• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Genetic variants at 10q23.33 are associated with plasma lipid levels in a Chinese population

    2014-04-18 11:58:36SijunLiuYunQinFengLuMeihuDongYudiLinHuizhngLiChongShenJunhengDiYueJingGungfuJinZhibinHuHongbingShen
    THE JOURNAL OF BIOMEDICAL RESEARCH 2014年1期

    Sijun Liu, Yun Qin, Feng Lu, Meihu Dong, Yudi Lin, Huizhng Li, Chong Shen, Junheng Di, Yue Jing, Gungfu Jin, Zhibin Hu, Hongbing Shen,

    aDepartment of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China;

    bDepartment of Public Service Management, Kangda College, Nanjing Medical University, Nanjing, Jiangsu 210029, China;

    cDepartment of Chronic Non-communicable Disease Control, Wuxi Center for Disease Control and Prevention, Wuxi , Jiangsu 214023, China.

    Genetic variants at 10q23.33 are associated with plasma lipid levels in a Chinese population

    Sijun Liua,b,△, Yun Qiana,c,△, Feng Lua, Meihua Dongc, Yudi Linc, Huizhang Lia, Chong Shena, Juncheng Daia, Yue Jianga, Guangfu Jina, Zhibin Hua, Hongbing Shena,

    aDepartment of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China;

    bDepartment of Public Service Management, Kangda College, Nanjing Medical University, Nanjing, Jiangsu 210029, China;

    cDepartment of Chronic Non-communicable Disease Control, Wuxi Center for Disease Control and Prevention, Wuxi , Jiangsu 214023, China.

    Plasma lipid abnormalities are implicated in the pathogenic process of type 2 diabetes. The IDE-KIF11-HHEX gene cluster on chromosome 10q23.33 has been identified as a susceptibility locus for type 2 diabetes. We hypothesized that genetic variants at 10q23.33 may be associated with plasma lipid concentrations. Seven tagging single nucleotide polymorphisms (SNPs: rs7923837, rs2488075, rs947591, rs11187146, rs5015480, rs4646957 and rs1111875) at 10q23.33 were genotyped in 3,281 subjects from a Han Chinese population, using the Taq-Man OpenArray and Sequenom MassARRAY platforms. Multiple linear regression analyses showed that SNP rs7923837 in the 3'-flanking region of HHEX was significantly associated with triglyceride levels (P = 0.019, 0.031 mmol/L average decrease per minor G allele) and that rs2488075 and rs947591 in the downstream region of HHEX were significantly associated with total cholesterol levels (P = 0.041, 0.058 mmol/L average decrease per minor C allele and P = 0.018, 0.063 mmol/L average decrease per minor A allele, respectively). However, the other four SNPs (rs11187146, rs5015480, rs4646957 and rs1111875) were not significantly associated with any plasma lipid concentrations in this Chinese population. Our data suggest that genetic variants in the IDE-KIF11-HHEX gene cluster at 10q23.33 may partially explain the variation of plasma lipid levels in the Han Chinese population. Further studies are required to confirm these findings in other populations.

    cholesterol, triglycerides, polymorphism, genetic, iDE-KIF11-HHEX

    INTRODUCTION

    Plasma lipid abnormalities are associated with risk of type 2 diabetes[1,2]. Some studies have shown that elevated triglyceride (TG) levels and low levels of high-density lipoprotein cholesterol (HDL-C) accelerate the pathogenesis of type 2 diabetes[3-5]. Recently, several studies have investigated the potential effectof genetic factors associated with risk of type 2 diabetes on plasma lipid levels. Onuma et al.[6]analyzed the association of polymorphisms in the glucokinase (hexokinase 4) regulator (GCKR) gene with type 2 diabetes in a case-control study and with fasting blood glucose and TG levels in the general population. The A allele of SNP rs780094 was found to be associated with reduced risk of type 2 diabetes and lower levels of fasting plasma glucose, but higher levels of TG, in a Japanese population. In the study reported by Chen et al.[7], the authors found that subjects with minor alleles of SNPs rs2283228 and rs2237892 in the KQT-like subfamily member 1 (KCNQ1) gene, which were associated with type 2 diabetes, had higher levels of TG. This evidence suggests that genetic variants associated with diabetes risk may also be potential genetic determinants of plasma lipid levels.

    A genome-wide association study (GWAS) conducted in a French case-control study identified a novel type 2 diabetes susceptibility locus on chromosome 10q23.33, which is located in a gene cluster including an insulin-degrading enzyme (IDE), a kinesininteracting factor 11 (KIF11), and a hematopoietically expressed homeobox protein (HHEX)[8]. Following this discovery, several studies have confirmed this association in British[9], Finnish[10], Japanese[11,12]and Chinese populations[13-15]. Recently, we have also found that SNPs rs7923837 and rs1111875 in the IDE-KIF11-HHEX locus at 10q23.33 were independently associated with risk of type 2 diabetes in a Chinese population[16]. However, the relationship between IDE-KIF11-HHEX locus and lipid traits in different populations is not clear. Therefore, in an effort to evaluate the influence of the polymorphisms in IDE-KIF11-HHEX locus on plasma lipid concentrations, we performed a fine-mapping study by genotyping seven tagging SNPs at 10q23.33 in 3,281 Han Chinese subjects to examine the associations of these variants with plasma levels of total cholesterol (TC), TG, HDL-C and low density lipoprotein cholesterol (LDL-C).

