馮志強(qiáng) 劉永江,2 溫泉波 韓國卿 李偉民 張麗
1.吉林大學(xué)地球科學(xué)學(xué)院,長(zhǎng)春 1300612.西北大學(xué)大陸動(dòng)力學(xué)國家重點(diǎn)實(shí)驗(yàn)室,西安 7100691.
大興安嶺地區(qū)大地構(gòu)造位置上處于興蒙造山帶東段,自北向南跨越額爾古納地塊、興安地塊和松嫩地塊(圖1a),其所處獨(dú)特構(gòu)造位置已成為揭示東北地區(qū)各地塊拼貼構(gòu)造演化及大陸動(dòng)力學(xué)研究的重要場(chǎng)所。其中額爾古納地塊與興安地塊之間的縫合帶傳統(tǒng)上一般認(rèn)為是德爾布干斷裂帶,并認(rèn)為其形成時(shí)代為早古生代(李春昱,1980),雖然在該縫合帶兩側(cè)存在地球物理異常方面差異(張興洲等,2006),但未見典型關(guān)于縫合帶相關(guān)巖石報(bào)道。隨著野外地質(zhì)調(diào)查和研究工作不斷深入,得爾布干斷裂主要為一中生代走滑斷裂(鄭常青等,2009;張麗等,2013),并不具有縫合帶的性質(zhì),但在德爾布干斷裂帶東側(cè)發(fā)現(xiàn)了一些縫合帶證據(jù),如新林蛇綠巖、塔源輝長(zhǎng)巖、吉峰蛇綠巖、頭道橋和額爾古納右旗的藍(lán)片巖等(李瑞山,1991;葉慧文等,1994;胡道功等,1995;吳福元等,1999;鐘輝和傅俊彧,2006;劉永江等,2010),故認(rèn)為額爾古納地塊和興安地塊最后碰撞拼合的位置應(yīng)該位于新林-喜桂圖旗一線,關(guān)于這點(diǎn)已經(jīng)得到了許多學(xué)者的共識(shí)(王成文等,2008;劉永江等,2010;張麗等,2013)。然而,對(duì)該縫合帶形成具體時(shí)代仍存在較大爭(zhēng)論,李瑞山(1991)根據(jù)新林蛇綠巖中層狀超鎂鐵質(zhì)巖內(nèi)金云母K-Ar同位素年齡為539Ma,認(rèn)為其形成時(shí)間是早寒武世;朱紳玉和楊繼賢(1991)發(fā)現(xiàn)伊列克得-阿里河蛇綠巖帶,認(rèn)為其時(shí)代為晚泥盆世至早石炭世;胡道功等(2001,2003)根據(jù)吉峰-嘎仙-環(huán)二庫一線基性-超基性巖帶的Sm-Nd同位素年齡(~1727±74.7Ma),判別其形成于中元古代;葛文春等(2005)對(duì)塔河縣附近后造山花崗巖組合(494~480Ma)研究顯示,額爾古納地塊和興安地塊的碰撞拼貼在古生代早期之前已完成;近期對(duì)伊敏河頭道橋藍(lán)片巖測(cè)年研究表明,其原巖時(shí)代主要是500~490Ma(周建波等,未發(fā)表),說明新林-喜桂圖旗縫合帶應(yīng)形成于早古生代。針對(duì)以上問題,本文選擇位于大興安嶺北段出露較好的塔源變輝長(zhǎng)巖及花崗巖作為研究對(duì)象(圖1b),試圖通過構(gòu)造年代學(xué)、巖石學(xué)及地球化學(xué)的研究,確定塔源變輝長(zhǎng)巖和花崗巖的侵位時(shí)代和性質(zhì),探討其與新林-喜桂圖旗縫合帶之間的關(guān)系,為進(jìn)一步探討大興安嶺北段大地構(gòu)造格架及其演化提供證據(jù)。
研究區(qū)位于大興安嶺北部塔源地區(qū)(圖1b),大地構(gòu)造上位于新林-喜桂圖旗縫合帶,即額爾古納地塊與興安地塊結(jié)合部,額爾古納地塊為具有前寒武紀(jì)(甚至古元古代末期)結(jié)晶基底的古老微陸塊(Tangetal.,2013; 孫立新等,2013),主要是由角閃巖相變質(zhì)的興華渡口群、綠片巖相變質(zhì)的佳疙瘩群和少量新元古代花崗質(zhì)巖石組成,上覆沉積蓋層以中新生代地層為主,古生代地層出露較少,花崗巖及中生代火山巖極為發(fā)育。興安地塊巖漿活動(dòng)以中生代火山巖和花崗巖為主,古生代地層出露廣泛,早古生代地層主要位于興安地塊北部,為一套島弧和濁積巖建造,在島弧火山巖建造中發(fā)育多寶山超大斑巖型銅礦,晚古生代地層則主要分布于南部,多以碎屑沉積巖為代表(苗來成等,2003;Miaoetal.,2007; Geetal.,2007)。據(jù)早期1:20萬塔源幅地質(zhì)報(bào)告記錄(張重光等,1985),塔源鎮(zhèn)附近變輝長(zhǎng)巖先前被認(rèn)為早寒武世的變輝長(zhǎng)巖巖體,巖體似橢圓型呈近北東向展布,但受強(qiáng)烈風(fēng)化及植被覆蓋影響,難以確定具體變輝長(zhǎng)巖出露范圍。本文選取塔源西北部出露較好巖體作為研究對(duì)象,該巖體巖性較單一,巖性內(nèi)部巖相不明顯,變輝長(zhǎng)巖與花崗巖接觸并被侵入(圖2a,c),主要表現(xiàn)為花崗巖呈不規(guī)則脈侵入到變輝長(zhǎng)巖巖體中(圖2b),有粗有細(xì),有的呈尖滅狀(圖2b),有的互相貫通(圖2d)。在兩者接觸處形成邊緣混合巖化,且此混合巖脈體物質(zhì)較少,沿基體物質(zhì)的礦物邊界和粒間進(jìn)行交代;基質(zhì)物質(zhì)由斜長(zhǎng)石、角閃石等構(gòu)成,斜長(zhǎng)石多強(qiáng)絹云母化,并為次生微晶角閃石或鈉長(zhǎng)石所交代,且有綠泥石、綠簾石化現(xiàn)象。
圖1大興安嶺塔源地區(qū)地質(zhì)簡(jiǎn)圖(據(jù)張重光等,1985*張重光,李瑞山,王瑩等.1985.1:20萬塔源幅區(qū)域地質(zhì)調(diào)查報(bào)告.黑龍江地質(zhì)礦產(chǎn)局修改)
Fig.1Geological sketch map of Tayuan area,Da Xing’an Mountains
圖2 塔源變輝長(zhǎng)巖與花崗巖的接觸關(guān)系(a、b)-花崗巖以脈狀形式插入輝長(zhǎng)巖;(c)-花崗巖與變輝長(zhǎng)巖的接觸邊緣;(d)-花崗巖脈之間互相貫通,將輝長(zhǎng)巖切割成不等形狀Fig.2 Contact relation between the Tayuan meta-gabbros and granite
變輝長(zhǎng)巖(TY902-1):巖石呈灰綠色,塊狀構(gòu)造,中細(xì)粒半自形粒狀結(jié)構(gòu),礦物成分主要包括,斜長(zhǎng)石呈長(zhǎng)柱狀、板狀或粒狀,含量高達(dá)50%,發(fā)育聚片雙晶,可見綠簾石化、絹云母化,粒徑1.5~3mm;角閃石(30%~40%)多呈短柱狀,粒徑1.5~3mm,主要為黃土色,其中包含細(xì)粒斜長(zhǎng)石,局部見輝石殘留;輝石(3%~5%)為單斜輝石,以粒狀為主,多數(shù)為角閃石交代后的殘留,粒徑0.25~0.5mm;黑云母呈片狀,發(fā)育綠泥石化(圖3a,b)。其他副礦物有磁鐵礦、榍石、鈦鐵礦、磷灰石等。
圖3 大興安嶺塔源變輝長(zhǎng)巖(a、b)和花崗巖(c、d)的顯微結(jié)構(gòu)Py-輝石;Hbl-角閃石;Pl-斜長(zhǎng)石;Qtz-石英Fig.3 Textures of the Tayuan meta-gabbros (a,b) and granites (c,d) from Da Xing’an Mountains
花崗巖(TY902-2):呈淺灰-灰紅色,為中-粗?;◢徑Y(jié)構(gòu),塊狀構(gòu)造,具硅化及壓碎特征,主要礦物組成為石英(20%~50%)、他形粒狀,波狀消光,粒徑0.1~1.2mm;斜長(zhǎng)石(40%)呈半自形板狀,發(fā)育聚片雙晶,粒徑0.5~1.5mm;絹云母化;鉀長(zhǎng)石(10%)呈半自形粒狀,粒徑0.2~1.2mm,具格子雙晶(圖3c,d)。副礦物主要為榍石、磷灰石及磁鐵礦,且磁鐵礦多已褐鐵礦化。
圖4 塔源變輝長(zhǎng)巖(a)和花崗巖(b)鋯石U-Pb年齡諧和圖Fig.4 Concordian U-Pb diagrams of the Tayuan meta-gabbro (a) and granite (b)
圖5 塔源變輝長(zhǎng)巖(a)和花崗巖(b)的鋯石陰極發(fā)光圖像Fig.5 Zircon Cathodoluminescences (CL) images from the Tayuan meta-gabbro (a) and granite (b)
