• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Simple Locking-Alleviated 4-Node Mixed-Collocation Finite Element with Over-Integration,for Homogeneous or Functionally-Graded or Thick-Section Laminated Composite Beams

    2014-04-17 07:38:49LeitingDongAhmedElGizawyKhalidJuhanyandSatyaAtluri
    Computers Materials&Continua 2014年4期

    Leiting Dong,Ahmed S.El-Gizawy,Khalid A.Juhany and Satya N.Atluri

    1 Introduction

    1.1 Locking of low-order isoparametric primal elements

    It is known that primal finite elements,based on low-order isoparametric displacement interpolations,suffer from shear locking for beam-shaped structures.This is mainly because of the incompleteness of FEM displacement interpolations,as well as the incompleteness of the strains derived from the interpolated displacement fields.Consider a four-node quadrilateral element as an example(see Fig.1),wherein the physical Cartesian coordinates as well as the Cartesian displacement components are interpolated using the same Lagrange shape functions:

    where the subscript i(=1,2)denotes the index of the Cartesian coordinates,and the superscripts 1 to 4 denote the nodes of the 4-node isoparametric element.

    From such a mesh-based interpolation,we have:

    The Cartesian strain components are derived by using the following chain rule:

    where repeated indices indicate summation.

    1.2 Selective reduced-order integrations

    Equations for primal FEMs are derived from the symmetric Galerkin weak-form or the equivalent principle of minimum potential energy,see[Atluri(2005);Dong,Alotaibi,Mohiuddine and Atluri(2014)]:

    where ke,fe,qeare element stiffness matrix,load vector,and displacement vector respectively.N is the shape function for displacement interpolations,B is the derived matrix for strain interpolations,D is the matrix of elastic stiffness.Andˉt,ˉb represent applied tractions and body forces respectively.

    For a homogeneous-material 4-noded quadrilateral element,it is clear that at least a 2 by 2 Gauss quadrature is necessary to exactly-evaluate ke.However,because fully-integrated 4-node elements are too stiff forbending problems,selectivereduced-order integrations are typically used in commercial FEM codes to improve such a decomposition is simple,by expressing the strain energy density function using Lamé constants.For anisotropic materials,the decomposition of strain energy density into dilatational and shear parts is not straight-forward,see[Hughes(1980)].Moreover,if each element represents a piece of an inhomogeneous material,such as the functionally-graded or a thick-section laminated composite beam considered in this study,over-integration is necessary instead of under-integration.In this sense,rigorously formulated hybrid and mixed finite elements are more favorable as compared to the numerical tricks of reduced-order integrations,to alleviate shear-locking in 4-noded quadrilaterals.

    1.3 Hybrid&mixed finite elements

    In order to overcome the shear locking,hybrid and mixed elements independently assume a stress/strain/displacement field,and derive FEM stiffness matrices using multi-field variational principles,see[Pian(1964);Atluri(1975);Atluri,Gallagher and Zienkiewicz(1983)].One of the most popular is the hybrid-stress type of element,see[Pian(1964);Pian and Chen(1983);Rubinstein,Punch and Atluri(1983);Pian and Sumihara(1984);Punch and Atluri(1984);Xue,Karlovitz and Atluri(1985);Pian and Wu(1988)].Among the many variants of four-node hybridstress elements developed by Pian,the Pian-Sumihara(1984)element is currently considered to be among the best-performing four-noded elements.Through a geometrical perturbation analysis,[Pian and Sumihara(1984)]concluded that it is rational to assume the following distribution of Cartesian stress components within the element:

    However,this is exactly equivalent to assuming the following distribution of the contra-variant components of the stress tensor,as independently given in[Xue,Karlovitz and Atluri(1985)]:

    Rewriting the stress-field assumption asσ=Pγ,the stiffness matrix of the hybridstress element can be obtained by using Reissner’s variational principle[Reissner(1950)]:

    Numerical examples have shown that the Pian-Sumihara element performs excellently for homogeneous isotropic beams if undistorted rectangular elements are used.But its accuracy is reduced when the mesh is significantly distorted.Many later works have tried to improve the Pian-Sumihara element by using different independently assumed fields,and different variational set-ups,see[Simo and Rifai(1990);Weissman and Taylor(1992);Yuan,Huang and Pian(1993)].However,very similar results were obtained by all these researchers for a four-node quadrilateral element.

    Moreover,if we consider varying material properties within each element,such as functionally graded materials or thick-section laminated composite materials,the assumption of linear stress distribution is generally invalid if a coarse mesh is used.It is shown in the numerical examples of this study,that the Pian-Sumihara element fails for functionally graded materials and laminated structures,even in the most simple problem of pure tension.With this being understood,it is clear that assumed linearly-varying strains are more favorable than assumed stresses.

    Another disadvantage of the current variational frameworks for hybrid/mixed elements is their questionable stability,because continuous Lagrange multiplier test functions are used to enforce the compatibility between the independently assumed stress/strain fields and those derived from mesh-based displacementinter-polations.Brezzi(1974)analyzed the existence,uniqueness,stability and convergence of saddle point problems and established the so-called LBB conditions.Inability to satisfy LBB conditions a-priori,in general would plague the solvability and stability of hybrid/mixed finite element equations.[Rubinstein,Punch and Atluri(1983);Punch and Atluri(1984);Xue,Karlovitz and Atluri(1985)]used sophisticated group theories to develop guidelines for selecting least-order stress interpolations which satisfy the LBB conditions for an undistorted element.For distorted elements,there is generally no rational approach to satisfy the LBB condition a-priori.In this study,we develop a new type of four-node quadrilateral element,which we denote as“CEQ4”.We demonstrate that,without using any multi-field variational principle or selective reduced-order integration,the CEQ4 gives much more accurate locking-alleviated and distortion-insensitive solutions than the Pian-Sumihara element for the modeling of homogeneous beams.We then combine CEQ4 with over-integration in the thicknessdirection,to modelthe deformation offunctionallygraded or laminated thick composite beams.It is shown that,without using higherorder theories[Lo,Christensen,and Wu(1977);Reddy and Robbins(1994)]or zig-zag displacement/stress assumptions[Carerra(2003)],the present CEQ4 can reasonably capture the correct distributions as well as jumps of in-plane stresses in the thickness direction,for functionally-graded or thick-section laminated beams,even if only a few elements are used.By using the equilibrium equations of elasticity,the transverse normal and shear stresses for thick-section laminates can be computed easily,from the computed in-plane stresses and their variation in the thickness direction.Detailed formulations and numerical examples are presented in the next 2 sections.