    SUBJECTS AND METHODS

    Study subjects

    The subjects in the current study were selected from a community-based non-communicable diseases screening program comprised of more than 50,000 participants in Jiangsu Province during 2004 and 2008. All subjects were unrelated, ethnic Han Chinese. Subjects were excluded from the study if they had a history of diabetes, hypertension, coronary heart disease or cancer, or fasting plasma glucose≥5.6 mmol/L. After providing informed consent, all subjects were interviewed face-to-face using a standard questionnaire that included demographic characteristics, risk factors and disease history. Subjects who smoked 1 cigarette per day for over 1 year were defined as smokers, and those who consumed 3 or more alcohol drinks a week for over 6 months were considered as alcohol drinkers. Physical examinations, including measurements of height, weight and blood pressure, as well as laboratory tests to measure TC, TG, HDL-C and fasting plasma glucose concentrations, were performed for each participant. Sitting blood pressure was based on the average of three blood pressure readings measured. Body mass index (BMI) was calculated as weight (in kilograms) divided by the square of height (in meters). Fasting blood samples for routine laboratory examinations were obtained in the early morning after an overnight fast. All biochemical parameters were measured enzymatically on an auto-analyzer (Hitachi 7180 Biochemistry Auto-analyzer, Japan) according to the manufacturer's instructions. For subjects with TG levels < 4.52 mmol/L, LDL-C levels were estimated indirectly using the Friedewald's formula. The Institutional Review Board of Nanjing Medical University approved the study.

    SNP selection and genotyping

    Based on our previous study[16], we used a blockbased tagging strategy to select tagging SNPs using Haploview 4.2 software according to the HapMap database[http://www.hapmap.org/, phaseII Nov08, on NCBI B36 assembly, dbSNPb126; population: Han Chinese population (CHB) and Japanese population (JPT)]. The criteria included SNPs with minor allele frequency (MAF)≥ 0.10, Hardy-Weinberg equilibrium P≥0.05 and call rate≥95% when using pairwise linkage disequilibrium (r2) of 0.8 as the threshold for each block. Seven tagging SNPs (rs7923837, rs2488075, rs947591, rs11187146, rs5015480, rs4646957 and rs1111875) associated with type 2 diabetes in the IDE-KIF11-HHEX locus at 10q23.33 were included in the current study.

    Genomic DNA was isolated from leucocytes of venous blood by proteinase K digestion and phenol/ chloroform extraction. Genotyping was performed using the TaqMan OpenArray Genotyping System (Life Technologies, Carlsbad, CA, USA) and the iPLEX Sequenom MassARRAY platform (Sequenom, Inc.). For quality control, two non-template controls were used in each chip or plate. The overall call rates ranged from 98.8% to 99.8% for all SNPs.

    Statistical analysis

    Associations between the genotypes and plasma lipidconcentrations were determined by multiple linear regression analysis with adjustment for age, sex, smoking status, drinking status and BMI. The Hardy-Weinberg equilibrium was tested by a goodness-of-fit χ2test to compare the observed genotype frequencies with the expected ones among the 3,281 subjects. All statistical analyses were performed using Statistical Analysis System software version 9.1.3 (SAS Institute, Cary, NC, USA). All tests were two-sided and the significance level was set at P < 0.05.

    Table 1 Characteristics of the study population

    RESULTS

    The demographic and biochemical characteristics of the 3,281 subjects included in this study are shown in Table 1. The mean age was 56.58 (± 9.88) years and the mean BMI value was 22.12 (± 2.63) kg/m2. The mean values of TC, HDL-C, LDL-C and TG were 4.40 (± 0.80) mmol/L, 1.62 (± 0.38) mmol/L, 2.29 (± 0.74) mmol/L and 1.09 (± 0.45) mmol/L, respectively. Among these subjects, 827 subjects (25.38%) were smokers and 635 subjects (19.51%) were drinkers.

    The observed genotype frequencies for the seven SNPs were all consistent with the Hardy-Weinberg equilibrium among 3,281 subjects (P > 0.05) (Table 2). We examined the association between each SNP and TC, TG, HDL-C or LDL-C levels, respectively, in an additive model using a linear regression model with adjustment for age, sex, smoking, drinking and BMI (Table 2). We found significant associations between rs7923837 and TG (P = 0.019), between rs2488075 and rs947591 and TC (P = 0.041 and 0.018, respectively). As shown in Table 3, the G allele of rs7923837 was associated with a lower TG levels (0.031 mmol/L average decrease per G allele). Similarly, the C allele of rs2488075 and the A allele of rs947591 were both associated with lower TC levels (0.058 mmol/L average decrease per C allele and 0.063 mmol/L average decrease per A allele, respectively). Conditional analysis indicated that rs2488075 and rs947591 were not significant after adjustment with each other, as the two SNPs were in strong linkage equilibrium (LD) (r2=0.734). However, no significant associations were observed between the other four SNPs (rs11187146, rs5015480, rs4646957 and rs1111875) and blood lipid concentrations.

    We then conducted a stratification analysis for rs7923837, rs2488075 and rs947591 by age, sex, BMI, smoking, and drinking status. As shown in Table 4, the associations between rs7923837 and TG levels were more evident among subjects of the low age group (P = 0.009), male subjects (P = 0.003), non-drinkers (P = 0.019), and subjects with low BMI (P = 0.003). The associations between rs2488075, rs947591 and TC levels were more evident among subjects of low age group (P = 0.021 and 0.013, respectively), female subjects (P = 0.048 and 0.032, respectively), non-smokers (P = 0.004 and 0.002, respectively), non-drinkers (P = 0.007 and 0.003, respectively) and subjects with low BMI (P = 0.038 and 0.037, respectively).

    DISCUSSION

    To the best of our knowledge, this is the first study to investigate the association between IDE-KIF11-HHEX polymorphisms and plasma lipid concentrations in a Chinese population. Of the seven tagging SNPs at the IDE-KIF11-HHEX locus, we found that rs7923837 was associated with plasma concentrations of TG, and rs2488075 and rs947591 were associated with plasma concentrations of TC.