選擇新鮮樣品經(jīng)過無污染碎樣后在中國科學(xué)院地質(zhì)與地球物理研究所完成主量、微量和稀土元素分析。其中主量元素采用熔片法X-射線熒光光譜法(XRF)測(cè)定,分析準(zhǔn)確度和精度優(yōu)于2%~3%;微量元素和稀土元素是用Teflon熔樣罐進(jìn)行熔樣,然后采用Finnigan MAT公司生產(chǎn)的雙聚焦高分辨等離子體質(zhì)譜儀ICP-MS進(jìn)行測(cè)定,準(zhǔn)確度和精度優(yōu)于10%;Fe2O3、FeO采用容量法(VOL)測(cè)定。
本文測(cè)年鋯石的分選在河北廊坊地質(zhì)調(diào)查院完成,鋯石U-Pb同位素定年在西北大學(xué)大陸動(dòng)力學(xué)國家重點(diǎn)實(shí)驗(yàn)室進(jìn)行。將人工重砂分選的鋯石顆粒用環(huán)氧樹脂固定并拋光,使鋯石顆粒露出核部。在測(cè)定之前,用體積分?jǐn)?shù)為3%的HNO3清洗樣品表面,以除去表面污垢;然后進(jìn)行透射光和反射光照相,并在英國Gatan公司生產(chǎn)的Mono CL3+陰極發(fā)光裝置系統(tǒng)上進(jìn)行陰極發(fā)光(CL)照相。實(shí)驗(yàn)采用激光剝蝕等離子體分析技術(shù)(LA-ICP-MS),實(shí)驗(yàn)激光束斑直徑為32μm,頻率為10Hz,激光能量為0.09J,采用高純氦氣作為剝蝕物質(zhì)的載氣,每個(gè)分析點(diǎn)的氣體背景采集時(shí)間為30s,信號(hào)采集時(shí)間為40s。采用美國國家標(biāo)準(zhǔn)技術(shù)研究院研制的人工合成硅酸鹽玻璃標(biāo)準(zhǔn)參考物質(zhì)NIST SRM610進(jìn)行儀器最佳化,利用哈佛大學(xué)國際標(biāo)準(zhǔn)鋯石91500作為外部校正(柳小明等,2007)。樣品的同位素比值計(jì)算采用GLITTER(ver4.0 Macquarie University)程序。年齡計(jì)算采用Isoplot程序(Ver3.23)。實(shí)驗(yàn)數(shù)據(jù)運(yùn)用Andersen的方法進(jìn)行同位素比值校正(袁洪林等,2003),以消除普通204Pb的影響。
表1塔源變輝長(zhǎng)巖和花崗巖的鋯石LA-ICP-MS U-Pb定年結(jié)果
Table 1Zircon LA-ICP-MS U-Pb data of the Tayuan meta-gabbro and granite
測(cè)點(diǎn)號(hào)PbThU(×10-6)Th/U207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb(Ma)207Pb/235U(Ma)206Pb/238U(Ma)208Pb/232Th(Ma)比值±1σ比值±1σ比值±1σ年齡±1σ年齡±1σ年齡±1σ年齡±1σTY902?1:變輝長(zhǎng)巖,23個(gè)測(cè)點(diǎn),加權(quán)平均年齡為331.0±2.6Ma,MSWD=0.36;N:51°27′31.2″,E:124°15′48.7″TY902?1?01862940 660 058820 006960 413480 048050 050980 001135602683513532173166TY902?1?02141602240 720 054810 00240 398850 013460 052770 00086404473411033253306TY902?1?03547670 690 055810 006510 402800 046010 052350 001234452663443332983276TY902?1?047991040 960 049650 003050 359750 019580 052540 00095179923121533063228TY902?1?0538550 150 053830 004390 378260 028700 050960 0010736413432621320734733TY902?1?06434750 460 052440 003690 380540 024400 052620 0010130511132718331633212TY902?1?077601220 490 052250 003140 373700 019690 051860 000962968632215326631410TY902?1?08439630 620 057080 004240 418850 028480 053210 0010949511435520334732912TY902?1?09546840 550 048010 004100 347260 027740 052450 0011010013830321330745530TY902?1?10423620 370 054420 003680 401580 024510 053510 0010138810334318336633514TY902?1?117941190 790 049720 002730 366120 017220 053400 00093182773171333563407TY902?1?12434600 560 058960 004860 433430 033240 053310 0011556613036624335732514TY902?1?13680980 820 056710 003280 408190 020490 05220 00095480793481532863368TY902?1?14440740 540 055580 004530 404090 030650 052720 0011243613234522331731215TY902?1?15326580 450 054390 003100 394860 019510 052650 00096387783381433163309TY902?1?16193313031 090 051270 003400 375110 022340 053060 0010125310232316333632710TY902?1?179941460 650 054370 003070 399030 019450 053220 00096386773411433463499TY902?1?18548770 620 052860 002990 387040 018980 053100 00095323793321433463297TY902?1?197731040 700 055760 002980 40490 018310 052660 00094443693451333163337TY902?1?2081071100 970 056580 003550 410630 022870 052630 001004758934916331637510TY902?1?21131941970 980 051120 003310 37250 021640 052850 001002469932216332636311TY902?1?227911110 820 053970 003330 39210 023210 052690 000913701433361733163304TY902?1?23543770 550 053520 004380 390760 029750 052950 0011235113433522333732214TY902?2:花崗巖,20個(gè)測(cè)點(diǎn),加權(quán)平均年齡為329 4 0±2 4Ma,MSWD=0 84;N:51°27′31 2″,E:124°15′48 7″TY902?2?01542889673 350 051050 001760 358660 007890 050960 0007524326311632053246TY902?2?02355964850 810 057230 002080 414540 010260 052540 0007950029352733053215TY902?2?0391121301 160 051270 002790 373290 017490 052810 00091253763221333263388TY902?2?0491361391 020 053160 003350 385980 021730 052660 00100336933311633163379TY902?2?05171842791 