• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Size-Dependent Flexural Dynamics of Ribs-Connected Polymeric Micropanels

    2014-04-16 10:48:03
    Computers Materials&Continua 2014年11期

    1Faculty of Engineering,Computing and Science,Swinburne University of Technology(Sarawak Campus),Jalan Simpang Tiga,Kuching 93350,Sarawak,Malaysia.

    2Corresponding author.Tel:+6082260656;E-mail:kbmustapha@Swinburne.edu.my

    1 Introduction

    Microelectromechanical and nanoelectromechanical systems(MEMs and NEMS)occupy preeminent functional roles within the landscape of next generation devices.Often endowed with micro-sized structures,MEM s and NEMs have found unal-loyed advantage in portable field accelerometers,electrical filters,hydrophones,high-Q oscillators and inertia sensors[Nguyen(1995);Yazdi,Ayazi and Najafi(1998);Kun and Nguyen(1999);Mattila,Kiiham?ki,Lamminm?ki,Jaakkola,Rantakari,Oja,Sepp?,Kattelus and Tittonen(2002)].A number of reasons shape the adoption of micro-systems across different emerging scientific fields:(i)prodigious capacity for fast response;(ii)ultra-high resonating frequency;and(iii)a high sensitivity to changes in stimulus.

    The complexity of most microsystems depends on the intended functional purpose and operational requirements.In a simple form,a microsystem comprises cantilever arrays along with some other functional embodiment.In a more complex form,however,it may be composed of structural elements with different geometrical parameters for different functional purposes[Boisen,Dohn,Keller,Schmid and Tenje(2011)].Among the unique set of structural elements routinely employed in MEM s is the two-dimensional plate-like micro-scale structures(e.g.thin film,micro-scale panels,and orthotropic micron metallic web[Benkhelifa,Farnsworth,Tiwari and Bandi(2010)].These micro-structural elements have excellent magnetic,optical,mechanical and electrical properties that make them resourceful in Specific applications like thermal sealing and energy harvesting[Sakhaee-Pour,Ahmadian and Vafai(2008);Liu,Tu and Chung(2012);Manzaneque,Ruiz,Hernando-Garcia,Ababneh,Seidel and Sanchez-Rojas(2012)]Since the optimal design of MEMs and NEMs impels the understanding of their response under disparate mechanical loadings,the analyses of their constituent micro-structural elements has gained attention in the past few years[Younis(2011)].During the operational life of MEMs,some factors compromise the exhibition of their intended performance[Ardito,Baldasarre,Corigliano,De Masi,Frangi and Magagnin(2013)].Frequently,such factors are closely related to the interrelationship between the mechanical parameters of the underlying materials and the geometric parameters of the system’s architecture.This interplay imposes a strict constrain on the predictability of MEMs’mechanical responses.

    Several studies relating to the prediction of MEMs’response have revealed the demands for the refinement of the mathematical models of the constituent elements of these miniature devices[Peddieson,Buchanan and M cNitt(2003);Reddy(2011);Mustapha(2014)].This is because,at small length scale,the vexing contribution of size-effect to the response of the structures starts to set in.Initial studies on the modeling of micro-scale structures through the framework of computational mechanics,employed the classical continuum theory(CCT).However,the underlying assumptions of the CCT do not account for the contribution of the latent sizedependency that manifests in micro and nano-scale structures[Fleck and Hutchinson(1993);Georgiadis and Velgaki(2003);Liew,Wong,He,Tan and Meguid(2004);Uchic,Dimiduk,Florando and Nix(2004);Volkert and Lilleodden 2006;Mahdavi,Farshidianfar,Tahani,Mahdavi and Dalir(2008);Chiroiu,Munteanu and Delsanto(2010)].It is this de ficiency of the CCT that has ignited the adoption of a number of enriched microstructure-dependent elasticity theories with higher-order constitutive laws[Farokhi,Ghayeshand Amabili(2013)].The models derived from these higher-order theories contain additional material constants,along with the well-known Lamé constants,to address the quantification of the phenomenological size-Specific property.

    Evidently,attempt on the theoretical modeling of micro structured materials stretches back to the work of the Cosserat brothers[Cosserat E.and F(1909);Chiroiu,Munteanu and Gliozzi(2010)].Consolidating on the work of the Cosserat brothers,a select list of advanced continuum theories that have emerged to be of relevant to the modeling of micro structured materials include the Eringen’s nonlocal elasticity theory[Eringen(1972);Eringen and Edelen(1972);Fotouhi,Firouz-Abadi and Haddadpour(2013)],the strain gradient theory[Aifantis(1992);Tang,Shen and Atluri(2003);Papacharalampopoulos,Karlis,Charalambopoulos and Polyzos(2010)],the couple stress theory[Toupin(1962);Yang,Chong,Lam and Tong(2002)]and the m icropolar elasticity[Toupin(1962);Xie and Long(2006);Marin,Agarwal and Othman(2014)].A concise summary of the distinction between these theories is well-stated in Aifantis[Aifantis(2011)].Meanwhile,a well-founded challenge with the new higher-order models is the dif ficulty associated with the determination of the microstructure-dependent material constants introduced by these theories[Lam,Yang,Chong,Wang and Tong(2003)].Consequently,models of the structural elements with fewer length scale parameters offer both experimental benefit and mathematical convenience.The Modified couple stress theory(MCST),which is adopted in the current study,is one such higher-order elasticity theories.With the MCST,the characterization of size-effect is done with just one material length scale parameter[Yang,Chong,Lam and Tong(2002);Papargyri-Beskou,Tsepoura,Polyzos and Beskos(2003)].The MCST has already set off a burst of research activities in the theoretical prediction of the deformational response of micro-scale structural elements.Initial application of the MCST focused on the analyses of micro-scale beams,rods and micro-scale pipes[Anthoine(2000);Park and Gao(2006);Güven(2011);Reddy(2011);Mustapha and Zhong(2012);Mustapha and Zhong(2012);Akg?z and Civalek(2013);Wang,Liu,Ni and Wu(2013)].However,a limited number of recent studies have also extended the work to the analyses of micro-scale plates[Yin,Qian,Wang and Xia(2010);Jomehzadeh,Nooriand Saidi(2011);Akg?zand Civalek(2013);Gao,Huangand Reddy(2013)]An experimental validation of the MCST is recently presented in Romanoff and Reddy(2014).

    Draw ing on the strength of the MCST,the present study investigates the size dependent flexural vibration of a rib-connected system of micro-panels.The system under investigation is part of an on-going design of a polymeric vibration isolation pad for electronic communicating systems.For the derivation,each micro-panel is treated as a micro-scale plate with an internal material length scale.The stiffness of the ribs between the micro-panel is derived by treating the ribs as a collection of clamped-clamped elastic beams.A hybrid numerical experiment based on the Rayleigh method of eigenvalue extraction and an applied statistical method of design of experiment(DOE)is adopted for parametric analysis of the derived model.The adopted hybrid approach helps to illuminate the pattern of the resonant frequency shifts under varying influences of the stiffness of the ribs.The effects of the material length scale of the micro-panel,the Poisson’s ratio and the rotary inertia are also assessed.The ensuing part of the paper proceeds with the presentation of the derivation of the size-dependent elastodynamics governing equation of the system in section 2.The solution procedure for the free vibration study is detailed in section 3.Reduced special cases of the derived model are highlighted in section 4.In section 5,numerical results and the discussion of the influence of the model’s parameters on the frequency shift of the system are presented.Basic conclusions from the analysis are given in section 6.

    2 Variational Formulation

    2.1 The higher-order elasticity theory

    The system being considered is the elastically connected micro-panels shown in Fig.1.In what follows,the equations governing the flexural vibration of each micro-panel are derived from the Hamilton’s principle and the Modified couple stress theory(MCST).In deriving the governing equation,we treat each micropanel as an isotropic linear elastic body occupying a volume?.In line with the theoretical framework of the MCST,the size-dependent strain energy of a deformed micro-scale structure is characterized by a quartet of tensors related as[Yang,Chong,Lam and Tong(2002);Reddy(2011)]:

    In general,thevolume?is taken to bean open setin R3with a well-behaved surface boundary(see Fig.1b for the unit normal to the boundaries’of a micro-panel).Accordingly, ΠU,εandσare the strain energy,the dilatation strain tensor and the Cauchy stress tensor,respectively.Furthermore,the tensorsmm mandχrefer to the deviatoric components of the couple stress and the symmetric curvature tensor,respectively.

