午夜激情欧美在线| 欧美3d第一页| 国产人伦9x9x在线观看| 亚洲av成人精品一区久久| 国产亚洲精品综合一区在线观看| 国产午夜福利久久久久久| 成人av一区二区三区在线看| 好男人电影高清在线观看| 亚洲国产精品sss在线观看| 男人舔女人下体高潮全视频| 丰满的人妻完整版| 岛国视频午夜一区免费看| 国产精品免费一区二区三区在线| 波多野结衣高清作品| or卡值多少钱| 噜噜噜噜噜久久久久久91| 嫩草影院精品99| 免费人成视频x8x8入口观看| 国模一区二区三区四区视频 | 国产高清videossex| 啦啦啦观看免费观看视频高清| 日日摸夜夜添夜夜添小说| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品久久国产高清桃花| 美女扒开内裤让男人捅视频| 久久久久国产精品人妻aⅴ院| 国产真人三级小视频在线观看| 亚洲国产色片| 最近视频中文字幕2019在线8| 在线免费观看不下载黄p国产 | 99re在线观看精品视频| 在线a可以看的网站| 久久精品91蜜桃| 欧美又色又爽又黄视频| 男女做爰动态图高潮gif福利片| 国产黄a三级三级三级人| 免费看美女性在线毛片视频| 亚洲精华国产精华精| 午夜精品久久久久久毛片777| 国产成人一区二区三区免费视频网站| 亚洲avbb在线观看| 亚洲av片天天在线观看| 亚洲国产精品合色在线| 一区二区三区高清视频在线| 国产不卡一卡二| АⅤ资源中文在线天堂| 51午夜福利影视在线观看| 成年人黄色毛片网站| 精品午夜福利视频在线观看一区| 国产 一区 欧美 日韩| 成人永久免费在线观看视频| 女同久久另类99精品国产91| 日韩欧美国产一区二区入口| 色在线成人网| 国产91精品成人一区二区三区| 嫩草影院精品99| www.www免费av| 欧美色欧美亚洲另类二区| 国产精品永久免费网站| 波多野结衣巨乳人妻| 日本成人三级电影网站| 999精品在线视频| 啦啦啦免费观看视频1| 床上黄色一级片| 久久久久久久精品吃奶| 一进一出抽搐动态| 天堂影院成人在线观看| 亚洲av片天天在线观看| 成人特级黄色片久久久久久久| 亚洲美女黄片视频| 18禁国产床啪视频网站| 成在线人永久免费视频| 精品欧美国产一区二区三| 国产真实乱freesex| 成年女人毛片免费观看观看9| 亚洲在线观看片| 亚洲av五月六月丁香网| 一进一出抽搐gif免费好疼| 亚洲真实伦在线观看| 午夜福利欧美成人| 国产精品九九99| 一个人免费在线观看电影 | 国产精品电影一区二区三区| 9191精品国产免费久久| 又紧又爽又黄一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 九色成人免费人妻av| 波多野结衣高清作品| 岛国在线免费视频观看| 麻豆成人午夜福利视频| 国产精品 欧美亚洲| 99热精品在线国产| 亚洲午夜精品一区,二区,三区| 身体一侧抽搐| 床上黄色一级片| 一a级毛片在线观看| 亚洲无线在线观看| 男人和女人高潮做爰伦理| 99久久综合精品五月天人人| 久久久久久久久中文| 一区二区三区高清视频在线| 日韩三级视频一区二区三区| 精品一区二区三区视频在线 | 久久久久国产一级毛片高清牌| 亚洲国产日韩欧美精品在线观看 | 成人国产一区最新在线观看| 哪里可以看免费的av片| 成人午夜高清在线视频| 国产成人一区二区三区免费视频网站| 国产人伦9x9x在线观看| 变态另类成人亚洲欧美熟女| 国产又色又爽无遮挡免费看| 亚洲无线在线观看| 给我免费播放毛片高清在线观看| 国产成人欧美在线观看| 无限看片的www在线观看| 好男人电影高清在线观看| 久久中文看片网| 黄频高清免费视频| 女警被强在线播放| www.