510 050920 002410 362100 014020 051570 00085237593141032453217TY902?2?069049815173 040 051120 001650 371830 006940 052750 0007724620321533153625TY902?2?0791011391 380 052940 003390 389910 022350 053420 001023269533416335633710TY902?2?086424911304 540 051610 001710 377260 007540 053020 0007826822325633353536TY902?2?09323137058724 290 055230 001710 390330 006400 051250 0007542216335532253074TY902?2?10323705271 430 063140 002830 470460 016760 054030 00091713473921233964088TY902?2?1191241341 080 051290 003140 371620 020200 052540 00099254903211533063308TY902?2?12162492400 960 054510 002680 392780 016090 052250 00090392613361232863216TY902?2?13101541561 010 052740 002850 382940 017810 052650 00094318733291333163107TY902?2?14121432021 410 056290 002540 410660 014860 052900 00088464513491133253196TY902?2?157881131 290 052680 003250 382770 021000 052680 00099315903291533163349TY902?2?16221993841 920 055670 002860 387830 016830 050510 00090439653331231863259TY902?2?17342375482 310 053210 001980 388820 010230 052980 0008333832334733353256TY902?2?18441857393 990 052820 001890 383650 009260 052660 0008232128330733153437TY902?2?19161942471 280 051770 002220 375910 012630 052640 0008627547324933153166TY902?2?20121651881 140 050850 002700 368560 016810 052550 00094234723191233063067
本文對(duì)塔源西南變輝長(zhǎng)巖(TY902-1)和花崗巖(TY902-2)2件樣品進(jìn)行鋯石U-Pb定年(表1、圖4、圖5)。變輝長(zhǎng)巖樣品(TY902-1)中23個(gè)具有代表性鋯石分析見表1,鋯石大部分呈柱狀,具有明顯條帶狀、弱環(huán)狀結(jié)構(gòu)或面狀結(jié)構(gòu)(圖5a),呈現(xiàn)基性鋯石特征。23個(gè)分析點(diǎn)Th/U值為0.15~1.09,平均0.66,Th和U具有正相關(guān)關(guān)系,表明所測(cè)鋯石為典型巖漿鋯石(吳元保和鄭永飛,2004)。鋯石206Pb/238Pb年齡變化在320~336Ma,年齡值較接近且均落在諧和線上(圖4a),加權(quán)平均年齡為331.0±2.6Ma(MSWD=0.36),相當(dāng)于早石炭世晚期,代表了塔源變輝長(zhǎng)巖的結(jié)晶年齡。
表2塔源侵入巖主量元素(wt%)和微量元素(×10-6)分析結(jié)果
Table 2Major element (wt%) and trace element (×10-6) compositions for Tayuan rocks
樣品號(hào)TY07?1TY07?2TY07?3TY902?2TY01?2TY02?3TY05?1aTY902?1巖性花崗巖輝長(zhǎng)巖SiO272 9670 5471 6672 9552 0250 4148 5050 30TiO20 250 300 250 231 151 361 531 34Al2O313 5913 8713 5513 6516 4715 7617 1218 52FeO1 502 502 131 146 865 646 945 66Fe2O30 460 830 490 392 102 892 362 70MnO0 040 060 050 070 160 150 140 16MgO0 430 620 460 425 416 455 625 88CaO1 061 291 060 907 409 209 578 17Na2O4 384 604 473 604 103 463 563 73K2O4 083 843 885 521 731 691 351 35P2O50 070 100 080 050 360 460 590 37LOI0 580 560 660 941 381 081 581 61總量99 4099 1198 7499 8699 1498 5598 8699 79Mg#0 310 270 260 360 550 610 550 59Li8 186 969 299 1315 026 1117 9518 03Sc2 272 862 082 9320 1430 2223 6629 00V17 8520 9118 5515 70174 8179 8194 3170 0Cr4 8811 438 438 40139 4405 145 0171 20Co4 835 035 621 7528 4126 8828 8928 10Ni4 398 535 352 77119 486 9276 6757 20Cu1 815 102 743 5945 1734 9954 5556 01Zn13 1120 09132 849 06111 374 5568 1869 00Ga16 6515 5617 6214 3021 5316 5619 8721 90Rb100 296 5999 63107 039 4835 9834 2041 40Sr212 3211 7217 0222 0796 312221484861 0Y8 5310 079 519 9932 8823 9227 1230 30Zr68 13137 373 23115 0142 8141 8123 4147 0Nb11 1210 3112 0413 4016 8516 7617 7114 90Cs1 822 032 011 631 810 870 751 42Ba848787841929640726439502La30 2730 3533 3535 5040 2237 6644 2242 20Ce47 9249 6849 7150 9090 5582 8699 3592 70Pr3 994 644 705 3111 289 5911 9811 10Nd14 7016 6416 6917 9041 7534 1842 1543 60Sm2 722 582 823 178 726 457 938 11Eu0 880 720 730 971 921 832 002 39Gd3 102 762 993 307 565 736 697 94Tb0 440 380 350 391 020 890 901 09Dy2 282 332 132 056 234 595 125 93Ho0 320 350 330 391 301 091 141 14Er1 091 041 031 103 302 552 803 13Tm0 170 150 130 160 480 560 450 44Yb1 031 071 141 142 862 292 582 83Lu0 180 170 150 180 510 540 510 42Hf2 304 082 684 293 173 362 853 92Ta1 761 791 971 750 950 891 020 66Pb21 3719 9326 2419 5011 0216 1520 2310 60Th20 0620 7920 9622 203 622 211 761 47U4 274 354 554 991 230 800 730 51∑REE109 1112 9116 3122 5217 7190 8227 8223 0LREE100 5104 6108 0113 8194 4172 6207 6200 1HREE8 618 258 258 7123 2618 2420 1922 92L/H11 6712 6813 0913 068 369 4610 288 73δEu0 920 820 760 910 710 900 820 90La/Yb19 8119 1219 7220 999 4811 0911 5610 05