    Table 2 Association between lipid concentrations and selected single nucleotide polymorphisms

    rs7923837 is located in the 3'-flanking region of the HHEX gene, which encodes a transcription factor that is involved in Wnt signaling and is critical for hepatic and pancreatic development[17,18]. In addition, HHEX may regulate β-cell development and/or function by activating hepatocyte nuclear factor 1α[19]. Several studies reported that the association between rs7923837 and type 2 diabetes is mediated through decreased β-cell secretory capacity or decreased β-cell mass[20-22]. Thus, HHEX is critical for insulin signaling and islet function[23]. HHEX may influence metabolic phenotypes such as TG and TC because insulin is necessary for the regulation of metabolic phenotypes. On chromosome 10q23.33, genetic variants in HHEX have been established as susceptibility loci for type 2 diabetes[8]. In our previous fine-mapping study[16], we reported that rs7923837 and rs1111875 were independently associated with risk of type 2 diabetes in a Chinese population. Several studies have also investigated the relationship between HHEX polymorphisms and other metabolic diseases. Zhao et al.[24]found that the type 2 diabetes risk-associated G allele of rs7923837 was associated with higher pediatric BMI in European American children. Cruz et al.[25]analyzed the association between the HHEX rs5015480 and risk of metabolic syndrome (MS) in a case-control study from Mexico city and found that rs5015480 was significantly associated with MS. Taken together, this evidence suggests that genetic variants in the IDEKIF11-HHEX gene cluster at 10q23.33 may contribute to metabolism-related traits and diseases, including circulating lipid levels and diabetes risk.

    Genetic variants associated with the risk of type 2 diabetes have been found to influence plasma TG levels. The variant rs780094 in GCKR was associated with a decreased risk of type 2 diabetes, but with higher TG levels, in a GWAS of European population[26]. Similarly, in the current study, we found that the risk allele of diabetes was associated with lower TG levels. Considering that the subjects included in this study were from a healthy population, the lipid level-related variant might interpret the variation of lipid levels of baseline. The relationships between the same variant and diabetes risk and lipid levels impliesthat low lipid baseline levels in some subjects are, in part, genetically determined, causing them to be more susceptible to type 2 diabetes. This was also supported by the results from the stratification analysis, which showed that the associations between genetic variants at 10q23.33 and lipid levels were more evident among young subjects, non-smokers, non-drinkers and subjects with low BMI. However, the underlying mechanism remains unclear, and further studies are needed to elucidate the roles of genetic variants at 10q23.33 in circulating lipid levels.

    Table 3 Effects of rs7923837, rs2488075 and rs947591 on plasma lipid concentrations

    Table 4 Stratification analysis for rs7923837, rs2488075, and rs947591 and lipid levels in an additive genetic model

    There is a strong relationship between glucose, cholesterol metabolism and type 2 diabetes[27]. The study by Hao et al.[28]suggested that plasma cholesterol plays a direct role in pancreatic islet dysfunction and may be a key factor underlying the progression of type 2 diabetes. Genetic variants that are associated with the risk of type 2 diabetes have also been found to influence plasma TC levels. Sanghera et al.[29]revealed a significant association between rs10885409 in TCF7L2 with type 2 diabetes and TC levels in Asian Indians. Chen et al.[30]found rs2237895 in KCNQ1, which was thought to be a candidate gene of diabetes that influenced plasma TC levels in the Han Chinese population. They argued that this variant might result in an increased expression of KCNQ1 and a subsequent increase in insulin secretion, which could stimulate lipid synthesis. In this study, we also found that rs2488075 and rs947591 were associated with plasma TC levels. rs2488075 and rs947591 are located downstream of HHEX, which may affect metabolic phenotypes. However, the mechanism that allows the CC genotype in rs2488075 and the AA genotype in rs947591 to contribute to lower levels of TC is still unknown.

    Our study may be subject to certain limitations. First, the number of subjects in our study was moderate, thus the statistical power was limited. Second, the associations were not strong statistically; none of them passed multiple correction. Third, bias and reverse causation cannot be completely excluded in this observational epidemiological study. A Mendelian randomization approach that uses the random inheritance of genetic variants from parents to offspring may be of benefit in further studies. Thus, larger, well-designed epidemiological studies with ethnically diverse populations are warranted to confirm our findings.

    In summary, the results in the current study indicate that genetic variants in the IDE-KIF11-HHEX gene cluster at 10q23.33 are associated with plasma lipid levels in the Chinese population. These findings highlight the important correlation between lipid levels and diabetes development at the genetic level. Further studies are needed to replicate our findings in other populations.

    [1] Chaudhary R, Likidlilid A, Peerapatdit T, Tresukosol D, Srisuma S, Ratanamaneechat S, et al. Apolipoprotein E gene polymorphism: effects on plasma lipids and risk of type 2 diabetes and coronary artery disease. Cardiovasc Diabetol 2012; 11: 36.

    [2] Cannon CP. Mixed dyslipidemia, metabolic syndrome, diabetes mellitus, and cardiovascular disease: clinical implications. Am J Cardiol 2008; 102: 5L-9L.

    [3] Bitzur R, Cohen H, Kamari Y, Shaish A, Harats D.Triglycerides and HDL cholesterol: stars or second leads in diabetes? Diabetes Care 2009; 32(S2): 373-7.

    [4] Mooradian AD. Dyslipidemia in type 2 diabetes mellitus. Nat Clin Pract Endocrinol Metab 2009; 5: 150-19.