精华液| 日韩欧美在线乱码| 欧美日韩综合久久久久久 | 日韩欧美国产在线观看| 国产精品98久久久久久宅男小说| 97碰自拍视频| 亚洲美女视频黄频| 视频区欧美日本亚洲| 午夜免费激情av| 精品日产1卡2卡| 9191精品国产免费久久| 亚洲电影在线观看av| 欧美在线黄色| 亚洲av第一区精品v没综合| 精品一区二区三区四区五区乱码| 亚洲av成人精品一区久久| 不卡av一区二区三区| www.自偷自拍.com| 亚洲狠狠婷婷综合久久图片| 女人被狂操c到高潮| 亚洲无线观看免费| 日韩欧美精品v在线| 日本免费a在线| 美女高潮的动态| 又黄又粗又硬又大视频| 久久精品夜夜夜夜夜久久蜜豆| 日本a在线网址| 女人被狂操c到高潮| 国产伦在线观看视频一区| 麻豆久久精品国产亚洲av| 免费观看人在逋| 国产精品 欧美亚洲| 99久久久亚洲精品蜜臀av| 亚洲狠狠婷婷综合久久图片| 精品日产1卡2卡| 麻豆久久精品国产亚洲av| 久久久国产精品麻豆| 首页视频小说图片口味搜索| 亚洲自偷自拍图片 自拍| 日韩欧美三级三区| 亚洲色图 男人天堂 中文字幕| 亚洲av中文字字幕乱码综合| 少妇人妻一区二区三区视频| 一本一本综合久久| 一区二区三区国产精品乱码| av天堂在线播放| 国产伦人伦偷精品视频| 色av中文字幕| 日韩精品中文字幕看吧| 一级a爱片免费观看的视频| 欧美在线一区亚洲| 欧美一级毛片孕妇| 亚洲一区二区三区不卡视频| 午夜影院日韩av| av视频在线观看入口| 国产97色在线日韩免费| 在线十欧美十亚洲十日本专区| 中文字幕人成人乱码亚洲影| 性色avwww在线观看| 脱女人内裤的视频| 亚洲真实伦在线观看| www.www免费av| 久久精品国产综合久久久| 97人妻精品一区二区三区麻豆| 欧美成狂野欧美在线观看| 波多野结衣巨乳人妻| 日韩成人在线观看一区二区三区| 欧美成人一区二区免费高清观看 | 亚洲激情在线av| 欧美色视频一区免费| 欧美日本视频| 国产男靠女视频免费网站| 亚洲aⅴ乱码一区二区在线播放| 国产av一区在线观看免费| 亚洲成人久久性| 99国产精品一区二区蜜桃av| 色av中文字幕| 亚洲成人久久性| 日韩欧美免费精品| 色尼玛亚洲综合影院| 亚洲中文字幕一区二区三区有码在线看 | 黄片小视频在线播放| 国产真实乱freesex| 人人妻人人看人人澡| 欧美av亚洲av综合av国产av| 国产成人影院久久av| 亚洲精品乱码久久久v下载方式 | 精品不卡国产一区二区三区| 亚洲18禁久久av| 国产视频内射| 国产亚洲精品久久久久久毛片| 日韩欧美三级三区| 老司机午夜十八禁免费视频| 国产免费男女视频| 日本 av在线| 国产精品久久视频播放| 久久午夜综合久久蜜桃| ponron亚洲| 淫秽高清视频在线观看| 黄色丝袜av网址大全| 亚洲精品在线观看二区| 欧美黄色片欧美黄色片| 在线观看日韩欧美| 啦啦啦观看免费观看视频高清| 久久欧美精品欧美久久欧美| 久久天躁狠狠躁夜夜2o2o| 国产精品电影一区二区三区| 日本五十路高清| 俺也久久电影网| 国产伦在线观看视频一区| 欧美午夜高清在线| x7x7x7水蜜桃| 亚洲自偷自拍图片 自拍| 亚洲,欧美精品.