注:Mg#=Mg/(Mg+Fe); L/H=LREE/HREE;δEu=2EuN/(SmN+GdN)
花崗巖樣品(TY902-2)中20個(gè)具有代表性鋯石分析見表1,陰極發(fā)光圖像顯示鋯石顆粒均呈自形晶,具有清晰的巖漿型振蕩環(huán)帶結(jié)構(gòu)(圖5b),表明其為巖漿結(jié)晶鋯石。20個(gè)分析點(diǎn)Th/U為0.22~4.54,平均為1.95,鋯石206Pb/238Pb年齡變化在318~339Ma,除1顆粒偏離諧和線外,其余顆粒全部位于諧和線上或諧和線附近(圖4b)。20個(gè)數(shù)據(jù)加權(quán)平均年齡為329.4±2.4Ma(MSWD=0.84),表明巖漿侵位結(jié)晶時(shí)間為早石炭世晚期。
4.2.1主量元素
主量元素分析結(jié)果表明(表2),塔源變輝長(zhǎng)巖及花崗巖SiO2含量分布于2個(gè)區(qū)間,即48.50%~52.02%和70.54%~72.96%,缺失SiO2含量為53%~70%的巖石類型,兩者最突出特點(diǎn)是SiO2含量表現(xiàn)出不連續(xù)性,分別集中在兩個(gè)區(qū)間,且區(qū)間存在明顯的成分間斷,構(gòu)成一套雙峰式巖漿組合(王焰等,2000)。變輝長(zhǎng)巖SiO2含量變化范圍較小(48.50%~52.02%),Al2O3含量較高(15.76%~18.52%,平均16.97%),K2O(1.35%~1.73%,平均1.53%),Na2O(3.46%~4.1%,平均3.71%),屬于中鉀鈣堿性系列(圖6);Mg#平均為0.57,明顯低于原生巖漿范圍(Mg#=0.68~0.75,Wilson,1989),指示其經(jīng)歷了較高程度的結(jié)晶分異;花崗巖SiO2含量(70.54%~72.96%)和ALK(K2O+Na2O)含量較高(8.35%~9.12%),MgO和P2O5含量較低,分別為0.42%~0.62%和0.05%~0.1%。
圖6 塔源侵入巖SiO2-K2O圖解(陰影數(shù)據(jù)引自鐘輝,2006)Fig.6 SiO2 vs.K2O (%) diagram for the intrusive rocks in Tayuan (data after Zhong et al.,2006)
4.2.2微量元素
塔源變輝長(zhǎng)巖稀土含量相對(duì)較高,∑REE=190.8×10-6~227.8×10-6,平均214.8×10-6,輕重稀土分餾程度明顯,REE曲線總體呈一致右傾模式(圖7a),富集LREE,(La/Yb)N=9.48~11.56,平均9.21。HREE含量較低,可能暗示巖漿源區(qū)石榴石殘留,弱Eu的負(fù)異常(δEu=0.71~0.90),指示斜長(zhǎng)石分離結(jié)晶作用較弱;在原始地幔標(biāo)準(zhǔn)化微量蜘蛛網(wǎng)圖上(圖7b),塔源變輝長(zhǎng)巖呈現(xiàn)類似于島弧玄武巖的地球化學(xué)特征,富集LILE(K、Ba、Sr),相對(duì)虧損Nb、Ta、Ti、P、Zr,可能與巖漿演化過程中斜長(zhǎng)石、磷灰石的分離結(jié)晶作用有關(guān)。塔源花崗巖具有相對(duì)較低的REE含量(109.1×10-6~122.5×10-6),REE配分曲線呈明顯輕稀土右傾(圖7a),LREE含量(100.5×10-6~113.8×10-6)較低,無明顯Eu異(δEu=0.76~0.92);以明顯虧損P、Ti、Nb、Ta,富集Ba、K和Rb為特征。
圖7 塔源侵入巖的球粒隕石標(biāo)準(zhǔn)化的REE曲線(a,標(biāo)準(zhǔn)化值據(jù)Boynton,1984)及原始地幔標(biāo)準(zhǔn)化的微量元素蛛網(wǎng)圖(b,標(biāo)準(zhǔn)化值據(jù)Sun and McDonough,1989)Fig.7 Chondrite-normalized REE diagrams (a,normalization values after Boynton,1984) and primitive mantle-normalized trace element abundance (b,normalization values after Sun and McDonough,1989) of the Tayuan intrusive rocks
1:20萬塔源幅報(bào)告對(duì)塔源西北部和東北部?jī)蓚€(gè)變輝長(zhǎng)巖巖體全巖K-Ar同位素年齡測(cè)試為270.3Ma和539Ma(張重光等,1985);1:5萬塔源鎮(zhèn)幅區(qū)調(diào)報(bào)告顯示其Sm-Nd模式年齡分別為1183±21Ma和1116±13Ma(張重光等,1995*張重光,曲關(guān)生,張書苑等.1995.1:5萬塔源鎮(zhèn)幅區(qū)域地質(zhì)調(diào)查報(bào)告.黑龍江地質(zhì)礦產(chǎn)局),與吉峰-環(huán)宇蛇綠巖帶的變輝長(zhǎng)巖及變玄武巖Sm-Nd模式年齡(1146±24Ma,1003±35Ma)類似。本文數(shù)據(jù)顯示,塔源西北部巖體由基性的變輝長(zhǎng)巖和酸性的花崗巖組成,其中變輝長(zhǎng)巖時(shí)代(331.0±2.6Ma)并不是前人認(rèn)為的早寒武世,而是與巖體中花崗巖(329.4±2.4Ma)形成時(shí)代一致,為早石炭世末(~330Ma),兩者的年齡在誤差范圍內(nèi)一致,且野外地質(zhì)和巖石學(xué)特征也表明兩者近時(shí)侵入,變輝長(zhǎng)巖鋯石U-Pb年齡比花崗巖的稍大,說明變輝長(zhǎng)巖比花崗巖先冷凝結(jié)晶,這與野外觀察相一致。兩者近時(shí)性形成和地球化學(xué)特征均表明它們具有雙峰式組合特征。通常認(rèn)為雙峰式巖漿作用與引張環(huán)境有關(guān)(錢青和王焰,1999),產(chǎn)于洋島、大陸拉張減薄、弧后盆地、成熟島弧及造山后拉張環(huán)境等構(gòu)造背景。Christian and Paquette (1997)把雙峰式火山巖歸為板內(nèi)拉張和破壞板塊邊緣,又進(jìn)一步將板內(nèi)環(huán)境分為三種:大陸裂谷、大陸減薄環(huán)境和碰撞后伸展階段環(huán)境,且各環(huán)境巖石具有不同的地球化學(xué)特征(王焰等,2000)。碰撞后伸展環(huán)境的基性巖為拉斑質(zhì)或堿質(zhì),地球化學(xué)兼具有CFB和OIB特征,虧損Nb和Ta,富集LILE,LREE略富集或強(qiáng)烈富集型(李曉勇等,2002)。塔源變輝長(zhǎng)巖在Zr-Zr/Y圖解(圖8a)中則位于板內(nèi)玄武巖(WPB)區(qū)域,微量元素蜘蛛網(wǎng)特征類似島弧火山巖(虧損Nb和Ta),富集LILR,以上特征都與碰撞后伸展環(huán)境的基性巖相類似;塔源花崗巖微量元素貧Sr,同時(shí)相對(duì)虧損Ba,P,Ti和Eu,富集Y和Yb,其地球化學(xué)特征類似于南嶺型花崗巖(張旗等,2008),在其構(gòu)造判別圖上(圖8b),塔源花崗巖基本落入造山后伸展區(qū)域。綜上所訴,塔源雙峰式侵入巖形成于造山后板內(nèi)拉張的構(gòu)造背景。
圖8 塔源侵入巖微量元素成分構(gòu)造判別圖(a,據(jù)Pearce and Norry,1979; b,據(jù)Batchelor and Bowden,1985)Fig.8 Trace element discrimination diagram the tectonic setting of the intrusive rocks of the Tayuan (a,after Pearce and Norry,1979; b,after Batchelor and Bowden,1985)