    [5] Wilson PW, Meigs JB, Sullivan L, Fox CS, Nathan DM, D'Agostino RB, Sr. Prediction of incident diabetes mellitus in middle-aged adults: the Framingham Offspring Study. Arch Intern Med 2007; 167: 1068-74.

    [6] Onuma H, Tabara Y, Kawamoto R, Shimizu I, Kawamura R, Takata Y, et al. The GCKR rs780094 polymorphism is associated with susceptibility of type 2 diabetes, reduced fasting plasma glucose levels, increased triglycerides levels and lower HOMA-IR in Japanese population. J Hum Genet 2010; 55: 600-64.

    [7] Chen Z, Yin Q, Ma G, Qian Q. KCNQ1 gene polymorphisms are associated with lipid parameters in a Chinese Han population. Cardiovasc Diabetol 2010; 9: 35.

    [8] Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 2007; 445: 881-5.

    [9] Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 2007; 316: 1336-41.

    [10] Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 2007; 316: 1341-5.

    [11] Tabara Y, Osawa H, Kawamoto R, Onuma H, Shimizu I, Miki T, et al. Replication study of candidate genes associated with type 2 diabetes based on genome-wide screening. Diabetes 2009; 58: 493-8.

    [12] Horikawa Y, Miyake K, Yasuda K, Enya M, Hirota Y, Yamagata K, et al. Replication of genome-wide association studies of type 2 diabetes susceptibility in Japan. J Clin Endocrinol Metab 2008; 93: 3136-41.

    [13] Lin Y, Li P, Cai L, Zhang B, Tang X, Zhang X et al. Association study of genetic variants in eight genes/loci with type 2 diabetes in a Han Chinese population. BMC Med Genet 2010; 11: 97.

    [14] Wu Y, Li H, Loos RJ, Yu Z, Ye X, Chen L, et al. Common variants in CDKAL1, CDKN2A/B, IGF2BP2, SLC30A8, and HHEX/IDE genes are associated with type 2 diabetes and impaired fasting glucose in a Chinese Han population. Diabetes 2008; 57: 2834-42.

    [15] Zhou DZ, Liu Y, Zhang D, Liu SM, Yu L, Yang YF, et al. Variations in/nearby genes coding for JAZF1, TSPAN8/LGR5 and HHEX-IDE and risk of type 2 diabetes in Han Chinese. J Hum Genet 2010; 55: 810-5.

    [16] Qian Y, Lu F, Dong M, Lin Y, Li H, Chen J, et al. Genetic variants of IDE-KIF11-HHEX at 10q23.33 associated with type 2 diabetes risk: a fine-mapping study in Chinese population. PLoS One 2012; 7: e35060.

    [17] Bort R, Martinez-Barbera JP, Beddington RS, Zaret KS. Hex homeobox gene-dependent tissue positioning is required for organogenesis of the ventral pancreas. Development 2004; 131: 797-806.

    [18] Hunter MP, Wilson CM, Jiang X, Cong R, Vasavada H, Kaestner KH, et al. The homeobox gene Hhex is essential for proper hepatoblast differentiation and bile duct morphogenesis. Dev Biol 2007; 308: 355-67.

    [19] Tanaka H, Yamamoto T, Ban T, Satoh S, Tanaka T, Shimoda M, et al. Hex stimulates the hepatocyte nuclear factor 1alpha-mediated activation of transcription. Arch Biochem Biophys 2005; 442: 117-24.

    [20] Pivovarova O, Nikiforova VJ, Pfeiffer AF, Rudovich N. The influence of genetic variations in HHEX gene on insulin metabolism in the German MESYBEPO cohort. Diabetes Metab Res Rev 2009; 25: 156-62.

    [21] Pascoe L, Tura A, Patel SK, Ibrahim IM, Ferrannini E, Zeggini E, et al. Common variants of the novel type 2 diabetes genes CDKAL1 and HHEX/IDE are associated with decreased pancreatic beta-cell function. Diabetes 2007; 56: 3101-4.

    [22] Cai Y, Yi J, Ma Y, Fu D. Meta-analysis of the effect of HHEX gene polymorphism on the risk of type 2 diabetes. Mutagenesis 2011; 26: 309-14.

    [23] Xu P, Che Y, Cao Y, Wu X, Sun H, Liang F, et al. Polymorphisms of TCF7L2 and HHEX genes in Chinese women with polycystic ovary syndrome. J Assist Reprod Genet 2010; 27: 23-8.

    [24] Zhao J, Bradfield JP, Zhang H, Annaiah K, Wang K, Kim CE, et al. Examination of all type 2 diabetes GWAS loci reveals HHEX-IDE as a locus influencing pediatric BMI. Diabetes 2010; 59: 751-5.

    [25] Cruz M, Valladares-Salgado A, Garcia-Mena J, Ross K, Edwards M, Angeles-Martinez J, et al. Candidate gene association study conditioning on individual ancestry in patients with type 2 diabetes and metabolic syndrome from Mexico City. Diabetes Metab Res Rev 2010; 26: 261-70.

    [26] Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 2007; 316: 1331-6.

    [27] Sanghera DK, Nath SK, Ortega L, Gambarelli M, Kim-Howard X, Singh JR, et al. TCF7L2 polymorphisms are associated with type 2 diabetes in Khatri Sikhs from North India: genetic variation affects lipid levels. Ann Hum Genet 2008; 72: 499-509.

    [28] Hao M, Head WS, Gunawardana SC, Hasty AH, Piston DW. Direct effect of cholesterol on insulin secretion: a novel mechanism for pancreatic beta-cell dysfunction. Diabetes 2007; 56: 2328-38.