    Figure 1:Schematic of the rib-connected system of micro-panels:(a)a 3D view of the coupled system;and(b)the mid-plane of a micro-panel with the adopted coordinate system.

    Given that the deformation of a material point of the micro-panel is described by the displacement fielduu uand a rotation vectorθ,then the tensorsεandχin Eq.(1)are known to satisfy the follow ing geometric relations:

    where the operator?is the 2D gradient notation.From kinematics consideration,the rotation vectorθis easily related to the displacement field in the form:

    Additionally,the stress fields(σandmm m)are mapped to the displacement field through the enriched constitutive rules as:

    In Eq.(5a)the stress field is related to the displacement field through the parametersλ(the bulk modulus)andG(the shear modulus)respectively.However,in Eq.(5b),the higher-order stress field(mm m)is related to the displacement field through an additional material constant(ζ)This new constant is associated with the material length scale parameter[Reddy(2011)].

    For the purpose of characterizing the deformation of the micro-panel through the above higher-order constitutive rules,an infinitesimal bounded volume of the micro-panel is considered.The infinitesimal bounded volume of the micro-panel is treated as a differentiable manifold embedded in a Euclidean 3-space?.Consequently,the following displacement trial field holds:

    whereu1,u2,andu3are components of the displacement vector of an arbitrary material point of the micro-panel in thex,yandzdirections.Based on the small deflection theory of thin plates,which rests on the Kirchhoff assumptions,each of these components of the displacement field is defined as:

    whereu,v,andware displacement components in thex,yandzdirections,respectively.Based on Eqs.(7a)–(7c),the non-zero components of the strain tensor are obtained as:

    The components of the rotation vector,from Eq.(4),are obtained as:

    With the help of Eq.(9)bearing in m ind Eq.(3),the components of the symmetric curvature tensor,are derived as:

    Given the above derived kinematic variables,the first variation of the microstructuredependent strain energy is now written as:

    From the displacement field defined in Eq.(7),the first variation of the kinetic energy,with the rotary inertia included,is defined as[Reddy(2002);Szilard(2004)]:

    whereρis the mass density andhis the constant thickness of the micro-panel.In the same spirit,the first variation of the virtual work done by external loads is[Akg?z and Civalek(2013)]:

    wherefi,ci,tiandsiare components of the body force,the body couple,the traction and the surface couple,respectively.With Eqs.(11)–(13),one invokes the variational statement of the Hamilton’s principle,which mathematically translates to:

    where the integration in Eq.(14)is carried out between the time interval(0,T).Eqs.(11)–(13)are substituted in Eq.(14),and the fundamental lemma of variational calculus is invoked to retrieve the size-dependent governing equations of a single micro-panel as:

    The terms that arise from the use of the MCST are underlined in Eqs.(15)–(17).In general,Eqs.(15)and(16)are adequate to predict the in-plane(extensional)vibration of a single micro-panel.On the other hand,Eq.(17)is suitable for the quantification of the transverse motion of a single micro-panel.Now,while Eq.(17)can be tackled alone,Eqs.(15)and(16)are coupled,and thus they cannot be solved independent of each other.Of interest in this study is the case of two inextensible micro-panels separated by evenly distributed ribs.On this premise,the focus of the current study is restricted to Eq(17)and its eigen-analysis.For the purpose of incorporating the influence of the ribs,the following assumptions are adopted:

    1.the ribs are made of similar materials and have resistance to stretching and compression;

    2.the ribs suffer negligibly marginal distortion of their positions with respect to their initial contact positions with the surface of each micro-panel;

    3.no structural anisotropy is introduced by the ribs and;

    4.the two micro-panels are made of the same material,length,width and density.

    With the stated assumptions,the concentrated rigidities of the ribs can be replaced by the distributed continuous support of the Winkler’s type.Given this simplification,the contribution of the ribs’stiffness is now reflected in the equation governing the transverse vibration of individual micro-panel as:

    Upper micro-panel:

    Lower micro-panel:

    It is pointed out that in Eqs.(18) – (19),the total stiffness(K)of the Winkler’s foundation is taken to be equivalent to the averaged stiffness of the overall ribs between the micro-panels.Besides,wuandwldenote the transverse motions of the upper and lower micro-panel,respectively.The two displacement field variables describing the response of each micro-panel are homogenized by subtracting Eq.(19)from(18)to get:

    A further modification of the system’s response is sought by employing a change of variable as done in Murmu and Adhikari(2011).In this vein,the relative displacement(wu-wl)of the upper micro-panel with respect to the lower micro-panel is denoted bywa.The change of variable leads to the equations of the rib-connected micro-panels as:

    Equations(21)and(22)describe the transverse motion of the connected Micropanels,whereIis the moment of inertia per unit area of a micro-panel.It deserves to be pointed out that if the underlined terms are eliminated,the classical size-independent governing equation of the Kirchhoff plate theory is retrieved.In succeeding sections,the dynamic behavior of the system is investigated under two idealized boundary conditions:(i)simple support on the four edges(that is,SSSS,where S stands for simply-supported);and(ii)a built-in support on the four edges(that is,CCCC,where C stands for clamped)as shown in Fig.2.

    Figure 2:The two types of boundary supports investigated for the rib-connected micro-panels.

    In order to specify the expressions for the stipulated boundary conditions the follow ing stress resultants are defined:

    whereandCyzare the couple moments that need to be mapped to the displacement field through Eq.(10).A lso,andare the moments(related to the Cauchy stress tensor)that are mapped to the displacement field through Eq.(8).Under the SSSS boundary condition,the following constraints are imposed around the periphery of the coupled micro-panels:

    Analogously,under the CCCC boundary condition the expressions stated in Eqs.(25)–(28),are supplemented with the follow ing additional constraints around the periphery of coupled micro-panels:

    3 Solution Procedure

    The Rayleigh method is adopted to evaluate the dynamic response of the system.The energy functional Π from the governing equation of the coupled is defined as:

    With the non-dimensional parameters,the explicit expressions for the maximum energy terms for the overall system become:

    The Rayleigh solution procedure requires that the mid-plane deflections of the micro-panel be expressed in terms of an assumed mode shape function in the form of a double Fourier series as:

    such thatpmnis the amplitude of the function,whileφm(ξ)andβn(η)are the mode functions that satisfy the Dirichlet boundary conditions of the micro-panel.The following comparison functions are used for the two boundary conditions considered in this study:

    wheremandnare the nodal lines in theξandηdirections that determine the wave modes of the micro-panels.For the frequency values to be determined,the Rayleigh method minimizes the energy functional(by ensuring that?Π/?pmn=0)[Liu(2011)].The minimization procedure results in a system of algebraic equations whose secular determinant yields the natural frequencies of the coupled system.In the next section,detailed numerical results are provided to evaluate the influence of different parameters of the model on the dynamic response of the coupled systems.