圖9 塔源變輝長(zhǎng)巖的Th/Zr-Ba/Zr圖解(a,底圖據(jù)張貴山等,2009)及La/Yb-Sm/Yb圖解(b,底圖據(jù)Xu et al.,2005)Fig.9 Th/Zr-Ba/Zr diagram (a,after Zhang et al.,2009) and La/Yb-Sm/Yb diagram (b,after Xu et al.,2005) of the meta-gabbro
不相容元素因其具有相似的分配系數(shù)不受分離結(jié)晶作用影響,且在地幔物質(zhì)部分熔融過程中只有微小變化,因此用來指示源區(qū)特征(Taylor and McClennan,1985)。塔源變輝長(zhǎng)巖以低La/Ta=42.31~63.94(深部地幔物質(zhì)巖漿La/Ta=8~15)和Th/Ta=1.73~3.81(原始地幔Th/Ta=2.3,大陸地殼Th/Ta=10,Jochumetal.,1989),高La/Sm=4.61~5.84(受到巖石圈地幔混染后La/Sm>25;受地殼物質(zhì)混染La/Sm>5),低MgO、Cr(下地殼MgO=7.24%,Cr=215×10-6,Rudnick and Gao,2003)為特征,暗示原始巖漿受到地殼混染比例較小,大部分由分離結(jié)晶作用引起,Cr含量較低指示原始巖漿過程中發(fā)生了尖晶石、斜方輝石、單斜輝石和石榴石等礦物相的分離結(jié)晶,同時(shí)變輝長(zhǎng)巖中未見橄欖石,說明在地殼深處發(fā)生過橄欖石等鐵鎂礦物的分離結(jié)晶。
塔源變輝長(zhǎng)巖Zr/Hf比值為37.50~45.04,高于原始地幔值(36.27±2.0)(Rudnick and Gao,2003),具Ce(1.01~1.03)富集特征,另圖9a顯示,塔源變輝長(zhǎng)巖樣品呈現(xiàn)出受蝕變洋殼流體交代趨勢(shì),表明源區(qū)早期可能受俯沖板片流體交代作用的影響。La/Yb-Sm/Yb圖解能有效的判別巖漿源區(qū)石榴石和尖晶石含量變化及巖漿起源深度(Xuetal.,2005),在圖9b中,塔源變輝長(zhǎng)巖樣品接近于石榴石二輝橄欖巖熔融曲線,表明巖漿可能來源于石榴石相的地幔部分熔融,結(jié)合塔源變輝長(zhǎng)巖的板內(nèi)環(huán)境和類似“島弧型”地球化學(xué)特征,暗示在巖漿形成之前其地幔源區(qū)曾發(fā)生過俯沖流體交代富集作用。
據(jù)以上論述,塔源雙峰式侵入巖形成與基性巖漿的底侵作用有關(guān),地幔源區(qū)在板內(nèi)伸展-減薄的構(gòu)造環(huán)境下,被俯沖流體交代的巖石圈地幔由于其固相線較低而發(fā)生減壓部分熔融作用形成基性巖漿(McKenzie and Bickle,1988),基性巖漿底侵于上部地殼,使其上部地殼發(fā)生大規(guī)模的部分熔融,形成花崗巖質(zhì)巖漿且野外花崗巖出露面積大于變輝長(zhǎng)巖。
目前關(guān)于東北大興安嶺地區(qū)古生代地質(zhì)演化焦點(diǎn)問題主要集中在額爾古納地塊、興安地塊和松嫩地塊三者之間的拼貼位置及形成時(shí)代上。近年來對(duì)額爾古納地塊和興安地塊已于早古生代(~480Ma)完成拼合基本達(dá)成一致(葛文春等,2005;李瑞山,1991;武廣等,2005),但對(duì)兩地塊沿塔源-喜桂圖旗縫合帶的證據(jù)相對(duì)較少。塔源變輝長(zhǎng)巖及花崗巖顯示其形成時(shí)代為~330Ma,其巖石學(xué)和地球化學(xué)特征顯示其形成于板內(nèi)伸展構(gòu)造背景,明顯不同于前人認(rèn)為的“被肢解的新林蛇綠巖”(鐘輝和傅俊彧,2006)。
那么,這種伸展構(gòu)造背景是與哪種構(gòu)造體系有關(guān)?由本文厘定的雙峰式侵入巖體可知,~330Ma大興安嶺北段已經(jīng)處于伸展階段,這與塔河雙峰式侵入巖(張彥龍等,2010)一致吻合,加之大興安嶺地區(qū)廣泛分布著石炭紀(jì)的花崗巖和火山巖(圖10),特別是發(fā)育與伸展相關(guān)的花崗巖,如崔芳華等(2013)報(bào)道了全勝林場(chǎng)類似I型花崗巖(290~322Ma),認(rèn)為是石炭紀(jì)造山晚期-造山后伸展構(gòu)造背景下的產(chǎn)物;張建等(2011)發(fā)現(xiàn)了塔爾氣正長(zhǎng)花崗巖(335Ma)-二長(zhǎng)花崗巖(313Ma)-花崗閃長(zhǎng)巖(320Ma),并確定其與古亞洲洋的閉合有關(guān),而張興洲等(2006)和趙芝等(2010a,b)也在大興安嶺西部發(fā)現(xiàn)了~310Ma花崗巖,判別是碰撞后伸展成因。根據(jù)以上我們可以判定大興安嶺地區(qū)在早石炭晚期已進(jìn)入伸展拉張階段,關(guān)于其是否與額爾古納-興安地塊和松嫩地塊拼合體系有關(guān),仍需進(jìn)一步探討。
(1)大興安嶺北段塔源變輝長(zhǎng)巖與花崗巖構(gòu)成了雙峰式侵入巖組合,它們?cè)诳臻g上緊密伴生,形成時(shí)代相近,LA-ICP-MS測(cè)年結(jié)果顯示塔源變輝長(zhǎng)巖和花崗巖的侵位年齡分別為331.0±2.6Ma和329.4±2.4Ma,并且具有密切的成因聯(lián)系,SiO2含量集中分布在兩個(gè)區(qū)間,缺失了53%~70%的中性成分,構(gòu)成一套雙峰式侵入巖組合。
(2)塔源變輝長(zhǎng)巖為中鉀鈣堿性系列,MgO含量較低,屬于演化巖漿,TiO2、FeOT和P2O5含量較高,富集LREE,Eu異常不明顯,稀土元素總量和輕重稀土元素的分餾程度較高,Ti/V、Ti/Y、Zr/Y比值較低,富集大離子親石元素(LILE)而虧損高場(chǎng)強(qiáng)元素(HFSE),尤其是強(qiáng)烈虧損Nb,形成于板內(nèi)張裂環(huán)境?;◢弾r以TiO2、FeOT和P2O5含量較低為特征,REE配分模式為L(zhǎng)REE富集型,其中花崗巖為Eu弱負(fù)異常,微量元素蛛網(wǎng)圖上類似于A型花崗巖分配模式,暗示可能形成于造山后伸展環(huán)境。
(3)不相容元素(如La/Sm、La/Ta、Th/Ta)以及MgO含量等指示原始巖漿受到地殼混染的比例較小,以分離結(jié)晶作用為主。除此之外,變輝長(zhǎng)巖還顯示巖石圈地幔物質(zhì)的印記,并與石榴石相二輝橄欖巖熔融有關(guān),它們被解釋成早期地幔源區(qū)曾發(fā)生過俯沖流體交代的影響?;詭r和花崗巖由不同的源區(qū)熔融形成,基性巖源于受到陸殼混染比例較小的原始地幔,而花崗巖可能來自底侵作用,基性巖漿使其上部的地殼發(fā)生大規(guī)模的部分熔融形成大面積花崗巖。大興安嶺塔源侵位活動(dòng)可能與巖石圈伸展減薄背景下玄武質(zhì)巖漿的底侵作用有關(guān)。
致謝LA-ICP-MS鋯石U-Pb定年和主微量元素測(cè)試工作分別在西北大學(xué)大陸動(dòng)力學(xué)國家重點(diǎn)實(shí)驗(yàn)室和中國科學(xué)院地質(zhì)與地球物理研究所巖石圈演化國家重點(diǎn)實(shí)驗(yàn)室完成;感謝東北亞礦產(chǎn)資源評(píng)價(jià)國土資源部重點(diǎn)實(shí)驗(yàn)室的資助;在成文過程中,徐備、裴福萍、張彥龍等老師及匿名審稿人提出了寶貴的修改意見;在此一并表示衷心的感謝。
Boynton WV.1984.Geochemistry of the rare earth elements: Meteorite studies.In: Henderson P (ed.).Rare Earth Element Geochemistry.Amsterdam: Elsevier,63-114
Christian P and Paquette JL.1997.A mantle derived bimodal suite in the Hercynian Belt: Nd isotope and element evidence for a subduction-related rift origin of Late Devonian Brevenne metavolcanics,Massif Cental (France).Contrib.Mineral.Petrol.,129(2-3): 222-238