| 国产麻豆成人av免费视频| 两性午夜刺激爽爽歪歪视频在线观看| 国产高清激情床上av| 男人的好看免费观看在线视频| 亚洲专区字幕在线| 中文字幕人妻丝袜一区二区| 中出人妻视频一区二区| 不卡av一区二区三区| 免费av毛片视频| 久久这里只有精品19| 亚洲欧美日韩高清在线视频| 国产精品久久久久久久电影 | 婷婷亚洲欧美| 99热只有精品国产| 97超级碰碰碰精品色视频在线观看| 亚洲国产精品合色在线| 99精品欧美一区二区三区四区| 免费在线观看成人毛片| 国产精品99久久久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 俺也久久电影网| www日本在线高清视频| 国产黄a三级三级三级人| 又爽又黄无遮挡网站| 国产一级毛片七仙女欲春2| 男女之事视频高清在线观看| 黑人欧美特级aaaaaa片| 97人妻精品一区二区三区麻豆| tocl精华| 国产精品一区二区精品视频观看| 亚洲精品色激情综合| 亚洲一区高清亚洲精品| 免费在线观看影片大全网站| 色精品久久人妻99蜜桃| 色综合婷婷激情| 国产私拍福利视频在线观看| 99riav亚洲国产免费| 国产精品一区二区免费欧美| 99久久久亚洲精品蜜臀av| 成人午夜高清在线视频| 一级毛片高清免费大全| 久久精品aⅴ一区二区三区四区| 国模一区二区三区四区视频 | 亚洲美女黄片视频| 69av精品久久久久久| 欧美中文综合在线视频| 精品不卡国产一区二区三区| 欧美黄色片欧美黄色片| 久9热在线精品视频| 在线国产一区二区在线| 亚洲自拍偷在线| 啪啪无遮挡十八禁网站| 男女那种视频在线观看| 国产高潮美女av| 黄色视频,在线免费观看| 久久精品国产99精品国产亚洲性色| 亚洲最大成人中文| 免费av毛片视频| 亚洲专区国产一区二区| 热99在线观看视频| 亚洲人成电影免费在线| 99国产精品一区二区三区| 精品乱码久久久久久99久播| x7x7x7水蜜桃| 成人国产综合亚洲| 国产精品一及| 亚洲人与动物交配视频| 国产免费男女视频| 国产精品一及| 免费在线观看亚洲国产| 激情在线观看视频在线高清| 18禁国产床啪视频网站| 中文字幕精品亚洲无线码一区| 国产视频一区二区在线看| 91av网站免费观看| 脱女人内裤的视频| 精华霜和精华液先用哪个| 久99久视频精品免费| 夜夜看夜夜爽夜夜摸| 叶爱在线成人免费视频播放| 国产av麻豆久久久久久久| 欧美午夜高清在线| 成熟少妇高潮喷水视频| 伊人久久大香线蕉亚洲五| 午夜福利视频1000在线观看| 一个人看视频在线观看www免费 | 日本与韩国留学比较| 日韩高清综合在线| 国产亚洲精品一区二区www| 变态另类丝袜制服| 法律面前人人平等表现在哪些方面| 一区二区三区激情视频| 91av网站免费观看| 怎么达到女性高潮| avwww免费| 免费在线观看成人毛片| 国产毛片a区久久久久| 久久天堂一区二区三区四区| 在线看三级毛片| 国产精品一区二区三区四区免费观看 | 亚洲国产欧美人成| 日本三级黄在线观看| 女人高潮潮喷娇喘18禁视频| 午夜免费激情av| 婷婷精品国产亚洲av| 免费观看人在逋| 欧美最黄视频在线播放免费| 久久天堂一区二区三区四区| 国产av一区在线观看免费| 午夜a级毛片| 首页视频小说图片口味搜索| 午夜福利在线在线| x7x7x7水蜜桃| 