    [29] Sanghera DK, Ortega L, Han S, Singh J, Ralhan SK, Wander GS, et al. Impact of nine common type 2 diabetes risk polymorphisms in Asian Indian Sikhs: PPARG2 (Pro12Ala), IGF2BP2, TCF7L2 and FTO variants confer a significant risk. BMC Med Genet 2008; 9: 59.

    [30] Chen XD, Yang YJ, Li SY, Peng QQ, Zheng LJ, Jin L, et al. Several polymorphisms of KCNQ1 gene are associated with plasma lipid levels in general Chinese populations. PloS One 2012; 7: e34229.

    Received 12 May 2012, Revised 13 June 2012, Accepted 18 November 2012, Epub 20 December 2012

    This work was supported by grants from the Project of National Natural Science Foundation of China (No. 81102180, No. 81072379), Ministry of Health Research Program (No. WKJ2010-2-032), Wuxi Science & Technology Research Program (No. CSE01016) and the Priority Academic Program for the Development of Jiangsu Higher Education Institutions (Public Health and Preventive Medicine).

    △These authors contribute equally to this work.

    The authors reported no conflict of interests.

    10.7555/JBR.27.20120091

    欧美日韩瑟瑟在线播放| 可以在线观看毛片的网站| 可以在线观看毛片的网站| 一区二区三区激情视频| 97人妻精品一区二区三区麻豆| 成人特级av手机在线观看| 最近视频中文字幕2019在线8| 亚洲最大成人av| 日本a在线网址| 麻豆成人午夜福利视频| 最近最新中文字幕大全电影3| 老司机深夜福利视频在线观看| 小说图片视频综合网站| 婷婷色综合大香蕉| 欧美在线一区亚洲| 中出人妻视频一区二区| 伦理电影大哥的女人| 亚洲精品日韩av片在线观看| 国产伦人伦偷精品视频| 午夜福利成人在线免费观看| 国产毛片a区久久久久| 国产一区二区三区av在线 | 国产精品久久久久久亚洲av鲁大| 长腿黑丝高跟| 国产成人aa在线观看| 老女人水多毛片| 免费av不卡在线播放| 最新中文字幕久久久久| 色精品久久人妻99蜜桃| 最近最新中文字幕大全电影3| 在线a可以看的网站| 国产精品av视频在线免费观看| 欧美在线一区亚洲| 尤物成人国产欧美一区二区三区| 亚洲电影在线观看av| 91麻豆精品激情在线观看国产| 亚洲精品影视一区二区三区av| 色av中文字幕| h日本视频在线播放| 3wmmmm亚洲av在线观看| 欧美成人a在线观看| 夜夜夜夜夜久久久久| 免费av观看视频| 日韩精品青青久久久久久| 国产黄a三级三级三级人| 亚洲av免费高清在线观看| av在线老鸭窝| 久久热精品热| 国内毛片毛片毛片毛片毛片| 精品日产1卡2卡| 欧美绝顶高潮抽搐喷水| 成人国产麻豆网| 91久久精品国产一区二区成人| 99久国产av精品| 日韩国内少妇激情av| 国产真实伦视频高清在线观看 | 免费av不卡在线播放| 国产高清激情床上av| 国产精品久久久久久av不卡| 中文在线观看免费www的网站| 日本成人三级电影网站| 国产成年人精品一区二区| 国产精华一区二区三区| 国产精品野战在线观看| 久久人人精品亚洲av| 俄罗斯特黄特色一大片| 精品日产1卡2卡| 老熟妇乱子伦视频在线观看| 日韩欧美三级三区| 乱系列少妇在线播放| av专区在线播放| 大型黄色视频在线免费观看| 99九九线精品视频在线观看视频| 成人鲁丝片一二三区免费| 国产成人一区二区在线| 男女下面进入的视频免费午夜| 天天躁日日操中文字幕| 级片在线观看| 亚洲国产高清在线一区二区三| 深夜精品福利| 午夜爱爱视频在线播放| av在线亚洲专区| 国产午夜精品久久久久久一区二区三区 | 精品久久久久久久久亚洲 | 性色avwww在线观看| 级片在线观看| 午夜福利高清视频| 99九九线精品视频在线观看视频| 欧美极品一区二区三区四区| 国产老妇女一区| 国产精品,欧美在线| 美女cb高潮喷水在线观看| 亚洲欧美日韩高清在线视频| 国产av在哪里看| 搡老妇女老女人老熟妇| 高清在线国产一区| 国产极品精品免费视频能看的| 国产欧美日韩精品亚洲av| 亚洲成人久久爱视频| 色综合婷婷激情| 亚洲真实伦在线观看| 中文字幕熟女人妻在线| 精品久久久久久成人av| 午夜福利在线观看免费完整高清在 | 欧美三级亚洲精品| 亚洲无线在线观看| 欧美成人免费av一区二区三区| 黄色一级大片看看| 97超视频在线观看视频| 日韩 亚洲 欧美在线| 色综合婷婷激情| 精品人妻视频免费看| 欧美在线一区亚洲| 最近最新中文字幕大全电影3| 免费在线观看影片大全网站| 日本免费a在线| 亚洲av电影不卡..