    2 Detailed Formulation for the PresentLocking-Alleviated,Almost-Distortion-Insensitive,4-Node Planar CEQ4 Element:

    2.1 Independently assumed strain field

    It is postulated in the present paper that,instead of using assumed stresses,assumed strains are of fundamental interest for the development of FEMs.Thus,the local Cartesian components of the strain tensor are independently assumed as:

    In Eq.(9),ˉx1-ˉx2is a local Cartesian coordinate system with its origin located at the center of the element.Thus,the local direct strains are assumed to be varying linearly with respect to Cartesian coordinates,in order to capture the basic bending deformation modes of the element,and the local shear strain is assumed to be a constant.

    We further rewrite(9)in a matrix-vector notation for convenience:

    2.2 Enforcing the compatibility between the independently assumed strain and displacement fields

    It is also understood that if a two-field variational principle is used to enforce the methods were used in the context of Mesheless-Local Petrov Galerkin approaches in[Atluri,Han and Rajendran(2004);Avila,Han and Atluri(2011)].

    In the work of[Dong and Atluri(2011)],the following 5 collocation points are preselected to relateγ1,...,γ5to nodal displacements(see Fig.1):

    Figure 1:CEQ4:enforces 5 pre-defined constraints at 5 preselected collocation points.

    Figure 2:(a)Stretch of an infinitesimal fiber(b)Change of the angle between two infinitesimal fibers.

    The fundamental idea is to capture the basic kinematics of the 4-node element,to accurately model each deformation mode of tension,bending,and shear.In order to do this,we first study theinfinitesimal deformation of an infinitesimalfiberABin Fig.2(a).As illustrated in many textbooks of solid mechanics,such as[Fung and Tong(2001)],the ratio of stretch in the direction of the fiber’s axis can be calculated as:

    Thus in order to model the basic kinematics modes of the four-node element,the following scheme of collocation is used in this study:

    At pointA:

    With these 5 equations,the five parameters ofγ1,···γ5are determined as:

    The strain fields are thus related to the nodal displacements by:

    The stiffness matrix is determined from the strain energy stored in the element:

    The presently developed four-node quadrilateral element is denoted as CEQ4.

    2.3 Some remarks on CEQ4

    Remark 1:For the assumed linearly-varying strain filed,one can find an equivalent displacement field:

    Without much derivation,one can verify that this method is entirely equivalent to the assumed strain formulation with the collocation scheme presented in the last subsection.

    Remark2:Because ofthe assumption oflinearly-varying strain fields,itis obvious that a 2 by 2 Gauss quadrature is necessary if each element is used to model a piece of a homogeneous material.However,if a non-homogeneous material within the element is considered,such as functionally-graded materials or thick-section laminated composites,we can use “over-integration”to accurately compute the stiffness matrix.For continuously graded materials,3 by 3 Gauss quadrature is good enough.However,for very-thick laminates,it is more convenient to either use a layer-wise 2 by 2 Gauss quadrature,or use a simple Trapezoidal rule in the thickness direction,with the number of sampling points depending on the number of plies in the thickness,to evaluate the stiffness matrix of the element.

    Remark 3:If only a few elements of CEQ4 are used to model thick-section beams,the transverse normal and shear stresses directly computed by Eq.(9)may be inaccurate.In this study,following the work of[Timoshenko and Goodier(1970)],we use a stress-recovery approach to compute the distribution oftransverse stresses,by considering the equilibrium equations of linear elasticity.With bending stressesσxxcomputed by Eq.(9),the distribution of transverse stresses can be obtained by numerically evaluating:

    wherey=y0denotes the lower edge of the beam.By several numerical examples in section 3,it is demonstrated that this approach gives excellent solutions for transverse stresses,even for very-thick-section laminated beams.

    3 Numerical Examples

    3.1 Homogeneous cantilever beams

    Figure 3:A homogeneous cantilever beam subjected to a bending load or a shear force at the free-end,modeled by 2 distorted elements.

    Figure 4:Computed vertical displacement at point A of the homogenous cantilever beam subjected to bending load.

    Figure 5:Computed bending stress at point B of the homogenous material cantilever beam subjected to bending load.

    Figure 6:Computed vertical displacement at point A of the homogenous cantilever beam subjected to shear load.

    Figure 7:Computed bending stress at point B of the homogenous material cantilever beam subjected to shear load.

    Figure 8:Computed transverse shear stress of the homogenous material cantilever beam subjected to shear load.

    3.2 Functionally-graded materials

    In this subsection,we study structures composed of functionally-graded materials.The first example is a functionally-graded square plate subjected to a tensile load along the upper side.The analytical solution for this problem is given in[Kim and Paulino(2002)].As shown in Fig.9,the plate has a unit height,width,and thickness.A plane stress condition is considered.The Young’s modulus is exponentially varying in thexdirection,i.e.E=eβx,β=log 5.Thus,we haveE=1 at the left side,andE=5 at the right side.We also considerv=0 for illustration purposes.This problem is solved by using the primal quadrilateral element,the Pian-Sumihara element,and the mixed-collocation element(CEQ4)presented in this study.The plate is modeled by only one element.Because of the exponentially varying material parameters,3 by 3 Gauss quadrature is used for evaluating the stiffness matrix.The computed vertical displacement along the upper side,and computed tensile stress along the lower side,are given in Figs.10-11.It is shown that,even for this most simple problem,the stress distribution is not linearly varying.Thus the Pian-Sumihara element yields large computational errors for the stress distribution.On the other hand,exact solution is obtained by the assumed strain mixed collocation element presented in this study.