三级国产精品欧美在线观看 | 免费av不卡在线播放| 男女视频在线观看网站免费| 美女黄网站色视频| 在线观看66精品国产| 免费看美女性在线毛片视频| 亚洲国产日韩欧美精品在线观看 | 午夜视频精品福利| 免费看十八禁软件| 一个人看的www免费观看视频| 中国美女看黄片| 国产亚洲精品久久久久久毛片| 免费人成视频x8x8入口观看| 免费在线观看视频国产中文字幕亚洲| 黄色视频,在线免费观看| 亚洲国产欧美网| 成在线人永久免费视频| 国产成人精品久久二区二区免费| 琪琪午夜伦伦电影理论片6080| 国产成人av激情在线播放| 日韩欧美三级三区| 99久久成人亚洲精品观看| 悠悠久久av| 免费观看的影片在线观看| 国产精品99久久99久久久不卡| 久久中文字幕人妻熟女| 啦啦啦韩国在线观看视频| 日本 av在线| 婷婷丁香在线五月| 日韩人妻高清精品专区| 亚洲黑人精品在线| 无限看片的www在线观看| 亚洲av日韩精品久久久久久密| 最近最新中文字幕大全电影3| 欧美在线黄色| 欧美日韩一级在线毛片| 不卡一级毛片| 国产成人影院久久av| 欧美不卡视频在线免费观看| 偷拍熟女少妇极品色| 成人一区二区视频在线观看| 99热只有精品国产| 精品一区二区三区av网在线观看| 最新中文字幕久久久久 | 国产亚洲精品综合一区在线观看| 久久久精品欧美日韩精品| 无限看片的www在线观看| 亚洲七黄色美女视频| 老司机在亚洲福利影院| 丝袜人妻中文字幕| 成人特级黄色片久久久久久久| 久久久久九九精品影院| 亚洲人成网站在线播放欧美日韩| 99国产精品一区二区蜜桃av| 国产精品乱码一区二三区的特点| 噜噜噜噜噜久久久久久91| 天堂av国产一区二区熟女人妻| 99在线人妻在线中文字幕| 亚洲 欧美一区二区三区| 亚洲熟妇熟女久久| 国产成人av激情在线播放| 天堂动漫精品| 精品国内亚洲2022精品成人| 99在线人妻在线中文字幕| 日日夜夜操网爽| 国产精品日韩av在线免费观看| 国产激情偷乱视频一区二区| 国产黄a三级三级三级人| 丁香六月欧美| 国产精品爽爽va在线观看网站| 9191精品国产免费久久| 听说在线观看完整版免费高清| 日日摸夜夜添夜夜添小说| 亚洲av美国av| 黄色丝袜av网址大全| 色噜噜av男人的天堂激情| 老司机午夜福利在线观看视频| 国产三级中文精品| 在线观看免费午夜福利视频| 老汉色∧v一级毛片| 日韩高清综合在线| 亚洲精品一卡2卡三卡4卡5卡| 日日干狠狠操夜夜爽| 超碰成人久久| 免费观看人在逋| 日韩欧美在线乱码| 亚洲精品粉嫩美女一区| 精品国产乱子伦一区二区三区| 国产精品免费一区二区三区在线| 丰满人妻熟妇乱又伦精品不卡| 最新中文字幕久久久久 | 老司机午夜十八禁免费视频| 91字幕亚洲| 免费在线观看成人毛片| 神马国产精品三级电影在线观看| 亚洲人成电影免费在线| 国产一级毛片七仙女欲春2| 欧美成狂野欧美在线观看| 亚洲国产高清在线一区二区三| 性色avwww在线观看| 久久精品91蜜桃| 免费观看的影片在线观看| 精品一区二区三区视频在线观看免费| 毛片女人毛片| 亚洲一区二区三区色噜噜| 久9热在线精品视频| 大型黄色视频在线免费观看| 美女 人体艺术 gogo| 日本五十路高清| aaaaa片日本免费| 亚洲精品一区av在线观看| 国产成人一区二区三区免费视频网站| 两个人的视频大全免费| 麻豆国产av国片精品| 两个人的视频大全免费|