在线观看| 九九在线视频观看精品| 亚洲无线在线观看| 别揉我奶头 嗯啊视频| 日韩中文字幕欧美一区二区| 女生性感内裤真人,穿戴方法视频| 99热6这里只有精品| 国产午夜精品论理片| 少妇被粗大猛烈的视频| 久久国内精品自在自线图片| 在线播放无遮挡| 精品人妻视频免费看| 性插视频无遮挡在线免费观看| 乱码一卡2卡4卡精品| 悠悠久久av| 乱人视频在线观看| 色尼玛亚洲综合影院| 久久精品91蜜桃| 麻豆国产97在线/欧美| 亚洲欧美激情综合另类| 国产乱人伦免费视频| 88av欧美| 久久99热6这里只有精品| 色综合色国产| 国产精品免费一区二区三区在线| 午夜激情欧美在线| 网址你懂的国产日韩在线| 99久久中文字幕三级久久日本| 欧美色视频一区免费| 国产在线男女| 成人国产麻豆网| 国内精品宾馆在线| 不卡视频在线观看欧美| 国产成年人精品一区二区| 中文字幕精品亚洲无线码一区| 国产免费男女视频| 美女高潮喷水抽搐中文字幕| 久久99热6这里只有精品| 欧美不卡视频在线免费观看| 精品乱码久久久久久99久播| 亚洲欧美激情综合另类| 熟女电影av网| 极品教师在线免费播放| av在线老鸭窝| 91av网一区二区| 嫁个100分男人电影在线观看| 亚洲av中文字字幕乱码综合| eeuss影院久久| 久久久久九九精品影院| 国产精品99久久久久久久久| 亚洲熟妇中文字幕五十中出| 成年女人毛片免费观看观看9| av天堂中文字幕网| 91久久精品国产一区二区三区| 婷婷丁香在线五月| 亚洲中文字幕一区二区三区有码在线看| 女生性感内裤真人,穿戴方法视频| 国产精品伦人一区二区| 人妻夜夜爽99麻豆av| 我要搜黄色片| 亚洲在线自拍视频| 91av网一区二区| 国产精华一区二区三区| 日韩,欧美,国产一区二区三区 | 免费av观看视频| 国产主播在线观看一区二区| 美女 人体艺术 gogo| 国内精品一区二区在线观看| 亚洲精品亚洲一区二区| 精品久久久久久久人妻蜜臀av| 中文亚洲av片在线观看爽| 国产真实伦视频高清在线观看 | 亚洲人成网站在线播| 久久久久免费精品人妻一区二区| 中文字幕av成人在线电影| 欧美黑人欧美精品刺激| 高清毛片免费观看视频网站| 精品久久久久久久久久久久久| 少妇熟女aⅴ在线视频| 亚洲国产精品sss在线观看| 中文字幕熟女人妻在线| 亚洲人与动物交配视频| 欧美潮喷喷水| 日本黄大片高清| 国产亚洲91精品色在线| 三级毛片av免费| 亚洲不卡免费看| 国产av麻豆久久久久久久| 伦精品一区二区三区| 国产伦精品一区二区三区视频9| 淫秽高清视频在线观看| 午夜福利成人在线免费观看| 国产精品久久久久久久电影| 国产精品国产三级国产av玫瑰| 狠狠狠狠99中文字幕| 免费在线观看成人毛片| 成人国产综合亚洲| 88av欧美| 亚洲欧美激情综合另类| 国产亚洲精品av在线| 人人妻,人人澡人人爽秒播| 国产成人av教育| 特级一级黄色大片| 99热网站在线观看| 一本久久中文字幕| 亚洲欧美激情综合另类| 大又大粗又爽又黄少妇毛片口| 在线观看免费视频日本深夜| 男女做爰动态图高潮gif福利片| 国产高清有码在线观看视频| 国产单亲对白刺激| 国产伦一二天堂av在线观看| 欧美日本亚洲视频在线播放| 制服丝袜大香蕉在线| 欧美3d第一页| 国产精品99久久久久久久久| 亚洲成人中文字幕在线播放| 99久久无色码亚洲精品果冻| 亚洲美女搞黄在线观看 | 99视频精品全部免费 在线| 久久久久久久久大av| 好男人在线观看高清免费视频| 久久久久国产精品人妻aⅴ院| 亚洲av免费在线观看| 一级av片app| 亚洲成人久久性| 日韩av在线大香蕉| 色5月婷婷丁香| 日韩欧美三级三区| 内地一区二区视频在线| 国产一区二区三区av在线 | 午夜老司机福利剧场| 在线观看舔阴道视频| 亚州av有码| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品一区av在线观看| 亚洲欧美清纯卡通| 伦理电影大哥的女人| a级毛片a级免费在线| 一本精品99久久精品77| 日本 av在线| 久久久久性生活片| 中文字幕av成人在线电影| 日韩高清综合在线| 国产白丝娇喘喷水9色精品| 九九热线精品视视频播放| 乱码一卡2卡4卡精品| 久久国产乱子免费精品| 熟女人妻精品中文字幕| 国产视频一区二区在线看| 校园人妻丝袜中文字幕| 在线播放无遮挡| 