    We also consider a functionally graded cantilever beam subjected to a unit bending load or a unit shear force at the free end.As shown in Fig.12,the length and thickness of the beam are 5 and 1 respectively.Young’s modulus is exponentially varying in theydirection,i.e.E=eβy,β=log 5.Thus we haveE=1 at the lower side,andE=5 at the upper side.We also consider thatv=0 for this problem.

    Figure 9:A functionally-graded square plate subjected to a uniform tensile load,modeled by 1 element.

    Figure 10:Computed vertical displacement along the upper edge of the square plate.

    Figure 11:Computed tensile stress along the lower edge of the square plate.

    Figure 12:A functionally-graded cantilever beam subjected to a bending load(by 1 element)or a shear force(by 5 elements).

    Figure 13:Computed bending stress along the left side of the functionally-graded cantilever beam(pure bending case).

    Figure 15:Computed shear stress of the functionally-graded cantilever beam(endshear case).

    For the pure bending case,we use merely one element to solve the problem,with 3 by 3 Gauss quadrature to evaluate the stiffness matrix.The computed bending stress along the left side is given in Fig.13,as compared to the analytical solution of[Kim and Paulino(2002)].Because of shear-locking,primal FEM gives meaningless solutions.Moreover,the Pian-Sumihara element cannot accurately capture the stress distribution because of its linear stress assumption.On the other hand,an accurate solution is obtained by using the mixed-collocation FEM(CEQ4)presented in this study.

    For the shear-load case,we use 5 even-sized elements along the length direction to solve the problem.The computed bending stress along the linex=0.5(midspan of the first element)is compared to the analytical solution of[Zhong and Yu(2007)],see Fig.14.And computed transverse shear stress,which is invariant with respect tox,is plotted againstyin Fig.15.Because of the inaccuracy of primal FEM and the Pian-Sumihara element,only the results for CEQ4 are presented in Fig.14-15.Excellent agreement is found between the solution by CEQ4,and the exact solution given in[Zhong and Yu(2007)].

    3.3 Thick-section laminated composite beams

    In this subsection,we consider examples of thick-section laminated beams.In all of these examples,the Pian-Sumihara element and the primal 4-node element give very poor solutions unless a very fine mesh is used,thus only results by the presently developed mixed collocation FEM are presented.

    Figure 16:A simply-supported thick laminated beam subjected to sinusoidal lateral load.

    The first example is the classic problem of a 2-ply(0°/90°)laminated beam.Each layer of the laminate is composed of a Graphite/epoxy composite,with the following material parameters:

    whereLdenotes the fiber direction andTdenotes the transverse direction.

    The length and thickness of the beam are 12 inches and 1 inch respectively,so in the length direction,and only 1 element in the thickness direction,using the mixed-collocation FEM presented in this study.In Fig.17-19,we compare the computed normal stresses the shear stress with the analytical solution of Pagano(1969).Excellent agreements are obtained between the numerical and analytical solutions.

    Figure 17:Computed in-plane normal stress at the mid-span of the 2-ply laminated beam.

    Figure 18:Computed transverse normal stress at x=3.5(mid-span of the third element),of the 2-ply laminated beam.

    Figure 19:Computed shear stress at x=1.25(right-side of the first element),of the 2-ply laminated thick beam.

    Figure 20:Computed bending stress at the mid-span of the 50-ply laminated beam(l/h=6)with 8 elements by the mixed-collocation FEM(CEQ4)presented in this study.

    Figure 21:Computed transverse shear stress at x=0.75(right-side of the first element),of the 50-ply laminated beam(l/h=6)with 8 elements by the mixedcollocation FEM(CEQ4)presented in this study.

    Figure 22:Computed bending stress at the mid-span of the 50-ply laminated beam(l/h=12)with 8 elements by the mixed-collocation FEM(CEQ4)presented in this study.

    Figure 23:Computed transverse shear stress at x=1.5(right-side of the first element)of the 50-ply laminated beam(l/h=12)with 8 elements by the mixedcollocation FEM(CEQ4)presented in this study.

    Figure 24:Computed bending stress at the mid-span of the 50-ply laminated beam(l/h=6)with 375,000 Q4 elements by NASTRAN.

    In the last example,we study a complex 50-ply([0°/90°]25)simply-supported laminated beam.We considerh=1 for this laminated beam,thus each ply is 0.02 inch in thickness.And we consider two different aspect ratios:(a)l/h=6 as a very-thick-section laminated beam;(b)l/h=12 as a slightly-thick-section laminate beam.The same graphite/epoxy material as in the last example is considered for each lamina,and the same sinusoidal load is applied on the upper edge of the laminated beam.We solve both cases using only 8 elements presented in this study.In Figs.20-23,the computed bending stresses and transverse shear stresses are compared to the analytical solution of Pagano(1969).It is shown that,reasonably-accurate bending and transverse shear stresses are obtained by the mixed-collocation FEM presented in this study.The only slight discrepancy is that,the present method gives a linear distribution of stresses in each of the 0°and 90°lamina,while analytical solution of Pagano(1969)demonstrates a slightlynonlinear trend of the bending stress,for the very-thick-section laminate beam(l/h=6).Extension of the present 4-node element to 8-node or 9-node planar elements should be able to give a better approximation of stress distributions,see[Bishay and Atluri(2012)].