    4 Special cases

    Three different mechanistic cases of practical interests can be derived from the governing equation.These cases,shown in Fig.3,are briefly highlighted below.For convenience,the following additional non-dimensional terms have been introduced in what follows:

    4.1 Asynchronous motion of the coupled system

    The case of the asynchronous motion of the coupled system,which is also referred to as the out-of-phase vibration,occurs when the two micro-panels move in different directions[Murmu and Adhikari(2011)].In such case the condition of motion stipulates thatUnder this condition,the Rayleigh method yields an upper estimate of the frequency of the coupled micro-panels with the SSSS edge conditions as:

    In Eq.(45),γnow represents the influence of the size-effect(that is,the material length scale of the micro-panel).This Specific parameter quantifies the size dependent vibration Dynamics of the micro-panel with respect to the micro-panel’s thickness.A lso,αeffis the non-dimensional averaged stiffness of the elastic connections,while μ and φ represent the thickness-to-length ratio and the aspect ratio of the micro-panel,respectively

    4.2 Synchronous motion of the coupled system

    Under a synchronous motion,the movements of the two micro-panels are in sync.Hence,this case is also referred to as the in-phase vibration Here,the condition of motion during the in-phase vibration requires thatwa=0.With this,the Rayleigh method again yields an upper estimate of the frequency of the coupled micro-panels with SSSS edge conditions as:

    4.3 Motion of the upper-panel supported by the ribs

    The third special case relates to the situation when the lower micro-panel is a rigid base.Such situations do arise in the development of a mass sensing device[Agache,Blanco-Gomez,Cochet and Caillat(2011)].When this occurs,thenwl=0.Consequently,the frequency of the remnant systems is governed by the geometric and material properties as well as the boundary conditions of the upper micro-panel and the ribs.The upper estimate of the frequency of the remnant system with a SSSS edge conditions for the upper micro-panel then takes the simplified form:

    Figure 3:Special cases of the rib-connected micro-panels:(a)out-of-phase motion;(b)in-phase motion;and(c)motion of a single rib-supported micro-panel.

    5 Discussion

    The centerpiece of this section is to detail the qualitative and quantitative results relating to the free vibration properties of the system,based on the formulation presented in the foregoing sections.Principally,the section details the variation of the natural frequencies of the system with respect to changes in the aspect ratio(?),the material length scale parameter(γ),the Poisson’s ratio(ν),the thicknessto-span ratio(μ),and the stiffness of the ribs(αeff).For the reported analyses,the effective material properties of the polymeric micro-panel are assumed to be:E=1.44GPa;ρ=1220kg/m3;andν=0.38.Furthermore,based on the experimental work of Lam,Yang,Chong,Wang and Tong(2003),the material length scale parameter for the epoxy micro-plate is restricted to a conservative value ofζ=17.6μm.Meanwhile,for polymeric structural elements with underlying polymer chains of finite stiffness,the material length scale parameter(ζ)is reported to be directly related to the effective averaged Frank elastic constant[Gao,Huang and Reddy(2013)].For the analyses that follow,the thickness values considered is in the range 20μm≤h≤176μm.Besides,each rib is idealized as a fixed- fixed bar.Thus for each rib,the equivalent stiffness is estimated from,whereandLrare the cross-sectional area,the moment of inertia,the Young’s modulus and length of each rib.

    5.1 Validation

    For the purpose of validation,the governing equation of the system is Modified by eliminating the parametersμ,αeffandγfrom the mathematical model.With this elimination,the governing equation is reduced to that of the Kirchhoff’s plate theory[Szilard(2004)].Tab.1 reveals the comparison of the frequency values,based on the reduced form of the current model,with the classic work of Leissa(1973).Tab.1 contains selected numerical results for a panel(treated as a plate)under the SSSS edge conditions and the CCCC edge conditions.

    Tab.2 provides the validation of the non-dimensional frequencies of a micro-plate with simply-supported edges.The governing equation employed for the results in Tab.2 containsγ,but it does not containαeffandμ.The validation involves comparison with the closed-form expression presented in Yin,Qian,Wang and Xia(2010).It is noticed from Tab.2 that a good agreement is achieved between the predicted non-dimensional frequency from the current method and the closed-form solution.

    For brevity sake,the discussion is restricted to the two lowest symmetrical modes of the flexural vibration(whose non-dimensional frequency parameters areλ11andλ22)in the next subsections.For completeness,the mode shapes corresponding to bothλ11andλ22are shown in Figs 4 and 5,respectively.In these figures,the contour plot corresponding to each of the two vibration modes are also provided under each of the mode shape.From the plots,it is noticed that increasing values of the small-scale parameter stiffen the response of the micro-panel.Besides,as seen from the contour plots,higher values of the small-scale parameter generate more equilibrium positions during the deformation of the system.

    5.2 Frequency distribution and frequency shift

    To evaluate the frequency shift induced by the small-scale parameter,a percentage change in the computed natural frequencies based on the MCST and the classical(size-independent)theory is defined as:

    where(λnm)MCSTis the natural frequency of the system from the MCST,while(λnm)CCTis the corresponding natural frequency from the CCT.Besides,λnmis the non-dimensional natural frequency parameter defined as:

    Table 1:Validation of the non-dimensional frequencies of a classical plate.

    Table 2:Validation of the non-dimensional frequencies of a micro-plate with simply-supported edges.

    Figure 4:The variation in the mode shape along with the corresponding contour plots of the lowest symmetrical mode(λ11):(a)γ=0;(b)γ=0.2;and(c)γ=0.8.

    Summarized in Figs 68 are the distributions of the frequency variations for the three mechanistic cases of the coupled systems highlighted in section 4.Precisely,illustrated in Figs 6(a)and 6(b)are the distributions of the natural frequencies for the first symmetric vibration mode,under the SSSS and the CCCC boundary conditions,respectively.In each of the plot,the dummy variablesC1,C2 andC3 refer to case 1,case 2 and case 3,respectively.It is recalled that case 1 relates to the out-of phase motion of the coupled micro-panels,case 2 refers to the in-phase vibration of the coupled micro-panels,and case 3 is the motion of a single rib-supported micropanel(case 3).Fig.7 is indicative of the distribution of the natural frequencies for the second symmetric vibration modes of the three mechanistic cases.It is noticed from Fig.7 that the frequency response increases with the aspect ratio(similar to Fig.6).While a clear pattern of skew-symmetric distribution of the frequency values is easily noticed in Figs 6 and 7,a number of additional subtle observations can be made from the plots.First,in Fig.6a,the lowest non-dimensional natural frequency value for the out-of-phase motion(C1)is more than the highest nondimensional natural frequency value for the other two cases for the aspect ratio of 0.2.However,under an increased value of the aspect ratio,the difference in the natural frequency values for the three cases approaches each other,althoughC1 still maintains the lead.Furthermore,in Fig.6(b),the difference in the degrees of influence of the aspect ratio and the small-scale parameter on the pattern of the frequency increase is found to be comparatively similar across the three cases.

    Figure 5:The variation in the mode shape and the contour plots of the second symmetrical mode(λ22):(a)γ=0;(b)γ=0.2;and(c)γ=0.8.

    Figure 6:Distribution of the natural frequencies for the first symmetric vibration modes of the systems:(a)under four simply supported edges;(b)under fully clamped edges.

    Fig.8 represents a visual display of the boundary condition under which the effect of the small-scale parameter exerts a greater influence.From this plot,it is seen that the CCCC edge condition is more heavily affected by the size-effect than the SSSS edge condition for the two vibration modes.It is worth pointing out that,since the CCCC edge conditions do naturally yield greater frequency response,normalized frequency values are employed for Fig.8.Still,it is noticed that the effect of the small-scale parameter is more pronounced on the frequency of the system under the CCCC edge condition.

    Figure 7:Distribution of the natural frequencies for the second symmetric vibration modes(αeff=100):(a)micro-panels with four simply supported edges;(b)micropanels with fully clamped edges.

    Additional plots to examine the effects of the geometric and small-scale parameters are provided in Figs 9-12,all of which are related to the system with the SSSS edge conditions.It is observed from Fig.9(a)that as the micro-panel’s thickness reduces,up to 20%increase in the frequency value is attainable for an aspect ratio of 1(basically a square micro-panel).On the other hand,Fig.9(b)illustrates the vanishing influence of the size-effect on the natural frequency value of the panels as the thickness increases.

    Figure 8:A comparison of the effect of the small-scale parameter on the out-ofphase motion of the coupled system.