亚洲av成人av| 久久精品国产鲁丝片午夜精品 | 国产 一区 欧美 日韩| 亚洲欧美日韩无卡精品| xxxwww97欧美| 亚洲 国产 在线| 毛片女人毛片| 亚洲电影在线观看av| 丝袜美腿在线中文| 国产探花极品一区二区| 久久精品综合一区二区三区| 亚洲三级黄色毛片| 亚洲自偷自拍三级| 内地一区二区视频在线| 男女下面进入的视频免费午夜| 麻豆精品久久久久久蜜桃| 动漫黄色视频在线观看| 久久久久国内视频| 日韩精品中文字幕看吧| 两个人视频免费观看高清| 日韩在线高清观看一区二区三区 | 久久精品国产鲁丝片午夜精品 | 成人美女网站在线观看视频| 丰满人妻一区二区三区视频av| 亚洲avbb在线观看| 亚洲精品成人久久久久久| 国产成人av教育| 色哟哟哟哟哟哟| 99riav亚洲国产免费| 99久久九九国产精品国产免费| 久久久精品欧美日韩精品| 成人一区二区视频在线观看| 国产国拍精品亚洲av在线观看| 老师上课跳d突然被开到最大视频| 婷婷色综合大香蕉| 国产精品久久久久久久久免| 91av网一区二区| 国产视频内射| 在线观看av片永久免费下载| 国产成人aa在线观看| 欧美日韩黄片免| 久久天躁狠狠躁夜夜2o2o| 成人高潮视频无遮挡免费网站| 我要看日韩黄色一级片| 在线国产一区二区在线| 丰满乱子伦码专区| 国产激情偷乱视频一区二区| 琪琪午夜伦伦电影理论片6080| 亚洲欧美日韩高清在线视频| 亚洲av成人av| 成人一区二区视频在线观看| 精品久久国产蜜桃| 亚洲av中文字字幕乱码综合| 亚洲无线在线观看| 亚洲午夜理论影院| 乱人视频在线观看| 亚洲性久久影院| a级毛片a级免费在线| 免费人成在线观看视频色| 亚洲av免费在线观看| 一本精品99久久精品77| 久久久久久久久久黄片| 亚洲av成人精品一区久久| 久久精品国产清高在天天线| 老师上课跳d突然被开到最大视频| 国产精品av视频在线免费观看| 人妻久久中文字幕网| 深夜a级毛片| 两人在一起打扑克的视频| 大型黄色视频在线免费观看| 在线免费观看不下载黄p国产 | 蜜桃亚洲精品一区二区三区| 亚洲成人中文字幕在线播放| 欧美日韩亚洲国产一区二区在线观看| 搡女人真爽免费视频火全软件 | 中文字幕久久专区| 床上黄色一级片| 亚洲三级黄色毛片| 亚洲熟妇中文字幕五十中出| 99精品在免费线老司机午夜| 亚洲av日韩精品久久久久久密| 国产精品野战在线观看| a级毛片a级免费在线| 麻豆一二三区av精品| 少妇的逼好多水| 成人综合一区亚洲| 国产一区二区亚洲精品在线观看| 精品久久久久久久人妻蜜臀av| 女生性感内裤真人,穿戴方法视频| 欧美最黄视频在线播放免费| 精品久久国产蜜桃| 欧美高清成人免费视频www| 亚洲国产欧美人成| 赤兔流量卡办理| 久久精品综合一区二区三区| 亚洲国产日韩欧美精品在线观看| a级毛片a级免费在线| 在线国产一区二区在线| 一级毛片久久久久久久久女| 欧美绝顶高潮抽搐喷水| 亚洲aⅴ乱码一区二区在线播放| 亚洲性久久影院| 一级毛片久久久久久久久女| 少妇熟女aⅴ在线视频| 国产高清有码在线观看视频| 婷婷精品国产亚洲av| 性插视频无遮挡在线免费观看| 亚洲精品一卡2卡三卡4卡5卡| 男女视频在线观看网站免费| 在线观看免费视频日本深夜| 男人和女人高潮做爰伦理| 亚洲中文字幕一区二区三区有码在线看| 给我免费播放毛片高清在线观看| 一进一出抽搐gif免费好疼| 亚洲国产色片| 欧美又色又爽又黄视频| 性欧美人与动物交配| 亚洲自拍偷在线| 成年女人毛片免费观看观看9| av国产免费在线观看| 精品午夜福利视频在线观看一区| 久久婷婷人人爽人人干人人爱| 国内久久婷婷六月综合欲色啪| 国产黄色小视频在线观看| 国产精品99久久久久久久久| 免费搜索国产男女视频| 国产亚洲精品久久久久久毛片| 亚洲va在线va天堂va国产| 久久精品91蜜桃| 好男人在线观看高清免费视频| 老熟妇仑乱视频hdxx| 国产麻豆成人av免费视频| 日韩欧美国产一区二区入口| 又爽又黄无遮挡网站| 3wmmmm亚洲av在线观看| 亚洲图色成人| 亚洲精品色激情综合| 联通29元200g的流量卡| 亚洲无线在线观看| 国产免费男女视频| 亚洲精华国产精华精| 在线天堂最新版资源| 美女cb高潮喷水在线观看| 国产免费一级a男人的天堂| 国产淫片久久久久久久久| 国产乱人视频| 中文字幕精品亚洲无线码一区| av在线观看视频网站免费| 成年女人毛片免费观看观看9| 久久精品国产自在天天线| 久久精品国产鲁丝片午夜精品 | 韩国av一区二区三区四区| 亚洲av一区综合| 欧美激情久久久久久爽电影| 99riav亚洲国产免费| 精品一区二区三区人妻视频| 久久午夜福利片| 日本熟妇午夜| 草草在线视频免费看| 国产精品av视频在线免费观看| 一本一本综合久久| 国产乱人伦免费视频| 亚洲国产欧美人成| 精品久久久久久久久久久久久| 亚洲欧美日韩无卡精品| 18禁黄网站禁片午夜丰满| 亚洲av中文av极速乱 | 久久久久久九九精品二区国产| 亚洲成人久久爱视频| 免费看a级黄色片| 成年女人毛片免费观看观看9| a在线观看视频网站| 亚洲国产高清在线一区二区三| 