    Moreover,for the very-thick-section laminate beam(l/h=6),the computed bending and transverse shearstressesobtained by NASTRANwith 375,000 Q4 elements are also plotted in Fig.24-25.The results obtained by using NASTRAN compare well with those obtained by using the CEQ4 presented in this study,although the number of elements used in obtaining the results from NASTRAN is about five orders of magnitude more than the number of CEQ4 elements.

    Figure 25:Computed transverse shear stress at x=0.75 of the 50-ply laminated beam(l/h=6)with 375,000 Q4 elements by NASTRAN.

    4 Conclusion

    A four-node mixed finite element is developed,following the initial work by[Dong and Atluri(2011)].The present element independently assumes a 5-parameter linearly-varying Cartesian strain field.The 5 parameters for the assumed Cartesian strains are related to the Cartesian nodal displacements,by enforcing a set of predefined constraints at 5 pre-defined collocation points.A scheme of overintegration is also proposed,for evaluating the stiffness matrices if functionallygraded or thick-section laminated composite materials are considered.Through several numerical examples,it is clearly shown that,the CEQ4 is much more accurate than the Pian-Sumihara element for the modeling of homogeneous beams.For functionally-graded materials,the presently-developed element can accurately capture not only the in-plane stress distribution and its variation in the thickness direction,but also the transverse shear stresses,even when very few elements are used.However,the Pian-Sumihara element fails because the assumption of linearly-varying stress-field is generally invalid for such materials,if a very coarse mesh is used.For thick laminated composite beams,reasonably accurate solutions are obtained even by using only 1 element of CEQ4 in the thickness direction.The methodology presented in this paper thus provides a very simple alternative to the complex higher-order theories and zig-zag assumptions of displacements/stresses in the thickness direction,for thick laminates.The approach presented in this paper can be very easily extended to study the effects of Z-Pins and stitching on interlaminar stresses in laminated composites,for structural applications.These,and the extension of CEQ4 to C0elements of higher-order,for plates and shells as well as to multi-physics will be pursued in future studies.

    Acknowledgement:This research is supported by the Mechanics Section,Vehicle Technology Division,of the US Army Research Labs,under a collaborative research agreement with UCI.The first author acknowledges the financial support of Natural Science Foundation Project of Jiangsu Province(Grant no.BK20140838).This work was funded by the Deanship of Scientific Research(DSR),King Abdulaziz University,under grant number(15-135-35-HiCi).The authors,therefore,acknowledge the technical and financial support of KAU.

    Atluri,S.N.(1975):On hybrid finite element models in solid mechanics.Advances in Computer Methods for Partial Differential Equations,R.Vichnevetsky(eds.),AICA,pp.346-356.

    Atluri,S.N.;Gallagher,R.H.;Zienkiewicz,O.C.(1983).Hybrid and mixedfinite element methods.John Wiley&Sons.

    Atluri,S.N.;Han,Z.D.;Rajendran,A.M.(2004):A new implementation of the meshless finite volume method,through the MLPG “mixed”approach.CMES:Computer Modeling in Engineering&Sciences,vol.6,no.6,pp.491—514.

    Atluri,S.N.(2005):Methods of Computer Modeling in Engineering and the Sciences,Tech Science Press.

    Avila,R;Han,Z.D.;Atluri,S.N.(2011):A novel MLPG-finite-volume mixed method for analyzing Stokesian flows&study of a new vortex mixing flow.CMES:Computer Modeling in Engineering&Sciences,vol.71,no.4,pp.363-396.

    Brezzi,F.(1974):On the existence,uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers.Revue Fran?aise D’automatique,Informatique,Recherche Opérationnelle,Analyse Numérique,vol.8,no.2,pp.129-151.

    Bishay,P.L.;Atluri,S.N.(2012):High-performance 3D hybrid/mixed,and simple 3D Voronoi Cell Finite Elements,for macro-µ-mechanical modeling of solids,without using multi-field variational principles.CMES:Computer Modeling in Engineering&Sciences,vol.84,no.1,pp.41-97.

    Carrera,E.(2003):Historical review of zig-zag theories for multilayered plates and shells.Applied Mechanics Reviews,vol.56,issue 3,pp.287-308.

    Dong,L.;Atluri,S.N.(2011):A simple procedure to develop efficient&stable hybrid/mixed elements,and Voronoi cell finite elements for macro-µmechanics.CMC:Computers Materials&Continua,vol.24,no.1,pp.41-104.

    Dong,L.;Alotaibi,A.;Mohiuddine,S.A.;Atluri,S.N.(2014):Computational methods in engineering:a variety of primal&mixed methods,with global&local interpolations,for well-posed or ill-Posed BCs.CMES:Computer Modeling in Engineering&Sciences,vol.99,no.1,pp.1-85.

    Fung,Y.C.;Tong,P.(2001):Classical and Computational Solid Mechanics.World Scientific.

    Hughes,T.J.(1980).Generalization ofselective integration proceduresto anisotropic and nonlinear media.International Journal for Numerical Methods in Engineering,vol.15,no.9,pp.1413-1418.

    Lo,K.H.;Christensen,R.M.;Wu,E.M.(1977):A high-order theory of plate deformation—part 2:laminated plates.Journal of Applied Mechanics,vol.44,issue 4,pp.669-676.

    Pagano,N.J.(1969):Exact solutions for composite laminates in cylindrical bending.Journal of composite materials,vol.3,issue 3,pp.398-411.

    Pian,T.H.H.(1964):Derivation of element stiffness matrices by assumed stress distribution.A.I.A.A.Journal,vol.2,pp.1333-1336.

    Pian,T.H.H.;Chen,D.(1983):On the suppression of zero energy deformation modes.International Journal for Numerical Methods in Engineering,vol.19,issue 12,pp.1741—1752.

    Pian,T.H.H.;Sumihara,K.(1984):Rational approach for assumed stress finite elements.International Journal for Numerical Methods in Engineering,vol.20,issue 9,pp.1685—1695.