    Fig.10 shows the differential trend of the influence of the small-scale effect on the responses of the three mechanistic cases of the coupled system.From this plot,one is able to conclude that the out-of-phase motion of the coupled system experiences the most softening effect arising from the decreasing value of the Micropanels’thickness.Demonstrated in Fig.11 is the inverse relationship between the frequency response of the out-of-phase motion of the coupled system with the thickness-to-span ratio(μ).

    In Fig.12,the influence of the ribs’effective stiffness on the three special cases is shown.Specifically,Fig.12(a)reveals the trend of the frequency increase when the ribs’effective stiffness parameter approaches zero,while Fig.12(b)shows difference in the trend for the three cases when the ribs’effective stiffness parameter is maintained at a modest value of 100.

    5.3 Identification of the order of influence of the model’s parameters

    Figure 9:The quantification of the percentage change in frequency values:(a)the change in frequency against the small-scale effect;(b)the change in frequency against the micro-panels’thickness.

    The results presented under subsection 5.3 are generated by the traditional method of analysis,where one varies a single parameter of the model while keeping all others constant.Essentially,this method is analogous to the so calledone factorat-a-time(OFAT)analysis[Karray and Silva(2004)].One of the drawbacks of the OFAT methodology in the traditional computational mechanics is the inherent underestimation of the possibility of interaction effects between the variables that influence the response of the system under consideration.In the present study for instance,we recognized five continuous numerical dimensionless parameters that could influence the response of the system as seen in Fig.13.These five continuous numerical parameters(or factors)are the aspect ratio(?),the small-scale parameter(γ),the ribs’effective stiffness(αeff),the Poisson’s ratio(ν)and the thickness to-span ratio(μ).In what follows,the OFAT analysis is complemented with the applied statistical method of design of experiment(DOE)[Dean and Voss(1999);Mustapha and Zhong(2012)]to examine the order of influence of these parameters.

    Figure 10:Variation of frequency values with varying value of the material length scale for the special motion types of the system.

    Figure 11:The effect of rotary inertia on the two lowest symmetric vibration modes for the out-of-phase motion of the coupled system.

    Figs.14-16 are indicative of the outcome of the analyses based on the use of the DOE.Two levels of each of the five parameters are considered for the numerical DOE.Based on the established procedure of DOE,an experimental design involving five input factors at two levels(low and high)becomes a problem of 2pnumber of experimental runs,where the superscriptpis the number of factors.The capability of the statistical software M initab[Lesik(2010)]is used to run a randomized design of the experiment.It is pointed out that the term experiment is used in the sense of numerical analysis experiment in the current setting.The values of the factors at each run of the experiment are presented in Tab.3.

    The ordered ranking of the model’s factors(also refers to as main effects)as they influence the response of the system are presented in the form of the Pareto charts depicted in Figs 14-16.In these charts the termsA,B,C,DandEare dummy variables that symbolize the ribs effective stiffness,the aspect ratio,the size-effect,the thickness-to-span ratio and the Poisson’s ratio,respectively.The combinations of these dummy variables(such asAB,ACandABCetc.,)are visible in these charts,and they are called the interaction effects.Specifically,Figs.14,15 and 16 represent the Pareto chart of case 1(the asynchronous motion),case 2(the synchronous motion)and case 3(the motion of a rib-connected micro-panel),respectively.

    Figure 12:The effect of the ribs’stiffness on the three special cases:(a)a negligible ribs’effective stiffness parameter;(b)ribs’effective stiffness maintained at 100.

    Figure 13:The relation between the inputs and the output of the coupled Micropanels system.

    It is observed from Figs 14-16 that the factor that affects the natural frequency of the motion of the three cases the most is the interaction factorBC.This interaction factor is created by the interaction between the aspect ratio and the size-effect parameter.Furthermore,it is observed from the Pareto charts that the Poisson’s ratio has a somewhat negligible effect on the motion of the three systems.However,the interaction effect created between the Poisson’s ratio,the aspect ratio and size effect(BCE)is the fourth most Significant factor that influences the behavior of the synchronous motion.An additional conclusion that can be drawn from these charts is the fact the size-effect is the second most Significant factor that alters the natural frequency of the system for case 1 and case 2.It is also the third most Significant factor for case 3.Besides,the thickness-to-span ratio is discovered not to Significantly affect the response of any of the three mechanistic cases.

    Figure 14:The Pareto chart of the ordered ranking of the model’s factors for the asynchronous motion of coupled system.

    Table 3:Randomized numerical experimental runs.

    Figure 15:The Pareto chart of the ordered ranking of the model’s factors for the synchronous motion of coupled system.

    Figure 16:The Pareto chart for the motion of ribs-supported single micro-panel.

    6 Conclusion

    On the basis of the extended Hamilton’s principle and the Modified couple stress theory,the governing equations of a rib-connected system of coupled micro-panels are derived.Starting from a displacement trial field,the derivation considers the deformation of a single micro-panel embedded in a Euclidean 3-space?.The derivation procedure yields three field equations.Two of the field equations represent the extensional vibration mode of the micro-panel,while the third equation relates to the flexural vibration mode.Given the focus of the current study,the third field equation,which accounts for the flexural vibration of the micro-panel and is uncoupled from the extensional modes is adopted for comprehensive response analyses.In analyzing the behavior of the coupled micro-scale panels,three forms of special cases of motion of the system were assessed:(i)the out-of-phase motion;(ii)the in-phase motion;and(iii)the motion of a single micro-panel with rib connections and a rigid base.The vibration characteristics under each of these motion types were studied systematically for the determination of the frequency shift and the pattern of the frequency distribution.The study reaffirms the expected substantial increase in natural frequency value for a lower range of the micro-panel’s thickness.A skew-symmetric pattern of distribution of the shift in natural frequencies values is discovered for the first and second symmetric modes of the coupled system under the two edge conditions studied.Furthermore,it is noticed that,for lower values of the aspect ratio,the lowest non-dimensional natural frequency value for the out of-phase motion is more than the highest non-dimensional natural frequency value for both the in-phase motion and the motion of a single micro-panel with rib connection.It is also found that the effect of the material length scale on the frequency of the out-of-phase motion is higher when the edges are fully clamped than when simply-supported.Through Pareto analysis,notable interaction effects were discovered between the models’parameters.

    Although extrapolating theoretical conclusions to experimental studies do come with certain challenges,preliminary theoretical investigations such as the one carried out in this study strives to provide a cogent basis for close scrutiny of future experimental results.The observations from this study are expected to pave the way for the recognition of key variables(main effects or interactions effects)that might be employed in the future optimization of the system’s geometry and response.

    Acknowledgement:The author is greatly indebted to the anonymous reviewer for the insightful suggestions that lead to the improvement of the manuscript.The support of the management of Swinburne University(Sarawak Campus)is also acknowledged.

    Agache,V.;Blanco-Gomez,G.;Cochet,M.;Caillat,P.(2011):Suspended nanochannel in MEMS plate resonator for mass sensing in liquid.M icro Electro Mechanical Systems(MEMS),2011 IEEE 24th International Conference on.

    Aifantis,E.C.(1992):On the role of gradients in the localization of deformation and fracture.International Journal of Engineering Science,vol.30,no.10,pp.1279-1299.

    Aifantis,E.C.(2011):On the gradient approach – Relation to Eringen’s nonlocal theory.International Journal of Engineering Science,vol.49,no.12,pp.1367-1377.

    Akg?z,B.;Civalek,?.(2013):Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the Modified couple stress theory.Composite Structures,vol.98,pp.314-322.

    Akg?z,B.;Civalek,?.(2013):Modeling and analysis of micro-sized plates resting on elastic medium using the Modified couple stress theory.Meccanica,vol.48,no.4,pp.863-873.

    Anthoine,A.(2000):Effect of couple-stresses on the elastic bending of beams.International Journal of Solids and Structures,vol.37,no.7,pp.1003-1018.

    Ardito,R.;Baldasarre,L.;Corigliano,A.;De M asi,B.;Frangi,A.;M agagnin,L.(2013):Experimental evaluation and numerical modeling of adhesion phenomena in polysilicon MEMS.Meccanica,vol.48,no.8,pp.1835-1844.