Cui FH,Zheng CQ,Xu XC,Yao WG,Shi L,Li J and Xu JL.2013.Late Carboniferous magmatic activities in the Quansheng linchang area,Great Xing’an range: Constrains on the timing of amalgamation between Xing’an and Songnen Massifs.Acta Geologica Sinica,87(9): 1247-1263 (in Chinese with English abstract)
Ge WC,Wu FY,Zhou CY and Abdel Rahman AA.2005.Emplacement age of the Tahe granite and its constraints on the tectonic nature of the Ergun block in the northern part of the Da Hinggan Mts.Chin.Sci.Bull.,50(18): 2097-2105
Ge WC,Wu FY,Zhou CY and Zhang JH.2007.Porphyry Cu-Mo deposits in the eastern Xing’an-Mongolian orogenic belt: Mineralization ages and their geodynamic implications.Chinese Science Bulletin,52(24): 3416-3427
Hu DG,Tan CX and Zhang H.1995.Middle Proterozoic ophiolites in the Alihe area,Inner Mongolia.Regional Geology of China,(4): 334-343 (in Chinese with English abstract)
Hu DG,Zheng QD,Fu JY and Liu XG.2001.The geological and geochemical characteristics of the Jifeng Komatiites in the Da Hinggan Ling Mountains.Journal of Geomechanics,7(2): 111-115 (in Chinese with English abstract)
Hu DG,Li HW,Liu XG and Yu RW.2003.Dating of Sm-Nd isochron ages of the Jifeng komatiites from the Da Hinggan Ling.Acta Geoscientia Sinica,24(5): 405-408 (in Chinese with English abstract)
Jochum KP,Mcdonough WF,Palame H and Spettel B.1989.Compositional constrains on the continental lithospheric mantle from trace elements in spinel peridotite xenoliths.Nature,340(6234): 548-550
Li CY.1980.A preliminary study of plate tectonics of China.Bulletin of the Chinese Academy of Geological Science,2(1): 11-22 (in Chinese with English abstract)
Li RS.1991.Xinling Ophilolite.Heilongjiang Geology,2(1): 19-32 (in Chinese with English abstract)
Li XY,Guo F and Wang YJ.2002.Post orogenic tectono-magmatism and its implications for evolution of orogenic belts.Geological Journal of China Universities,8(1): 68-78 (in Chinese with English abstract)
Liu XM,Gao S,Diwu CJ,Yuan HL and Hu ZC.2007.Simultaneous in-situ determination of U-Pb age and trace elements in zircon by LA-ICP-MS in 20μm spot size.Chinese Science Bulletin,52(9): 1257-1264
Liu YJ,Zhang XZ,Jin W,Chi XG,Wang CW,Ma ZH,Han GQ,Wen QB,Zhao YL,Wang WD and Zhao XF.2010.Late Paleozoic tectonic in Northeast China.Geology in China,37(4): 943-951 (in Chinese with English abstract)
McKenzie D and Bickle MJ.1988.The volume and composition of melt generated by extension of the lithosphere.J.Petrol.,29: 625-679
Miao LC,Fan WM,Zhang FQ,Liu DY,Jian P,Shi GH,Tao H and Shi YR.2004.Zircon SHRIMP geochronology of the Xinkailing-Kele complex in the northwestern Lesser Xing'an Range,and its geological implications.Chinese Science Bulletin,49: 201-209
Miao LC,Liu DY,Zhang FQ,Fan WM,Shi YR and Xie HQ.2007.Zircon SHRIMP U-Pb ages of the “Xinghuadukou Group” in Hanjiayuanzi and Xinlin areas and the “Zhalantun Group in” Inner Mongolia,Da Hinggan Mountains.Chinese Science Bulletin,52(8): 1112-1124
Qian Q and Wang Y.1999.Geochemical characteristics of bimodal volcanic suites from different tectonic settings.Geology-Geochemistry,27(4): 29-32 (in Chinese with English abstract)
Rudnick RL and Gao S.2003.The composition of continental crust.In: Rudnick RL (eds.).Treatise on Geochemistry,Vol.3.The Crust.Oxford: Elsevier,1-64
Sun LX,Ren BF,Zhao FQ,Ji SP and Geng JZ.2013.Late Paleoproterozoic magmatic records in the Eerguna massif: Evidences from the zircon U-Pb dating of granitic gneisses.Geological Bulletin of China,32(2-3): 341-352 (in Chinese with English abstract)