    Pian,T.H.H.;Wu,C.C.(1988).A rational approach for choosing stress terms for hybrid finite element formulations.International Journal for Numerical Methods in Engineering,vol.26,issue 10,pp.2331-2343.

    Punch,E.F.;Atluri,S.N.(1984):Development and testing of stable,invariant,isoparametric curvilinear 2-and 3-D hybrid-stress elements.Computer Methods in Applied Mechanics and Engineering,vol 47,issue 3,pp.331-356.

    Reissner,E.(1950):On a variational theorem in elasticity.Journal of Mathematical Physics,vol.29,pp.90-95.

    Reddy,J.N.;Robbins,D.H.(1994).Theories and computational models for composite laminates.Applied Mechanics Reviews,vol.47,issue 6,pp.147-169.

    Rubinstein,R.;Punch,E.F.;Atluri,S.N.(1984):An analysis of,and remedies for,kinematic modes in hybrid-stress finite elements:selection of stable,invariant stress fields.Computer Methods in Applied Mechanics and Engineering,vol.38,issue 1,pp.63-92.

    Simo,J.C.;Rifai,M.S.(1990):A class of mixed assumed strain methods and the method of incompatible modes.International Journal for Numerical Methods in Engineering,vol.29,issue 8,pp.1595-1638.

    Timoshenko,S.P.;Goodier,J.N.(1970):Theory of Elasticity,3rdedition,Mc-Graw Hill.

    Weissman,S.L.;Taylor,R.L.(1992):A unified approach to mixed finite element methods:Application to in-plane problems.Computer Methods in Applied Mechanics and Engineering,vol.98,issue 1,pp.127-151.

    Xue,W.;Karlovitz,L.A.;Atluri,S.N.(1985):On the existence and stability conditionsformixed-hybrid finite elementsolutions based on Reissner’s variational principle.International Journal of Solids and Structures,vol.21,issue 1,1985,pp.97-116.

    Yuan,K.Y.;Huang,Y.S.;Pian,T.H.(1993):New strategy for assumed stresses for 4-node hybrid stress membrane element.International Journal for Numerical Methods in Engineering,vol.36,issue 10,pp.1747-1763.

    Zhong,Z.;Yu,T.(2007):Analytical solution of a cantilever functionally graded beam.Composites Science and Technology,vol.67,issue 3,pp.481-488.