    Benkhelifa,E.;Farnsworth,M.;Tiwari,A.;Bandi,G.(2010):Design and optimisation of microelectromechanical systems:a review of the state-of-the-art.International Journal of Design Engineering,vol.3,no.1,pp.41-76.

    Boisen,A.;Dohn,S.;Keller,S.S.;Schm id,S.;Tenje,M.(2011):Cantilever-like micromechanical sensors.Reports on Progress in Physics,vol.74,no.3.

    Chiroiu,V.;M unteanu,L.;Delsanto,P.P.(2010):Evaluation of the Toupin-M indlin theory for predicting the size effects in the buckling of the carbon nanotubes.Computers,Materials&Continua(CMC),vol.16,no.2,pp.75.

    Chiroiu,V.;M unteanu,L.;G liozzi,A.S.(2010):Application of Cosserat Theory to the Modelling of Reinforced Carbon Nananotube Beams.Computers Materials and Continua,vol.19,no.1,pp.1.

    Cosserat,E.;Cosserat,F.(1909):Théorie des Corps Déformables.A.Hermann et Fils,Paris.

    Dean,A.M.;Voss,D.(1999):Design and analysis of experiments,Springer.

    Eringen,A.C.(1972):Nonlocal polar elastic continua.International Journal ofEngineering Science,vol.10,no.1,pp.1-16.

    Eringen,A.C.;Edelen,D.G.B.(1972):On nonlocal elasticity.International Journal of Engineering Science,vol.10,no.3,pp.233-248.

    Farokhi,H.;Ghayesh,M.H.;Amabili,M.(2013):Nonlinear Dynamics of a geometrically imperfect microbeam based on the Modified couple stress theory.International Journal of Engineering Science,vol.68,pp.11-23.

    Fleck,N.A.;Hutchinson,J.W.(1993):A phenomenological theory for strain gradient effects in plasticity.Journal of the Mechanics and Physics of Solids,vol.41,no.12,pp.1825-1857.

    Fotouhi,M.M.;Firouz-Abadi,R.D.;Haddadpour,H.(2013):Free vibration analysis of nanocones embedded in an elastic medium using a nonlocal continuum shell model.International Journal of Engineering Science,vol.64,pp.14-22.

    Gao,X.L.;Huang,J.X.;Reddy,J.N.(2013):A non-classical third-order shear deformation platemodelbased on aModified couplestress theory.ActaMechanica,vol.224,no.11,pp.2699-2718.

    Georgiadis,H.G.;Velgaki,E.G.(2003):High-frequency Rayleigh waves in materials with micro-structure and couple-stress effects.International Journal of Solids and Structures,vol.40,no.10,pp.2501-2520.

    Güven,U.(2011):The investigation of the nonlocal longitudinal stress waves with Modified couple stress theory.Acta Mechanica,vol.221,no.3-4,pp.321-325.

    Jomehzadeh,E.;Noori,H.R.;Saidi,A.R.(2011):The size-dependent vibration analysis of micro-plates based on a Modified couple stress theory.Physica E:Lowdimensional Systems and Nanostructures,vol.43,no.4,pp.877-883.

    Karray,F.;Silva,C.D.(2004):Soft Computing and Tools of Intelligent Systems Design:Theory and Applications.

    Kun,W.;Nguyen,C.T.C.(1999):High-order medium frequency micromechanical electronic filters.Microelectromechanical Systems,Journal of,vol.8,no.4,pp.534-556.

    Lam,D.C.C.;Yang,F.;Chong,A.C.M.;Wang,J.;Tong,P.(2003):Experiments and theory in strain gradient elasticity.Journal of the Mechanics and Physics of Solids,vol.51,no.8,pp.1477-1508.

    Leissa,A.W.(1973):The free vibration of rectangular plates.Journal of Sound and Vibration,vol.31,no.3,pp.257-293.

    Lesik,S.A.(2010):Applied Statistical Inference with MINITAB,CRC Press.

    Liew,K.M.;Wong,C.H.;He,X.Q.;Tan,M.J.;M eguid,S.A.(2004):Nanomechanics of single and multi walled carbon nanotubes.Physical Review B-Condensed Matter and Materials Physics,vol.69,no.11,pp.1154291-1154298.

    Liu,D.-S.;Tu,C.-Y.;Chung,C.-L.(2012):Eigenvalue Analysis of MEMS Components with Multi-defect using In finite Element Method Algorithm.Computers Materials and Continua,vol.28,no.2,pp.97.

    Liu,M.(2011):Orthogonal Tapered Beam Functions in the Study of Free Vibrations for Non-uniform Isotropic Rectangular Plates.Computers Materials and Continua,vol.22,no.2,pp.97.

    Mahdavi,M.H.;Farshidianfar,A.;Tahani,M.;M ahdavi,S.;Dalir,H.(2008):A more comprehensive modeling of atomic force microscope cantilever.Ultramicroscopy,vol.109,no.1,pp.54-60.

    M anzaneque,T.;Ruiz,V.;Hernando-Garcia,J.;Ababneh,A.;Seidel,H.;Sanchez-Rojas,J.L.(2012):Characterization and simulation of the first extensional mode of rectangular micro-plates in liquid media.Applied Physics Letters101(15):151904-151904-151904.

    M arin,M.;Agarwal,R.P.;Othman,M.(2014):Localization in Time of Solutions for Thermoelastic M icropolar Materials with Voids.CMC:Computers,Materials&Continua,vol.40,no.1,pp.35-48.

    M attila,T.;K iiham?ki,J.;Lamm inm?ki,T.;Jaakkola,O.;Rantakari,P.;O ja,A.;Sepp?,H.;Kattelus,H.;Tittonen,I.(2002):A 12 MHz micromechanical bulk acoustic mode oscillator.Sensors and Actuators A:Physical,vol.101,no.1–2,pp.1-9.

    M urmu,T.;Adhikari,S.(2011):Nonlocal vibration of bonded double-nanoplatesystems.Composites Part B:Engineering,vol.42,no.7,pp.1901-1911.

    M ustapha,K.B.(2014):Modeling of a functionally graded micro-ring segment for the analysis of coupled extensional– flexural waves.Composite Structures,vol.117,pp.274-287.

    M ustapha,K.B.;Zhong,Z.W.(2012):A new modeling approach for the Dynamics of a micro end m ill in high-speed micro-cutting.Journal of Vibration and Control.

    M ustapha,K.B.;Zhong,Z.W.(2012):Spectral element analysis of a nonclassical model of a spinning micro beam embedded in an elastic medium.Mechanism and Machine Theory,vol.53,pp.66-85.

    M ustapha,K.B.;Z.W.Zhong(2012):Wave propagation characteristics of a twisted m icro scale beam.International Journal of Engineering Science,vol.53,pp.46-57.

    Nguyen,C.T.C.(1995):Micro mechanical resonators for oscillators and filters.Ultrasonics Symposium,1995.Proceedings.,1995 IEEE.

    Papacharalam popoulos,A.;Karlis,G.;Charalambopoulos,A.;Polyzos,D.(2010):BEM Solutions for 2 D and 3 D dynamic Problems in M indlin’s Strain Gradient Theory of Elasticity.Computer Modeling in Engineering&Sciences(CMES),vol.58,no.1,pp.45-74.

    Papargyri-Beskou,S.;Tsepoura,K.G.;Polyzos,D.;Beskos,D.E.(2003):Bending and stability analysis of gradient elastic beams.International Journal of Solids and Structures,vol.40,no.2,pp.385-400.

    Park,S.K.;Gao,X.L.(2006):Bernoulli-Euler beam model based on a Modified couple stress theory.Journal of Micro mechanics and Micro engineering,vol.16,no.11,pp.2355-2359.

    Peddieson,J.;Buchanan,G.R.;M cNitt,R.P.(2003):Application of nonlocal continuum models to nanotechnology.International Journal of Engineering Science,vol.41,no.3-5,pp.305-312.

    Reddy,J.N.(2002):Energy principles and variational methods in applied mechanics.Hoboken,N.J.,Wiley.