别揉我奶头~嗯~啊~动态视频| 午夜免费成人在线视频| 九九爱精品视频在线观看| 亚洲一级一片aⅴ在线观看| 免费观看精品视频网站| 狂野欧美激情性xxxx在线观看| 亚洲va日本ⅴa欧美va伊人久久| 天天躁日日操中文字幕| 免费在线观看影片大全网站| 国产69精品久久久久777片| 国内揄拍国产精品人妻在线| 天堂网av新在线| or卡值多少钱| 国产白丝娇喘喷水9色精品| 禁无遮挡网站| av天堂在线播放| 亚洲人成网站在线播| 97超视频在线观看视频| 国产精品人妻久久久久久| 亚洲av第一区精品v没综合| av天堂中文字幕网| 可以在线观看的亚洲视频| 午夜福利18| 色尼玛亚洲综合影院| 长腿黑丝高跟| 久久精品国产亚洲av涩爱 | 国产黄色小视频在线观看| 亚洲专区国产一区二区| 简卡轻食公司| 婷婷色综合大香蕉| 亚洲av成人精品一区久久| 狂野欧美激情性xxxx在线观看| 亚洲欧美日韩东京热| 高清毛片免费观看视频网站| 久久欧美精品欧美久久欧美| 亚洲美女搞黄在线观看 | 精品人妻熟女av久视频| 成人三级黄色视频| 国产大屁股一区二区在线视频| 国产黄a三级三级三级人| 国产免费男女视频| 禁无遮挡网站| 亚洲美女黄片视频| av黄色大香蕉| 中文字幕熟女人妻在线| 亚洲av二区三区四区| 99精品久久久久人妻精品| 亚洲成人精品中文字幕电影| 中文在线观看免费www的网站| 久久精品综合一区二区三区| 伦理电影大哥的女人| 好男人在线观看高清免费视频| 国产精品福利在线免费观看| av黄色大香蕉| 舔av片在线| 亚洲经典国产精华液单| 国产精品一区www在线观看 | 黄色欧美视频在线观看| 欧美性感艳星| 全区人妻精品视频| 亚洲成a人片在线一区二区| 婷婷六月久久综合丁香| 波多野结衣巨乳人妻| 久久6这里有精品| 国内精品美女久久久久久| 99热这里只有是精品在线观看| 九九久久精品国产亚洲av麻豆| 免费在线观看日本一区| 男女之事视频高清在线观看| 亚洲第一区二区三区不卡| 日本黄色片子视频| 日韩欧美三级三区| 欧美+日韩+精品| 午夜免费激情av| 人人妻人人澡欧美一区二区| 国产在视频线在精品| 国产精品爽爽va在线观看网站| 亚洲av二区三区四区| bbb黄色大片| 日韩精品有码人妻一区| 免费一级毛片在线播放高清视频| 啪啪无遮挡十八禁网站| 22中文网久久字幕| 欧美高清性xxxxhd video| 男女边吃奶边做爰视频| 国语自产精品视频在线第100页| 国产精品美女特级片免费视频播放器| 色噜噜av男人的天堂激情| 欧美最黄视频在线播放免费| 日韩av在线大香蕉| 大型黄色视频在线免费观看| 亚洲图色成人| 久久久精品欧美日韩精品| 女同久久另类99精品国产91| 麻豆精品久久久久久蜜桃| 国产私拍福利视频在线观看| 韩国av一区二区三区四区| 久久久久九九精品影院| 久久人人精品亚洲av| 日本一本二区三区精品| 搡老妇女老女人老熟妇| 99久久久亚洲精品蜜臀av| 中文字幕免费在线视频6| 有码 亚洲区| 婷婷亚洲欧美| 狂野欧美白嫩少妇大欣赏| www.色视频.com| 国产精品不卡视频一区二区| 午夜老司机福利剧场| 欧美日本亚洲视频在线播放| 精品一区二区三区av网在线观看| 男女之事视频高清在线观看| 99久久久亚洲精品蜜臀av| 免费黄网站久久成人精品| 久久精品综合一区二区三区| 欧美日韩综合久久久久久 | 91午夜精品亚洲一区二区三区 | 露出奶头的视频| 国产亚洲精品久久久久久毛片| 干丝袜人妻中文字幕| 国产高清视频在线观看网站| 日韩精品中文字幕看吧| 热99re8久久精品国产| 他把我摸到了高潮在线观看| 日韩在线高清观看一区二区三区 | 国产精品1区2区在线观看.| 久久精品国产亚洲网站| 88av欧美| 99久久九九国产精品国产免费| 午夜激情欧美在线| 国产精品免费一区二区三区在线| 伊人久久精品亚洲午夜| 精品人妻熟女av久视频| 国产精品久久久久久精品电影| 尾随美女入室| 亚洲av免费高清在线观看| 一a级毛片在线观看| 午夜免费男女啪啪视频观看 | 啦啦啦观看免费观看视频高清| 国产高清有码在线观看视频| 91午夜精品亚洲一区二区三区 | 亚洲性夜色夜夜综合| 午夜福利在线观看免费完整高清在 | 免费观看人在逋| 免费在线观看影片大全网站| 色尼玛亚洲综合影院| 日韩欧美免费精品| 人妻夜夜爽99麻豆av| 别揉我奶头 嗯啊视频| 俄罗斯特黄特色一大片| 免费在线观看影片大全网站| 欧美国产日韩亚洲一区| 偷拍熟女少妇极品色| 12—13女人毛片做爰片一| 高清在线国产一区| 欧美日韩乱码在线| 国内少妇人妻偷人精品xxx网站| 级片在线观看| 一区二区三区四区激情视频 | 国产精品综合久久久久久久免费| 久久精品国产鲁丝片午夜精品 | 成年女人看的毛片在线观看| 亚洲欧美精品综合久久99| 淫秽高清视频在线观看| 欧美日韩黄片免| 欧美国产日韩亚洲一区| 日本免费a在线| 又粗又爽又猛毛片免费看| 国产精品一区二区免费欧美| 免费人成视频x8x8入口观看| 国产精品福利在线免费观看| 美女被艹到高潮喷水动态| a在线观看视频网站| 一本一本综合久久|