    av播播在线观看一区| 精品一区二区三区视频在线| 欧美成人精品欧美一级黄| 高清在线视频一区二区三区| 国产探花极品一区二区| 亚洲真实伦在线观看| 又粗又硬又长又爽又黄的视频| 免费观看无遮挡的男女| 亚洲av不卡在线观看| 日韩欧美一区视频在线观看 | 啦啦啦视频在线资源免费观看| 秋霞在线观看毛片| 久久精品熟女亚洲av麻豆精品| 国产熟女欧美一区二区| 国产成人91sexporn| 日韩成人av中文字幕在线观看| 国产黄色视频一区二区在线观看| 亚洲人成网站在线观看播放| av在线观看视频网站免费| 亚洲欧洲日产国产| 亚洲欧美一区二区三区国产| 欧美高清成人免费视频www| 18+在线观看网站| 精品熟女少妇av免费看| 久久99蜜桃精品久久| 亚洲一级一片aⅴ在线观看| 久久99热这里只频精品6学生| 欧美精品亚洲一区二区| 亚洲精品一二三| 美女大奶头黄色视频| 五月玫瑰六月丁香| 国产 精品1| 成人美女网站在线观看视频| 午夜福利网站1000一区二区三区| 国产视频首页在线观看| 久久精品久久久久久久性| a级片在线免费高清观看视频| 男女啪啪激烈高潮av片| 我要看日韩黄色一级片| 婷婷色av中文字幕| 日韩熟女老妇一区二区性免费视频| 亚洲精品日韩av片在线观看| 天美传媒精品一区二区| 晚上一个人看的免费电影| 伊人久久精品亚洲午夜| 人人妻人人澡人人看| 免费观看无遮挡的男女| 狠狠精品人妻久久久久久综合| 一个人看视频在线观看www免费| 久久久午夜欧美精品| 国产精品欧美亚洲77777| 午夜老司机福利剧场| 国产免费一区二区三区四区乱码| 青青草视频在线视频观看| 99九九线精品视频在线观看视频| 男女国产视频网站| 国产视频首页在线观看| 日本爱情动作片www.在线观看| 欧美日韩视频高清一区二区三区二| 伦理电影免费视频| 欧美日韩国产mv在线观看视频| 色婷婷av一区二区三区视频| 国产精品国产三级国产av玫瑰| 国产精品国产三级国产av玫瑰| 日韩中文字幕视频在线看片| 夫妻午夜视频| 最近中文字幕高清免费大全6| 精品一区二区三区视频在线| 国产精品不卡视频一区二区| 看非洲黑人一级黄片| 一二三四中文在线观看免费高清| 国产色爽女视频免费观看| 国产av码专区亚洲av| 美女国产视频在线观看| 国产淫片久久久久久久久| 黄色欧美视频在线观看| 亚洲精品,欧美精品| 青春草亚洲视频在线观看| 午夜激情福利司机影院| 精品少妇黑人巨大在线播放| 欧美日韩视频精品一区| 18禁在线无遮挡免费观看视频| 高清毛片免费看| 老司机影院毛片| 女人精品久久久久毛片| 成年人午夜在线观看视频| 日韩电影二区| 婷婷色麻豆天堂久久| 国产高清国产精品国产三级| 欧美成人精品欧美一级黄| 成人免费观看视频高清| 亚洲国产欧美在线一区| 简卡轻食公司| 国产午夜精品一二区理论片| 少妇人妻一区二区三区视频| 久久午夜福利片| videos熟女内射| 成年美女黄网站色视频大全免费 | 啦啦啦视频在线资源免费观看| 中文字幕免费在线视频6| 国产白丝娇喘喷水9色精品| 日本wwww免费看| 美女内射精品一级片tv| av黄色大香蕉| 国产永久视频网站| 国精品久久久久久国模美| 九九爱精品视频在线观看| 欧美最新免费一区二区三区| 在线观看三级黄色| 国产亚洲一区二区精品| 国产在线视频一区二区| 丰满人妻一区二区三区视频av| 欧美 亚洲 国产 日韩一| 中文在线观看免费www的网站| 高清午夜精品一区二区三区| 午夜久久久在线观看| 51国产日韩欧美| 日日摸夜夜添夜夜添av毛片| 99久久精品热视频| 男人和女人高潮做爰伦理| 成人综合一区亚洲| 91午夜精品亚洲一区二区三区| 街头女战士在线观看网站| 日韩欧美 国产精品| 九九在线视频观看精品| 天天操日日干夜夜撸| 亚洲欧美精品专区久久| 搡女人真爽免费视频火全软件| 亚洲精品乱久久久久久| 中国国产av一级| 久久午夜福利片| 熟女人妻精品中文字幕| 在线观看一区二区三区激情| 伊人久久精品亚洲午夜| 人体艺术视频欧美日本| 国产午夜精品久久久久久一区二区三区| 大码成人一级视频| 国产成人a∨麻豆精品| 久久精品国产亚洲网站| 大陆偷拍与自拍| 97超视频在线观看视频| 国产中年淑女户外野战色| 亚洲欧美成人精品一区二区| 日本vs欧美在线观看视频 | 国产永久视频网站| 国产黄片视频在线免费观看| 一级爰片在线观看| 亚洲真实伦在线观看| 卡戴珊不雅视频在线播放| 免费黄频网站在线观看国产| 亚洲精品日韩在线中文字幕| 一级毛片我不卡| 亚洲丝袜综合中文字幕| 亚洲欧美精品专区久久| 欧美 亚洲 国产 日韩一| 久久久欧美国产精品| 精华霜和精华液先用哪个| 精品久久久精品久久久| 日韩一区二区视频免费看| 自拍偷自拍亚洲精品老妇| 久久97久久精品| 老女人水多毛片| 日韩一本色道免费dvd| 日本爱情动作片www.在线观看| 新久久久久国产一级毛片| 成人毛片a级毛片在线播放| 亚洲情色 制服丝袜| 亚洲精品国产av蜜桃| 在线天堂最新版资源| 欧美另类一区| av黄色大香蕉| 欧美日韩视频精品一区| 性色avwww在线观看| 午夜视频国产福利| 精品国产一区二区久久| 国产美女午夜福利| 成人亚洲欧美一区二区av| 国产亚洲午夜精品一区二区久久| 亚洲图色成人| 只有这里有精品99| 99久久精品国产国产毛片| 97超碰精品成人国产| 欧美bdsm另类| 春色校园在线视频观看| 性色av一级| 天堂俺去俺来也www色官网| 国产乱人偷精品视频| 日韩成人伦理影院| 我的老师免费观看完整版| 欧美日韩精品成人综合77777| 精品久久国产蜜桃| 精品国产国语对白av| 91精品国产九色| 夜夜爽夜夜爽视频| 日本免费在线观看一区| 三级经典国产精品| 国产成人精品久久久久久| 美女主播在线视频| av在线播放精品| 免费在线观看成人毛片| 欧美日韩一区二区视频在线观看视频在线| 青青草视频在线视频观看| 日本91视频免费播放| 男人舔奶头视频| 99久久综合免费| 国产伦精品一区二区三区四那| 成人黄色视频免费在线看| 亚洲综合精品二区| 在线播放无遮挡| 久久久久久久久大av| 国产精品国产三级国产专区5o| 国产精品一区二区在线观看99| 亚洲内射少妇av| 欧美成人精品欧美一级黄| 国产精品一区二区性色av| 日本爱情动作片www.