    Reddy,J.N.(2011):microstructure-dependent couple stress theories of functionally graded beams.Journal of the Mechanics and Physics of Solids,vol.59,no.11,pp.2382-2399.

    Romanoff,J.;Reddy,J.(2014):Experimental validation of the Modified couple stress Timoshenko beam theory for web-core sandw ich panels.Composite Structures,vol.111,pp.130-137.

    Sakhaee-Pour,A.;Ahmadian,M.;Vafai,A.(2008):Applications of singlelayered graphene sheets as mass sensors and atomistic dust detectors.Solid State Communications,vol.145,no.4,pp.168-172.

    Szilard,R.(2004):Theories and applications of plate analysis:classical,numerical,and engineering methods.Hoboken,N.J.,John Wiley.

    Tang,Z.;Shen,S.;Atluri,S.(2003):Analysis of materials with strain-gradient effects:A meshless local Petrov-Galerkin(MLPG)approach,with nodal displacements only.Computer Modeling in Engineering and Sciences,vol.4,no,1,pp.177-196.

    Toupin,R.A.(1962):Elastic materials with couple-stresses.Archive for Rational Mechanics and Analysis,vol.11,no.1,pp.385-414.

    Uchic,M.D.;Dim iduk,D.M.;Florando,J.N.;Nix,W.D.(2004):Sample dimensions influence strength and crystal plasticity.Science,vol.305,no.5686,pp.986-989.

    Volkert,C.A.;Lilleodden,E.T.(2006):Size effects in the deformation of submicron Au columns.Philosophical Magazine,vol.86,no.33-35,pp.5567-5579.

    Wang,L.;Liu,H.T.;Ni,Q.;Wu,Y.(2013):Flexural vibrations of microscale pipes conveying fluid by considering the size effects of micro- flow and microstructure.International Journal of Engineering Science,vol.71,no.0,pp.92-101.

    Xie,G.;Long,S.(2006):Elastic vibration behaviors oof carbon nanotubes based on micropolar mechanics.CMC-TECH SCIENCE PRESS-,vol.4,no.1,pp.11.

    Yang,F.;Chong,A.C.M.;Lam,D.C.C.;Tong,P.(2002):Couple stress based strain gradient theory for elasticity.International Journal of Solids and Structures,vol.39,no.10,pp.2731-2743.

    Yazdi,N.;Ayazi,F.;Naja fi,K.(1998):Micromachined inertial sensors.Proceedings of the IEEE,vol.86,no.8,pp.1640-1659.

    Yin,L.;Qian,Q.;Wang,L.;Xia,W.(2010):Vibration analysis of micro scale plates based on Modified couple stress theory.Acta Mechanica Solida Sinica,vol.23,no.5,pp.386-393.

    Younis,M.I.(2011):MEMS Linear and Nonlinear Statics and Dynamics.