Tang J,Xu WL,Wang F,Xu MJ and Zhang YH.2013.Geochronology and geochemistry of Neoproterozoic magmatism in the Erguna Massif,NE China: Petrogenesis and implications for the breakup of the Rodinia supercontinent.Precambrian Research,224: 597-611
Taylor SR and McClennan S.1985.The Continental Crust: Its Composition and Evolution.Boston: Blackwell Scientific Publications,209-230
Wang CW,Jin W,Zhang XZ,Ma ZH,Chi XG,Liu YJ and Li N.2008.New understanding of the Late Paleozoic tectonic in northeastern China and adjacent areas.Journal of Stratigraphy,32(2): 119-136 (in Chinese with English abstract)
Wang Y,Qian Q,Liu L and Zhang Q.2000.Major geochemical characteristics of bimodal volcanic rocks in different geochemical environments.Acta Petrologica Sinica,16(2): 169-173 (in Chinese with English abstract)
Wilson M.1989.Igneous Petrogenesis.London: Unwin Hyman,1-466
Wu FY,Sun DY and Lin Q.1999.Petrogenesis of the Phanerozoic granites and crustal growth in Northeast China.Acta Petrologica Sinica,15(2): 181-189 (in Chinese with English abstract)
Wu G,Sun FY,Zhao CS,Li ZT,Zhao AL,Pang QB and Li GY.2005.Discovery of the Early Paleozoic post-collisional granites in northern margin of the Erguna massif and its geological significance.Chinese Science Bulletin,50(23): 2733-2743
Wu YB and Zheng YF.2004.Genesis of zircon and its constraints on interpretation of U-Pb age.Chinese Science Bulletin,49(15): 1554-1569
Xu YG,Ma JL,Frey FA,Feigenson MD and Liu JF.2005.Role of lithosphere-asthenosphere interaction in the genesis of Quaternary: Alkali and tholeiitic basalts from Datong,western North China Craton.Chem.Geol.,224(4): 247-271
Ye HW,Zhang XZ and Zhou YW.1994.40Ar-39Ar age and its geologic significance of vein crosstie in glaucophane-schist,Mudanjiang area.Journal of Changchun University of Earth Sciences,24(4): 369-372 (in Chinese with English abstract)
Yuan HL,Wu FY,Gao S,Liu XM,Xu P and Sun DY.2003.Determination of U-Pb age and rare earth element concentrations of zircons from Cenozoic intrusions in northeastern China by laser ablation ICP-MS.Chin.Sci.Bull.,48(22): 2411-2421
Zhang GS,Wen HJ,Li SL,Hu RZ and Qiu YZ.2009.Geochemical characteristics of Bojite in northern Fujian Province and their geodynamic significance.Acta Mineralogica Sinica,29(2): 243-252 (in Chinese with English abstract)
Zhang J,Chen JS,Li BY,Gao Y and Zhang YL.2011.Zircon U-Pb ages and Hf isotopes of Late Paleozoic granites in Taerqi area,Inner Mongolia.Global Geology,30(4): 521-530 (in Chinese with English abstract)
Zhang L,Liu YJ,Li WM,Han GQ,Zhang JD,Zhao ZH,Jian XF and Guo QY.2013.Discussion on the basement properties and east boundary of the Ergun Massif.Chinese Journal of Geology,48(1): 227-244 (in Chinese with English abstract)
Zhang Q,Wang YL,Jin WJ,Jia XQ and Li CD.2008.Criteria for the recognition of pre-,syn- and post-orogenic granitic rocks.Geological Bulletin of China,27(1): 1-18 (in Chinese with English abstract)
Zhang XZ,Yang BJ,Wu FY and Liu GX.2006.The lithosphere structure in the Hingmong-Jihei (Hinggan-Mongolia-Jilin-Heilongjiang) region,northeastern China.Geology in China,33(4): 816-823 (in Chinese with English abstract)
Zhang YL,Zhao XC,Ge WC,Zhang JH and Gao Y.2010.Geochemical characteristics and genesis of Tahe granitic complex in northern part of the Da Hinggan Range.Acta Petrologica Sinica,26(12): 3507-3520 (in Chinese with English abstract)
Zhao Z,Chi XG,Liu JF,Wang TF and Hu ZC.2010a.Late Paleozoic arc-related magmatism in Yakeshi region,Inner Mongolia chronological and geochemical evidence.Acta Petrologica Sinica,26(11): 3245-3258 (in Chinese with English abstract)