在线观看| 国产日韩欧美在线精品| 九九久久精品国产亚洲av麻豆| 人妻少妇偷人精品九色| 欧美日韩一区二区视频在线观看视频在线| 国产日韩一区二区三区精品不卡 | 又黄又爽又刺激的免费视频.| 亚洲精品久久久久久婷婷小说| 精品少妇内射三级| a级片在线免费高清观看视频| 色吧在线观看| 免费黄网站久久成人精品| 日韩欧美 国产精品| 啦啦啦视频在线资源免费观看| 成年女人在线观看亚洲视频| 亚洲av成人精品一二三区| 狂野欧美激情性bbbbbb| 一级毛片黄色毛片免费观看视频| 午夜福利视频精品| 欧美+日韩+精品| 各种免费的搞黄视频| 热re99久久精品国产66热6| 国产成人精品久久久久久| 久久97久久精品| h视频一区二区三区| 26uuu在线亚洲综合色| 51国产日韩欧美| 欧美日韩综合久久久久久| 亚洲情色 制服丝袜| 日本欧美视频一区| 亚洲av.av天堂| 男人狂女人下面高潮的视频| 日韩一本色道免费dvd| 欧美日韩国产mv在线观看视频| 亚洲无线观看免费| 91久久精品国产一区二区三区| 99久久人妻综合| av在线观看视频网站免费| 在现免费观看毛片| 成人亚洲欧美一区二区av| 久久人人爽av亚洲精品天堂| av视频免费观看在线观看| 极品人妻少妇av视频| 热re99久久精品国产66热6| 大话2 男鬼变身卡| 午夜老司机福利剧场| 在线精品无人区一区二区三| 激情五月婷婷亚洲| 国产淫语在线视频| 黑人高潮一二区| 久久久久久久大尺度免费视频| 美女大奶头黄色视频| 能在线免费看毛片的网站| 亚洲在久久综合| 色哟哟·www| 亚洲国产精品国产精品| 日本午夜av视频| 精品人妻熟女av久视频| 成人毛片60女人毛片免费| 亚洲婷婷狠狠爱综合网| 国产在线免费精品| 最近中文字幕高清免费大全6| 欧美变态另类bdsm刘玥| 久久人人爽人人爽人人片va| 乱人伦中国视频| 如日韩欧美国产精品一区二区三区 | 七月丁香在线播放| 国产91av在线免费观看| 亚洲熟女精品中文字幕| 国产亚洲一区二区精品| 一级,二级,三级黄色视频| 夜夜骑夜夜射夜夜干| 日韩成人伦理影院| 免费高清在线观看视频在线观看| 18禁在线播放成人免费| 黄色视频在线播放观看不卡| 另类亚洲欧美激情| 国产亚洲5aaaaa淫片| 免费大片18禁| 国产中年淑女户外野战色| 99久久精品一区二区三区| 一区二区三区精品91| 日韩成人av中文字幕在线观看| 极品教师在线视频| 人妻一区二区av| 日产精品乱码卡一卡2卡三| 美女福利国产在线| 自线自在国产av| 久久久久久久久久人人人人人人| 极品人妻少妇av视频| 成年人午夜在线观看视频| 80岁老熟妇乱子伦牲交| 一级,二级,三级黄色视频| 中国国产av一级| 在线亚洲精品国产二区图片欧美 | freevideosex欧美| 免费黄色在线免费观看| 男的添女的下面高潮视频| 国产亚洲精品久久久com| 久久国产精品大桥未久av | av.在线天堂| 热re99久久国产66热| 国产在线视频一区二区| 最近中文字幕高清免费大全6| 熟女av电影| 精品久久久久久久久av| 男女无遮挡免费网站观看| 97超视频在线观看视频| 一级爰片在线观看| 国产亚洲91精品色在线| 精品久久久噜噜| 色吧在线观看| 精品人妻一区二区三区麻豆| 26uuu在线亚洲综合色| 一级av片app| 免费高清在线观看视频在线观看| 国产视频内射| 亚洲精品,欧美精品| 97精品久久久久久久久久精品| 男女免费视频国产| 亚洲精品日本国产第一区| 一级毛片黄色毛片免费观看视频| 亚洲婷婷狠狠爱综合网| 国产av一区二区精品久久| av福利片在线| 午夜福利视频精品| 亚洲三级黄色毛片| 亚洲精品,欧美精品| 精品国产国语对白av| 老女人水多毛片| 在线观看免费日韩欧美大片 | 一区二区三区免费毛片| 高清在线视频一区二区三区| 在线观看av片永久免费下载| 久久久精品94久久精品| 色视频www国产| 国产91av在线免费观看| 美女脱内裤让男人舔精品视频| 97在线视频观看| 国产精品伦人一区二区| 欧美日韩综合久久久久久| 伦理电影免费视频| 日韩中字成人| videossex国产| 中国美白少妇内射xxxbb| 大码成人一级视频| 久久99热6这里只有精品| 女人久久www免费人成看片| 最黄视频免费看| 日韩欧美精品免费久久| 黄色欧美视频在线观看| 成人毛片60女人毛片免费| 久久久久人妻精品一区果冻| 欧美 日韩 精品 国产| 亚洲欧美精品自产自拍| 国国产精品蜜臀av免费| 热re99久久精品国产66热6| 插逼视频在线观看| 搡老乐熟女国产| 另类精品久久| 99精国产麻豆久久婷婷| 国产亚洲午夜精品一区二区久久| 免费看av在线观看网站| 老司机影院毛片| 国产亚洲最大av| 老熟女久久久| 少妇人妻久久综合中文| 在线观看一区二区三区激情| 一级a做视频免费观看| 两个人免费观看高清视频 | 久久狼人影院| 多毛熟女@视频| av视频免费观看在线观看| 91久久精品国产一区二区三区| 久久久欧美国产精品| 少妇人妻 视频| 国产老妇伦熟女老妇高清| 99热全是精品| 欧美日韩亚洲高清精品| 久久久国产精品麻豆| 女人精品久久久久毛片| 欧美 亚洲 国产 日韩一| 尾随美女入室| 一本色道久久久久久精品综合| 亚洲国产色片| 熟女av电影| 国产极品粉嫩免费观看在线 | 各种免费的搞黄视频| 一本一本综合久久| 国产精品人妻久久久久久| 欧美bdsm另类| 亚洲精品日本国产第一区| 