    午夜福利,免费看| 一夜夜www| 大陆偷拍与自拍| 51午夜福利影视在线观看| 亚洲精品中文字幕一二三四区| 欧美日韩一级在线毛片| 免费在线观看日本一区| 999久久久精品免费观看国产| 久热这里只有精品99| 国产伦人伦偷精品视频| 夜夜夜夜夜久久久久| 久久青草综合色| 国产亚洲精品久久久久久毛片| 最好的美女福利视频网| 亚洲av日韩精品久久久久久密| 久久九九热精品免费| svipshipincom国产片| 又黄又粗又硬又大视频| 男人舔女人下体高潮全视频| 琪琪午夜伦伦电影理论片6080| 青草久久国产| 成人18禁高潮啪啪吃奶动态图| 少妇 在线观看| 日韩 欧美 亚洲 中文字幕| av在线天堂中文字幕 | 亚洲专区字幕在线| 久久人人精品亚洲av| 国产精品爽爽va在线观看网站 | 99精品欧美一区二区三区四区| 国产精品久久视频播放| 免费av中文字幕在线| 国产免费男女视频| 精品久久久久久,| 国产精品爽爽va在线观看网站 | 国产免费av片在线观看野外av| 日韩精品免费视频一区二区三区| 我的亚洲天堂| 搡老乐熟女国产| 国产精品一区二区免费欧美| 中文字幕高清在线视频| 日日夜夜操网爽| 激情在线观看视频在线高清| 女警被强在线播放| 桃色一区二区三区在线观看| 国产成人啪精品午夜网站| 午夜成年电影在线免费观看| 亚洲av电影在线进入| 亚洲狠狠婷婷综合久久图片| 午夜福利在线免费观看网站| 极品教师在线免费播放| 久久久久久大精品| 国产不卡一卡二| 啦啦啦免费观看视频1| 一a级毛片在线观看| 亚洲av美国av| 黄色视频,在线免费观看| 亚洲精品中文字幕一二三四区| 中亚洲国语对白在线视频| 视频在线观看一区二区三区| 国产精品秋霞免费鲁丝片| 麻豆一二三区av精品| 老熟妇仑乱视频hdxx| 国产欧美日韩精品亚洲av| 欧美成狂野欧美在线观看| 国产日韩一区二区三区精品不卡| 午夜两性在线视频| 欧美日本中文国产一区发布| 精品熟女少妇八av免费久了| 免费在线观看日本一区| 12—13女人毛片做爰片一| 亚洲熟妇中文字幕五十中出 | 777久久人妻少妇嫩草av网站| 久久狼人影院| www.www免费av| 国产av一区在线观看免费| 欧美成人午夜精品| 亚洲精品美女久久av网站| 波多野结衣一区麻豆| 亚洲欧美日韩高清在线视频| 亚洲伊人色综图| 欧美日韩亚洲综合一区二区三区_| 日本vs欧美在线观看视频| netflix在线观看网站| 日韩精品青青久久久久久| 欧美日韩中文字幕国产精品一区二区三区 | 国产一区二区激情短视频| 中文字幕人妻熟女乱码| 国产亚洲精品综合一区在线观看 | 亚洲avbb在线观看| 亚洲欧美日韩另类电影网站| 91精品三级在线观看| 欧美日韩视频精品一区| 一级毛片精品| 国产野战对白在线观看| 狠狠狠狠99中文字幕| 成人三级做爰电影| 国产亚洲精品久久久久久毛片| 亚洲av美国av| 女警被强在线播放| 日韩国内少妇激情av| 日韩 欧美 亚洲 中文字幕| a级毛片在线看网站| www.熟女人妻精品国产| 一级黄色大片毛片| 在线免费观看的www视频| 国产精华一区二区三区| 人人妻人人添人人爽欧美一区卜| 18禁观看日本| 51午夜福利影视在线观看| www.精华液| 欧美日韩精品网址| 午夜免费观看网址| 成人黄色视频免费在线看| 久久青草综合色| 乱人伦中国视频| 国内毛片毛片毛片毛片毛片| 精品久久久久久成人av| 激情视频va一区二区三区| 国产成年人精品一区二区 | 欧美av亚洲av综合av国产av| 欧美在线一区亚洲| 精品第一国产精品| www.自偷自拍.com| а√天堂www在线а√下载| √禁漫天堂资源中文www| 亚洲精品成人av观看孕妇| 午夜福利,免费看| 久99久视频精品免费| 欧美日韩国产mv在线观看视频| 新久久久久国产一级毛片| 精品免费久久久久久久清纯| 色尼玛亚洲综合影院| 夜夜看夜夜爽夜夜摸 | 黄色丝袜av网址大全| 亚洲精品国产区一区二| 黑丝袜美女国产一区| 久久精品国产99精品国产亚洲性色 | 99久久精品国产亚洲精品| 国产亚洲欧美精品永久| av福利片在线| 一级片'在线观看视频| 咕卡用的链子| 欧美日韩亚洲高清精品| 一区二区日韩欧美中文字幕| 88av欧美| 亚洲av成人av| 久久精品91无色码中文字幕| 久久这里只有精品19| 成熟少妇高潮喷水视频| 人人澡人人妻人| 窝窝影院91人妻| 一级黄色大片毛片| 男女午夜视频在线观看| 男人舔女人下体高潮全视频| 精品乱码久久久久久99久播| 中文字幕另类日韩欧美亚洲嫩草| 国产黄色免费在线视频| 桃色一区二区三区在线观看| 久久伊人香网站| 欧美不卡视频在线免费观看 | 久久香蕉国产精品| 多毛熟女@视频| 一边摸一边做爽爽视频免费| 午夜福利免费观看在线| 日本三级黄在线观看| 999精品在线视频| 国产精品爽爽va在线观看网站 | 大型av网站在线播放| 日本wwww免费看| 一级毛片精品| 国产一区在线观看成人免费| 久久久精品欧美日韩精品| 日本撒尿小便嘘嘘汇集6| www日本在线高清视频| 久久天堂一区二区三区四区| 国产麻豆69| 女性被躁到高潮视频| 国产一区二区三区视频了| 老汉色av国产亚洲站长工具| 大码成人一级视频| 国产成人欧美| 亚洲aⅴ乱码一区二区在线播放 | 丝袜美腿诱惑在线| 中文字幕最新亚洲高清| 国产野战对白在线观看| 久久午夜亚洲精品久久| 亚洲专区字幕在线| 国产一卡二卡三卡精品| 久久这里只有精品19| 精品福利观看| 天堂√8在线中文| 国产亚洲欧美98| 午夜激情av网站| 国产午夜精品久久久久久| 老司机午夜十八禁免费视频| 久久香蕉精品热| 精品久久久久久久毛片微露脸| 老司机福利观看| 老汉色∧v一级毛片| 99国产综合亚洲精品| 国产精品永久免费网站| 婷婷精品国产亚洲av在线| 免费人成视频x8x8入口观看| 看片在线看免费视频| 午夜a级毛片| 在线观看免费午夜福利视频| 97人妻天天添夜夜摸| 亚洲精品美女久久久久99蜜臀| 性少妇av在线| 久久婷婷成人综合色麻豆| 国产精品av久久久久免费| 男女高潮啪啪啪动态图| 无遮挡黄片免费观看| 日韩大码丰满熟妇| 久久精品亚洲熟妇少妇任你| 亚洲成av片中文字幕在线观看| 在线av久久热| 国产成人欧美| 欧美在线一区亚洲| 在线观看舔阴道视频| 少妇被粗大的猛进出69影院| 国产欧美日韩综合在线一区二区| 在线观看免费视频日本深夜| 亚洲人成77777在线视频| 免费av中文字幕在线| 韩国精品一区二区三区| 99riav亚洲国产免费| 好看av亚洲va欧美ⅴa在| 他把我摸到了高潮在线观看| 大码成人一级视频| 久久久久亚洲av毛片大全| 日韩人妻精品一区2区三区| 久久 成人 亚洲| avwww免费| 三级毛片av免费| av免费在线观看网站| 女生性感内裤真人,穿戴方法视频| 精品日产1卡2卡| 丝袜在线中文字幕| 日日干狠狠操夜夜爽| 一级毛片精品| 免费在线观看完整版高清| www国产在线视频色| 热re99久久精品国产66热6| 久久中文字幕人妻熟女| 国产精品野战在线观看 | 国产成人av激情在线播放| 人人妻,人人澡人人爽秒播| 午夜免费激情av| 国产伦一二天堂av在线观看| 国产一区二区在线av高清观看| www国产在线视频色| 少妇粗大呻吟视频| 亚洲五月婷婷丁香| 变态另类成人亚洲欧美熟女 | 亚洲成国产人片在线观看| 老汉色∧v一级毛片| 久久亚洲真实| 不卡av一区二区三区| 国产精品九九99| 日本三级黄在线观看| 女人高潮潮喷娇喘18禁视频| 真人一进一出gif抽搐免费| 亚洲国产精品合色在线| 欧美日韩亚洲综合一区二区三区_| 国产成人av激情在线播放| 男人舔女人下体高潮全视频| 国产精品亚洲av一区麻豆| 国产高清视频在线播放一区| 国产色视频综合| 美女国产高潮福利片在线看| 国产有黄有色有爽视频| 脱女人内裤的视频| 亚洲久久久国产精品| 人妻久久中文字幕网| 18禁观看日本| 99精品久久久久人妻精品| 一级黄色大片毛片| 一个人观看的视频www高清免费观看 | 日本三级黄在线观看| 国产亚洲精品第一综合不卡| 国产欧美日韩综合在线一区二区| 久久婷婷成人综合色麻豆| 一级,二级,三级黄色视频| 91在线观看av| 国产一区二区激情短视频| 制服人妻中文乱码| 亚洲精品久久成人aⅴ小说| 极品人妻少妇av视频| 麻豆久久精品国产亚洲av | 亚洲色图av天堂| av在线天堂中文字幕 | 91麻豆精品激情在线观看国产 | 欧美黑人欧美精品刺激| 正在播放国产对白刺激| 80岁老熟妇乱子伦牲交| 午夜久久久在线观看| 色在线成人网| 成人国语在线视频| 精品电影一区二区在线| 波多野结衣一区麻豆| 一级黄色大片毛片| 免费看十八禁软件| 国产乱人伦免费视频| 中文字幕另类日韩欧美亚洲嫩草| 国产亚洲精品一区二区www| 国产一区二区三区综合在线观看| 午夜免费鲁丝| 一进一出好大好爽视频| 亚洲精品国产色婷婷电影| 搡老岳熟女国产| 久久这里只有精品19| 亚洲国产欧美日韩在线播放| 久久九九热精品免费| 一二三四在线观看免费中文在| 久久人妻福利社区极品人妻图片| 国产亚洲精品综合一区在线观看 | 热99国产精品久久久久久7| 久久久国产精品麻豆| 欧美最黄视频在线播放免费 | 亚洲国产中文字幕在线视频| 美女午夜性视频免费| 日本vs欧美在线观看视频| 999久久久国产精品视频| 国产av又大| 少妇 在线观看| 精品福利永久在线观看| 老熟妇乱子伦视频在线观看| 国产成人精品久久二区二区91| 久久精品国产综合久久久| 亚洲精品粉嫩美女一区| 精品国内亚洲2022精品成人| 亚洲久久久国产精品| 制服人妻中文乱码| 99热只有精品国产| 久久人妻av系列| 久热这里只有精品99| 老司机午夜福利在线观看视频| 亚洲少妇的诱惑av| 老司机午夜十八禁免费视频| 男女午夜视频在线观看| 国产精品亚洲av一区麻豆| 国产男靠女视频免费网站| av福利片在线| www.