Zhao Z,Chi XG,Pan SY,Liu JF,Sun W and Hu ZC.2010b.Zircon U-Pb LA-ICP-MS dating of Carboniferous volcanics and its geological significance in the northwestern Lesser Xing’an Range.Acta Petrologica Sinica,26(8): 2452-2464 (in Chinese with English abstract)
Zheng CQ,Zhou JB,Jin W,Ji JQ,Zhang XZ,Ma ZH and Ding X.2009.Geochronology in the north segment of the Deerbugan fault zone,Great Xing’an Range,NE China.Acta Petrologica Sinica,25(8): 1989-2000 (in Chinese with English abstract)
Zhong H and Fu JY.2006.Petrochemistry,geochemistry and genesis of the meta-gabbro in Tayuan,northern Daxinganling.Geology and Resources,15(1): 42-47 (in Chinese with English abstract)
Zhu SY and Yang JX.1991.The remains and history of evolution of the plate tectonics in the geosynclinal region in the northern part of Inner Mongolia.Regional Geology of China,(4): 335-341 (in Chinese with English abstract)
附中文參考文獻(xiàn)
崔芳華,鄭常青,徐學(xué)純,姚文貴,施璐,李娟,徐久磊.2013.大興安嶺全勝林場(chǎng)地區(qū)晚石炭世巖漿活動(dòng)研究:對(duì)興安地塊與松嫩地塊拼貼時(shí)間的限定.地質(zhì)學(xué)報(bào),87(9): 1247-1263
葛文春,吳福元,周長(zhǎng)勇,Abdel Rahman AA.2005.大興安嶺北部塔河花崗巖體的時(shí)代及對(duì)額爾古納地塊構(gòu)造歸屬的制約.科學(xué)通報(bào),50(12): 1239-1247
胡道功,譚成軒,張海.1995.內(nèi)蒙古阿里河地區(qū)中元古代蛇綠巖.中國區(qū)域地質(zhì),(4): 334-343
胡道功,鄭慶道,傅俊彧,劉旭光.2001.大興安嶺吉峰科馬提巖地質(zhì)地球化學(xué)特征.地質(zhì)力學(xué)學(xué)報(bào),7(2): 111-115
胡道功,李洪文,劉旭光,于榮文.2003.大興安嶺吉峰科馬提巖Sm-Nd等時(shí)線年齡測(cè)定.地球?qū)W報(bào),24(5): 405-408
李春昱.1980.中國板塊構(gòu)造的輪廓.中國地質(zhì)科學(xué)院學(xué)報(bào),2(1): 11-22
李瑞山.1991.新林蛇綠巖.黑龍江地質(zhì),2(1): 19-32
李曉勇,郭鋒,王岳軍.2002.造山后構(gòu)造巖漿作用研究評(píng)述.高校地質(zhì)學(xué)報(bào),8(1): 68-78
柳小明,高山,第五春容,袁洪林,胡兆初.2007.單顆粒鋯石的20μm小斑束原位微區(qū)LA-ICP-MS U-Pb年齡和微量元素的同時(shí)測(cè)定.科學(xué)通報(bào),52(2): 228-235
劉永江,張興洲,金巍,遲效國,王成文,馬志紅,韓國卿,溫泉波,趙英利,王文弟,趙喜峰.2010.東北地區(qū)晚古生代區(qū)域構(gòu)造演化.中國地質(zhì),37(4): 943-951
苗來成,范蔚茗,張福勤,劉墩一,簡(jiǎn)平,施光海,陶華,石玉若.2003.小興安嶺西北部新開嶺-科洛雜巖鋯石SHRIMP年代學(xué)研究及其意義.科學(xué)通報(bào),48(22): 2315-2323
錢青,王焰.1999.不同構(gòu)造環(huán)境中雙峰式火山巖的地球化學(xué)特征.地質(zhì)地球化學(xué),27(4): 29-32
孫立新,任邦方,趙鳳清,冀世平,耿建珍.2013.內(nèi)蒙古額爾古納地塊古元古代末期的巖漿記錄——來自花崗片麻巖的鋯石U-Pb年齡證據(jù).地質(zhì)通報(bào),32(2-3): 341-352
王成文,金巍,張興洲,馬志紅,遲效國,劉永江,李寧.2008.東北及鄰區(qū)晚古生代大地構(gòu)造屬性新認(rèn)識(shí).地層學(xué)雜志,32(2): 119-136
王焰,錢青,劉良,張旗.2000.不同構(gòu)造環(huán)境中雙峰式火山巖的主要特征.巖石學(xué)報(bào),16(2): 169-173
吳福元,孫德有,林強(qiáng).1999.東北地區(qū)顯生宙花崗巖的成因與地殼增生.巖石學(xué)報(bào),15(2): 181-189
武廣,孫豐月,趙財(cái)勝,李之彤,趙愛琳,龐慶幫,李廣遠(yuǎn).2005.額爾古納地塊北緣早古生代后碰撞花崗巖的發(fā)現(xiàn)及其地質(zhì)意義.科學(xué)通報(bào),50(20): 2278-2288
吳元保,鄭永飛.2004.鋯石成因礦物學(xué)研究及其對(duì)U-Pb年齡解釋的制約.科學(xué)通報(bào),49(16): 1589-1604
葉慧文,張興洲,周裕文.1994.牡丹江地區(qū)藍(lán)片巖中脈狀青鋁閃石40Ar-39Ar年齡及其地質(zhì)意義.長(zhǎng)春地質(zhì)學(xué)報(bào)學(xué)院,24(4): 369-372
袁洪林,吳福元,高山,柳小明,徐平,孫德有.2003.東北地區(qū)新生代侵入體的鋯石激光探針U-Pb年齡測(cè)定與稀土元素成分分析.科學(xué)通報(bào),48(14): 1511-1520
張貴山,溫漢捷,李石磊,胡瑞忠,裘愉卓.2009.閩北角閃輝長(zhǎng)巖的地球化學(xué)特征及其地球動(dòng)力學(xué)意義.礦物學(xué)報(bào),29(2): 243-252
張建,陳井勝,李泊洋,高研,張彥龍.2011.內(nèi)蒙古塔爾氣地區(qū)晚古生代花崗巖的鋯石U-Pb年齡及Hf同位素特征.世界地質(zhì),30(4): 521-530
張麗,劉永江,李偉民,韓國卿,張金帶,趙忠華,簡(jiǎn)曉飛,郭慶銀.2013.關(guān)于額爾古納地塊基底性質(zhì)和東界的討論.地質(zhì)科學(xué),48(1): 227-244
張旗,王元龍,金惟俊,賈秀勤,李承東.2008.造山前、造山和造山后花崗巖的識(shí)別.地質(zhì)通報(bào),27(1): 1-18
張興洲,楊寶俊,吳福元,劉國興.2006.中國興蒙-吉黑地區(qū)巖石圈結(jié)構(gòu)基本特征.中國地質(zhì),33(4): 816-823
張彥龍,趙旭晁,葛文春,張吉衡,高妍.2010.大興安嶺北部塔河花崗雜巖體的地球化學(xué)特征及成因.巖石學(xué)報(bào),26(12): 3507-3520
趙芝,遲效國,劉建峰,王鐵夫,胡兆初.2010a.內(nèi)蒙古牙克石地區(qū)晚古生代弧巖漿巖: 年代學(xué)及地球化學(xué)證據(jù).巖石學(xué)報(bào),26(11): 3245-3258
趙芝,遲效國,潘世語,劉建峰,孫巍,胡兆初.2010b.小興安嶺西北部石炭紀(jì)地層火山巖的鋯石LA-ICP-MS U-Pb年代學(xué)及其地質(zhì)意義.巖石學(xué)報(bào),26(8): 2452-2464
鄭常青,周建波,金巍,季建清,張興洲,馬志紅,丁雪.2009.大興安嶺地區(qū)德爾布干斷裂帶北段構(gòu)造年代學(xué)研究.巖石學(xué)報(bào),25(8): 1989-2000
鐘輝,傅俊彧.2006.塔源地區(qū)變輝長(zhǎng)巖巖石化學(xué)地球化學(xué)特征及成因.地質(zhì)與資源,15(1): 42-47
朱紳玉,楊繼賢.1991.內(nèi)蒙古北部地槽區(qū)的板塊構(gòu)造遺跡及其演化歷史.中國區(qū)域地質(zhì),(4): 335-341