女人久久www免费人成看片| a级毛片免费高清观看在线播放| 亚洲精品国产av蜜桃| 欧美精品人与动牲交sv欧美| 少妇裸体淫交视频免费看高清| 99久久人妻综合| 两个人的视频大全免费| 人人妻人人添人人爽欧美一区卜| 欧美一级a爱片免费观看看| 又大又黄又爽视频免费| 久久久a久久爽久久v久久| 日韩大片免费观看网站| 日韩欧美一区视频在线观看 | 男女无遮挡免费网站观看| 亚洲熟女精品中文字幕| 一区二区三区免费毛片| 成年女人在线观看亚洲视频| 亚洲国产av新网站| 秋霞在线观看毛片| 国产av码专区亚洲av| 亚洲欧美日韩卡通动漫| 久久毛片免费看一区二区三区| 黑人高潮一二区| 自线自在国产av| 欧美日韩在线观看h| 麻豆成人午夜福利视频| 国产av码专区亚洲av| 一二三四中文在线观看免费高清| 人妻一区二区av| a级毛片免费高清观看在线播放| 免费少妇av软件| 一级毛片 在线播放| 蜜桃久久精品国产亚洲av| 街头女战士在线观看网站| 欧美xxxx性猛交bbbb| 精品国产一区二区三区久久久樱花| 天美传媒精品一区二区| 91精品一卡2卡3卡4卡| 亚洲欧洲日产国产| 久久精品国产亚洲av涩爱| 嫩草影院入口| 高清黄色对白视频在线免费看 | 国产真实伦视频高清在线观看| 内地一区二区视频在线| 国产成人精品婷婷| 成人午夜精彩视频在线观看| 久久午夜综合久久蜜桃| 性高湖久久久久久久久免费观看| 亚洲精品国产av成人精品| 我的老师免费观看完整版| 最近的中文字幕免费完整| 中文欧美无线码| 高清毛片免费看| xxx大片免费视频| 国产精品人妻久久久久久| av在线播放精品| 国产精品久久久久久久电影| 黄色视频在线播放观看不卡| av免费观看日本| 乱码一卡2卡4卡精品| 精品久久久久久久久av| 欧美日本中文国产一区发布| 中文字幕精品免费在线观看视频 | 永久网站在线| 国产亚洲一区二区精品| 精品一区二区免费观看| 国产伦精品一区二区三区四那| 少妇裸体淫交视频免费看高清| 免费av不卡在线播放| 曰老女人黄片| 美女主播在线视频| 亚洲av成人精品一区久久| 久久ye,这里只有精品| 黄色一级大片看看| 老司机亚洲免费影院| 免费人妻精品一区二区三区视频| 高清毛片免费看| 一级片'在线观看视频| 国产精品不卡视频一区二区| 好男人视频免费观看在线| 日韩欧美 国产精品| 超碰97精品在线观看| 国产欧美日韩综合在线一区二区 | 极品人妻少妇av视频| 日韩精品免费视频一区二区三区 | 欧美日韩在线观看h| av在线app专区| 久久久国产一区二区| 久久久久久久亚洲中文字幕| 一级毛片 在线播放| 精品久久久久久久久av| 美女视频免费永久观看网站| 免费高清在线观看视频在线观看| 国产 精品1| 免费观看在线日韩| 最后的刺客免费高清国语| 精品国产一区二区三区久久久樱花| 水蜜桃什么品种好| 日韩中字成人| 精品视频人人做人人爽| 亚洲,一卡二卡三卡| 日本黄大片高清| a级毛色黄片| 亚洲国产精品专区欧美| 蜜桃在线观看..| 六月丁香七月| 日韩一本色道免费dvd| 免费黄网站久久成人精品| 国产精品免费大片| 女人久久www免费人成看片| 免费观看av网站的网址| 啦啦啦啦在线视频资源| 久久久久精品久久久久真实原创| 在线观看免费视频网站a站| 亚洲,一卡二卡三卡| 永久免费av网站大全| 特大巨黑吊av在线直播| 九色成人免费人妻av| 一个人看视频在线观看www免费| 国产亚洲精品久久久com| 国产精品福利在线免费观看| 精品人妻一区二区三区麻豆| 亚洲av电影在线观看一区二区三区| 大陆偷拍与自拍| 日韩 亚洲 欧美在线| 成人国产麻豆网| 成人午夜精彩视频在线观看| 亚洲高清免费不卡视频| freevideosex欧美| 丁香六月天网| 日韩成人av中文字幕在线观看| 亚洲欧美一区二区三区黑人 | 欧美日韩在线观看h| 99久久人妻综合| 91久久精品国产一区二区三区| 免费av不卡在线播放| 久久人人爽人人片av| 亚洲av.av天堂| 尾随美女入室| 亚洲四区av| 日本av免费视频播放| 一个人免费看片子| 精品少妇久久久久久888优播| 三级国产精品欧美在线观看| 国产欧美日韩一区二区三区在线 | 99热6这里只有精品| 久久久久久久久大av| 国产伦理片在线播放av一区| 亚洲四区av| 婷婷色综合大香蕉| 亚洲三级黄色毛片| 卡戴珊不雅视频在线播放| 男女边摸边吃奶| 精品人妻一区二区三区麻豆| 一级毛片久久久久久久久女| 大话2 男鬼变身卡| 成年av动漫网址| 成人影院久久| 精品熟女少妇av免费看| 18禁动态无遮挡网站| 欧美国产精品一级二级三级 | 午夜激情福利司机影院| 99久久中文字幕三级久久日本| 欧美+日韩+精品| 成年人午夜在线观看视频| 视频区图区小说| 国产精品人妻久久久久久| 亚洲欧美清纯卡通| 观看av在线不卡| 久久久精品免费免费高清| 99九九在线精品视频 | 国产在线一区二区三区精| 丰满迷人的少妇在线观看| 肉色欧美久久久久久久蜜桃| 免费看日本二区| 国产精品三级大全| h日本视频在线播放| 三级国产精品片| 在线观看三级黄色| 久久久国产精品麻豆| 青春草国产在线视频| 国产男人的电影天堂91| 成人亚洲精品一区在线观看| 秋霞在线观看毛片| 爱豆传媒免费全集在线观看| 少妇高潮的动态图| 狂野欧美白嫩少妇大欣赏| 亚洲一级一片aⅴ在线观看| 九草在线视频观看| 亚洲精品成人av观看孕妇| 黑人高潮一二区| 性高湖久久久久久久久免费观看| 麻豆精品久久久久久蜜桃| 午夜激情久久久久久久| av福利片在线观看| 亚洲成人一二三区av| 夫妻午夜视频| av.在线天堂| 熟妇人妻不卡中文字幕| 9色porny在线观看| 亚洲av日韩在线播放| 亚洲av在线观看美女高潮| 色视频在线一区二区三区| 国内少妇人妻偷人精品xxx网站| 乱码一卡2卡4卡精品| 日日爽夜夜爽网站| 自拍偷自拍亚洲精品老妇| 久久婷婷青草|