自偷自拍.com| 色婷婷av一区二区三区视频| 人人妻,人人澡人人爽秒播| bbb黄色大片| 国产欧美日韩一区二区三区在线| 视频区图区小说| 老汉色∧v一级毛片| 欧美精品一区二区免费开放| 热re99久久精品国产66热6| 黄片大片在线免费观看| 国产无遮挡羞羞视频在线观看| cao死你这个sao货| 国产精品免费视频内射| 久久久久九九精品影院| 亚洲熟女毛片儿| 国产成人影院久久av| 亚洲五月色婷婷综合| 麻豆av在线久日| 手机成人av网站| 最近最新中文字幕大全免费视频| 岛国在线观看网站| 亚洲aⅴ乱码一区二区在线播放 | 99热国产这里只有精品6| 成人av一区二区三区在线看| 波多野结衣一区麻豆| 老汉色∧v一级毛片| 国产av又大| 亚洲精品中文字幕在线视频| 在线观看免费午夜福利视频| 久久久久亚洲av毛片大全| 精品一区二区三区四区五区乱码| 亚洲精品在线观看二区| 国产精品亚洲av一区麻豆| 91成人精品电影| 国产97色在线日韩免费| 在线视频色国产色| 自拍欧美九色日韩亚洲蝌蚪91| 天天躁狠狠躁夜夜躁狠狠躁| 欧美一级毛片孕妇| 国产精品香港三级国产av潘金莲| www.精华液| 午夜福利一区二区在线看| 亚洲国产中文字幕在线视频| 宅男免费午夜| 淫妇啪啪啪对白视频| 免费在线观看完整版高清| 人人澡人人妻人| 亚洲精品美女久久久久99蜜臀| xxxhd国产人妻xxx| 国产午夜精品久久久久久| 国产精品野战在线观看 | 午夜激情av网站| 一级,二级,三级黄色视频| 女同久久另类99精品国产91| 青草久久国产| 男人舔女人的私密视频| 亚洲人成伊人成综合网2020| 国产野战对白在线观看| 9热在线视频观看99| 免费人成视频x8x8入口观看| 亚洲人成网站在线播放欧美日韩| 亚洲五月婷婷丁香| ponron亚洲| 热99re8久久精品国产| 自线自在国产av| 色婷婷av一区二区三区视频| 欧美在线黄色| av天堂久久9| 日本精品一区二区三区蜜桃| 日日夜夜操网爽| 成人亚洲精品一区在线观看| 亚洲一区二区三区不卡视频| 最近最新中文字幕大全免费视频| 亚洲五月色婷婷综合| 久久九九热精品免费| 欧美日韩亚洲高清精品| 国产亚洲欧美98| 搡老岳熟女国产| 欧美中文综合在线视频| 岛国视频午夜一区免费看| 黄色a级毛片大全视频| 日本黄色日本黄色录像| 看黄色毛片网站| 精品国产乱码久久久久久男人| 色婷婷久久久亚洲欧美| 99riav亚洲国产免费| 999精品在线视频| 99久久国产精品久久久| 村上凉子中文字幕在线| 多毛熟女@视频| 亚洲,欧美精品.| 午夜免费鲁丝| 亚洲性夜色夜夜综合| av电影中文网址| 男女之事视频高清在线观看| 一级黄色大片毛片| 午夜精品久久久久久毛片777| 黑人巨大精品欧美一区二区蜜桃| 精品欧美一区二区三区在线| 一区福利在线观看| 午夜免费鲁丝| 俄罗斯特黄特色一大片| a级毛片黄视频| 超色免费av| 久久久久久人人人人人| 久久精品国产99精品国产亚洲性色 | 自线自在国产av| 国产97色在线日韩免费| 国产又爽黄色视频| 精品日产1卡2卡| 久久天堂一区二区三区四区| 黄色a级毛片大全视频| 成人亚洲精品一区在线观看| 色婷婷久久久亚洲欧美| 在线观看免费日韩欧美大片| 久久欧美精品欧美久久欧美| 高清av免费在线| 久久天堂一区二区三区四区| 免费一级毛片在线播放高清视频 | www国产在线视频色| 日韩欧美一区视频在线观看| 91老司机精品| 国产精品九九99| 免费在线观看视频国产中文字幕亚洲| av网站免费在线观看视频| 一边摸一边做爽爽视频免费| 99久久国产精品久久久| 精品一区二区三卡| 亚洲人成网站在线播放欧美日韩| 女警被强在线播放| 精品一区二区三卡| 50天的宝宝边吃奶边哭怎么回事| av有码第一页| 久久久久国产精品人妻aⅴ院| 国产精品久久视频播放| 纯流量卡能插随身wifi吗| 操美女的视频在线观看| 亚洲国产看品久久| 欧美久久黑人一区二区| 黑丝袜美女国产一区| 9热在线视频观看99| 午夜精品在线福利| 亚洲成人免费av在线播放| 亚洲avbb在线观看| 欧美日本中文国产一区发布| 欧美 亚洲 国产 日韩一| 18禁裸乳无遮挡免费网站照片 | 久久 成人 亚洲| а√天堂www在线а√下载| 久久香蕉精品热| 国产成人一区二区三区免费视频网站| 国产不卡一卡二| 我的亚洲天堂| 国产伦人伦偷精品视频| 日韩中文字幕欧美一区二区| 午夜老司机福利片| 男人舔女人下体高潮全视频| 亚洲精品久久午夜乱码| 天堂中文最新版在线下载| 黄色成人免费大全| 99久久国产精品久久久| 久久亚洲精品不卡| 中文字幕av电影在线播放| 日本a在线网址| 激情视频va一区二区三区| 日韩一卡2卡3卡4卡2021年| 99re在线观看精品视频| 久久人人爽av亚洲精品天堂| 国产精品自产拍在线观看55亚洲| 亚洲精品一卡2卡三卡4卡5卡| 欧美日韩福利视频一区二区| 国产不卡一卡二| 人妻丰满熟妇av一区二区三区| 免费观看人在逋| 夜夜看夜夜爽夜夜摸 | 国产精品综合久久久久久久免费 | 丰满迷人的少妇在线观看| 日韩视频一区二区在线观看| 亚洲欧美精品综合一区二区三区| 久久香蕉激情| 日本欧美视频一区| 淫妇啪啪啪对白视频| 久久人妻福利社区极品人妻图片| 黄网站色视频无遮挡免费观看| 日本撒尿小便嘘嘘汇集6| 在线永久观看黄色视频| 美女福利国产在线| 一级,二级,三级黄色视频| 成人国产一区最新在线观看| 色尼玛亚洲综合影院| 成人亚洲精品一区在线观看| 亚洲专区国产一区二区| 极品人妻少妇av视频| 他把我摸到了高潮在线观看| 91在线观看av| 久久久久九九精品影院| 91成人精品电影| 久久国产精品人妻蜜桃| 欧美激情高清一区二区三区| 久久久久久免费高清国产稀缺| 女人被狂操c到高潮| 亚洲av美国av| 国产精品乱码一区二三区的特点 | 啦啦啦在线免费观看视频4| 精品免费久久久久久久清纯| 黄色 视频免费看| 老司机午夜福利在线观看视频| 91精品三级在线观看| 在线十欧美十亚洲十日本专区| 中文欧美无线码| 91成人精品电影| 黄片播放在线免费| 欧美日韩乱码在线| 麻豆久久精品国产亚洲av | 91精品三级在线观看| 色婷婷久久久亚洲欧美| 日韩有码中文字幕| 黄色女人牲交| 国产亚洲精品一区二区www| 久久精品亚洲av国产电影网| 免费少妇av软件| 国产激情欧美一区二区| 男女下面插进去视频免费观看| 纯流量卡能插随身wifi吗| √禁漫天堂资源中文www| 国产精品爽爽va在线观看网站 | 久久热在线av| 国产亚洲精品久久久久5区| 国产成人欧美| 日韩欧美在线二视频| 亚洲人成77777在线视频| 亚洲三区欧美一区| 中出人妻视频一区二区| 国产午夜精品久久久久久| 亚洲精品一卡2卡三卡4卡5卡| 老司机午夜十八禁免费视频| 亚洲av美国av| 美女国产高潮福利片在线看| 国产成人一区二区三区免费视频网站| 国产一卡二卡三卡精品| 两性午夜刺激爽爽歪歪视频在线观看 | 免费日韩欧美在线观看| 免费在线观看黄色视频的| 精品一品国产午夜福利视频| 国产亚洲精品综合一区在线观看 | 免费看a级黄色片| 久久国产精品人妻蜜桃| 最近最新中文字幕大全免费视频| 男人舔女人的私密视频| av天堂久久9| 日日干狠狠操夜夜爽| 自线自在国产av| 久久热在线av| 久久久久久久精品吃奶| 精品电影一区二区在线| 制服人妻中文乱码| 在线看a的网站| 日韩免费av在线播放| av天堂久久9| 欧美成人性av电影在线观看| 国产欧美日韩一区二区三区在线| 国产人伦9x9x在线观看| 亚洲av第一区精品v没综合| 伊人久久大香线蕉亚洲五| 久久久久精品国产欧美久久久| av在线天堂中文字幕 | 日韩高清综合在线| 一级a爱片免费观看的视频| 看黄色毛片网站| 久久午夜亚洲精品久久| 黄色女人牲交|